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Abstract: The thermal plasma filling the early universe generated a stochastic gravitational
wave background that peaks in the microwave frequency range today. If the graviton
production rate is expressed as a series in a fine-structure constant, α, and the temperature over
the Planck mass, T 2/m2

pl, then the lowest-order contributions come from single (∼ αT 2/m2
pl)

and double (∼ T 4/m4
pl) graviton production via 2 → 2 scatterings. We show that in the

Standard Model, single-graviton production dominates if the maximal temperature is smaller
than 4 × 1018 GeV. This justifies previous calculations which relied solely on single-graviton
production. We mention Beyond the Standard Model scenarios in which the single and double-
graviton contributions could be of comparable magnitudes. Finally, we elaborate on what
these results imply for the range of applicability of General Relativity as an effective theory.
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1 Introduction

The past years have seen an explosion of interest in gravitational wave astronomy. With hopes
for an upcoming observation of a primordial background through pulsar timing arrays [1–4],
the construction of the LISA observatory under way, and the planning of DECIGO as well
as the Einstein Telescope striding forward, theoretical efforts at identifying all conceivable
cosmological sources are well motivated. In fact such efforts should cover not only the sub-kHz
frequencies relevant for large interferometers, but extend up to much higher frequencies,
100GHz and above, for which future experimental concepts are being actively developed [5].

If we restrict ourselves to the Standard Model of particle physics, perhaps minimally
extended to incorporate the existence of neutrino masses, there is however only one primordial
gravitational wave component that is guaranteed to be present.1 It is the gravitational waves
produced by microscopic collisions [11] taking place in a Standard Model plasma [12, 13].
This background is not a perfect analogue of the cosmic microwave background (CMB), since
gravitons were most likely never in thermal equilibrium,2 however its shape (∼ Planckian)
and peak frequency range (f0|peak ∼ 100GHz) are similar to those of the CMB. The reason
for the similarity is that the graviton energies reflect the thermal energy distributions of
the plasma particles from which they are produced.

A key property of the thermal gravitational wave background is that while its shape can
be computed, its amplitude is not known. The reason is that gravitons do not equilibrate; they
are just continuously being produced. The production rate is proportional to the strength
of the gravitational interaction, ∼ 1/m2

pl, where mpl is the Planck mass, as well as to the
strength of Standard Model forces, ∼ α, where α is a fine-structure constant. Integrating
over a Hubble time, H−1 ∼ mpl/T

2, and normalizing to the energy density of radiation, the
fractional energy density in gravitational waves then scales as Ωgw ∼ αTmax/mpl, where Tmax
is the maximal temperature of the radiation-dominated phase in our universe.

Now, if we explore large values of Tmax, it must be asked whether terms suppressed
by higher powers of Tmax/mpl also play a role. A concrete way to probe this question was

1Many other sources have been analyzed, notably inflation [6], the dynamics of reheating [7, 8], and a
plethora of post-reheating phenomena [9, 10], however they rely on Beyond the Standard Model (BSM) physics.

2Exotic scenarios in which this could have been the case have also been proposed, cf., e.g., refs. [14, 15].
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identified in ref. [16]. The rate ∼ α/m2
pl mentioned above involves the production of a single

graviton in association with a Standard Model particle. But in addition, there are processes
in which two gravitons are produced, without any Standard Model particles. The rate of the
latter processes is ∼ 1/m4

pl. To complete the dimensions, this rate must come with a power
of Tmax. Therefore, at high Tmax, the double-graviton rate overtakes the single-graviton rate.
Then we also need to ask whether the notion of using General Relativity as an effective
theory, reliant on the convergence of an expansion in T 2

max/m
2
pl, continues to apply.

The purpose of the current study is to promote the computation of ref. [16], carried out
in scalar field theory, to the full Standard Model. This requires including fermion-antifermion
pairs and gauge boson pairs as additional initial states. Summing over all processes, we
provide a quantitative criterion for when single-graviton production dominates.

Our presentation is organized as follows. The main steps of the computation, as well as
a difference to matrix elements squared that can be found in the literature, are discussed
in section 2. Our results are illustrated numerically in section 3, and the main conclusions
are formulated in section 4. Some technical details related to evaluating thermal averages
of pair production cross sections have been relegated to appendix A.

2 Steps of the computation

We consider a moment after inflation at which the plasma filling the universe has equilibrated
to an average temperature T ≪ mpl. Furthermore, the plasma contribution to the overall
energy density is assumed to dominate over that from non-equilibrated fields, such as
the inflaton. Then the Hubble rate, H, is much smaller than typical thermal momenta,
H ∼ √

g∗ T
2/mpl ≪ πT , where g∗ ∼ 102 is the number of relativistic degrees of freedom.

Consequently, thermal wavelengths are well within the horizon, (πT )−1 ≪ H−1. We consider
the production of gravitational waves (GW’s) from the scatterings of particles with such
wavelengths. As will become apparent, the GW spectrum reflects that of the scatterers, so
that in terms of the physical momentum k, it is peaked at around k|peak ∼ πT .

Given that the physics we are interested in takes place within the horizon, the space is
locally flat, and we can employ local Minkowskian coordinates for the computation. The
background metric is written as gµν = ηµν+κhµν , where ηµν = diag(+−−−) is the Minkowski
metric and hµν denotes the gravitational perturbation. The effective coupling of gravitational
interactions is defined as

κ2 ≡ 32πG ≡ 32π
m2

pl
, (2.1)

where G is Newton’s constant, and mpl = 1.22091 × 1019 GeV is the Planck mass.
When the Einstein-Hilbert action is expanded as a series in κ, vertices are generated for

the interactions of hµν with itself and with other fields (a pedagogic review can be found
in ref. [17]). Adding a graviton leg to a process leads to a suppression of the amplitude
by κ ∼ 1/mpl, and to a suppression of the corresponding amplitude squared by κ2. But we can
also add a normal Standard Model vertex to any given process, which leads to the suppression
of the rate by ∼ α, where α is a fine-structure constant. Therefore, the production rate can
be viewed as a double series, in α and 1/m2

pl. In addition, we may recall that 2 → 1 processes

– 2 –
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Figure 1. Diagrams leading to the pair production of gravitons (double wiggly lines) from (a) scalars
(dashed lines); (b) fermions (solid lines); (c) gauge fields (wavy lines). We have omitted arrows from
scalars and fermions, understanding that both particle and antiparticle states are to be included.

are kinematically forbidden for a massless final state. If we approximate all particles as
massless, the leading processes are then 2 → 2 amplitudes. If they involve a Standard Model
vertex, their rate is ∼ α/m2

pl; if they only contain gravitational vertices, their rate is ∼ 1/m4
pl.

To these leading terms, additional vertices of either type can be added, leading to further
suppression by α or 1/m2

pl (e.g. triple-graviton production at ∼ 1/m6
pl, etc).

The practical computations can be streamlined by going over to the De Donder gauge,
∂αh

α
µ = 1

2∂µh
α
α. This also renders the quadratic part of the gravitational action invertible, so

that an internal graviton propagator can be found. On the external graviton lines, which
are on-shell, i.e. with four-momentum K = (k,k) with k ≡ |k|, the sum over polarizations
λ yields the projector∑

λ={×,+}
ϵλαβ(k) ϵλ∗

µν(k) ≡ Lαβ;µν = 1
2

(
K

T
αµK

T
βν +KT

ανK
T
βµ −KT

αβK
T
µν

)
, (2.2)

which is traceless in αβ and µν, transverse with respect to the graviton four-momentum
K, and projects onto two physical states in four dimensions, i.e. Lαβ;

αβ = 2. The tensor
K

T can be chosen as

K
T
µν ≡ ηµiηνj

(
δij − kikj

k2

)
= − ηµν +

KµK̄ν + KνK̄µ

K · K̄
, (2.3)

which is transverse with respect to the four-momenta K and K̄ ≡ (k,−k), and also with
respect to the three-momentum k (we work in the plasma rest frame).

With the Feynman rules at hand, the first step is to determine the matrix elements squared
for the production processes, shown in figure 1. The four-momenta of the Standard Model
particles are denoted by P1, P2 and those of the gravitons by K1, K2, with P1 +P2 = K1 +K2.

– 3 –
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We introduce the usual Mandelstam invariants, s ≡ (P1+P2)2, t ≡ (P1−K1)2, u ≡ (P1−K2)2.
The processes take place at very high temperatures, much above any known particles masses.
Therefore all particles can effectively be taken to be massless, whereby

s+ t+ u = 0 . (2.4)

For massless fermions, sums over spins yield the standard expressions
∑
τ=± u(τ,p)ū(τ,p) =∑

τ=± v(τ,p)v̄(τ,p) = /P . For massless gauge bosons, a polarization sum yields∑
τ=±

ϵτµ(p) ϵτ∗
ν (p) ≡ P

T
µν , (2.5)

where PT
µν is defined like in eq. (2.3), but with four-momentum P rather than K. It projects

onto two physical states in four dimensions, i.e. |PTµ
µ | = 2.

Inserting the Feynman rules to the amplitudes in figure 1, with the cubic graviton vertex
being particularly cumbersome [17]; constructing the amplitudes squared; and contracting
with polarization or spin sums, as specified above, leads to rather lengthy expressions. We have
found it practical to manipulate them with FORM [18], FeynArts [19], FormCalc [20],
and/or FeynCalc [21]. In the course of these computations, we have verified the gauge
independence of the contribution originating from massless gauge bosons, notably that the
last term of eq. (2.3) (with K → P), containing P̄, does not contribute.

The matrix elements squared are best tabulated in a form where we sum not only over all
spins and polarization states, both of initial and final-state particles, but also over particles
and antiparticles. For a complex scalar field ϕ, the processes from figure 1(a) then yield [16]

∑
all

|Mϕϕ∗→hh|2 +
∑
all

|Mϕ∗ϕ→hh|2 = κ4

4
t2u2

s2 ≡ κ4

4 Φscalar . (2.6)

In the fermionic case, we take a Dirac fermion of definite chirality (i.e. a Weyl fermion) as
a building block, with two physical degrees of freedom. However, as we sum over fermions
and antifermions, we effectively have four degrees of freedom for each fermionic external
leg, and therefore each of them can effectively be represented as a usual Dirac fermion ψ.
The processes in figure 1(b) then lead to

∑
all

|M
ψψ̄→hh

|2 = κ4

4

(
− t2u2

s2 + tu

2

)
≡ κ4

4 Φfermion . (2.7)

Finally, for a U(1) gauge boson g, the processes in figure 1(c) produce

∑
all

|Mgg→hh|2 = κ4

4

(
t2u2

s2 − 2 tu+ s2

2

)
≡ κ4

4 Φgauge . (2.8)

We note that, up to overall normalization, eqs. (2.6) and (2.7) can be extracted as the
massless limits of differential cross sections given in ref. [22]. However, this is not the case
for eq. (2.8), as the assignment of a mass to vector fields is ambiguous and breaks gauge
invariance. If masses are given to gauge fields, then the physical origin of the longitudinal
polarization states should be specified (e.g. through the Higgs mechanism), in order to obtain
a gauge independent expression.
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Given the matrix elements squared, we can determine the thermally averaged production
rate of gravitational radiation. As a tool for this, we introduce the polarization-averaged
phase-space distribution of gravitons, fgw. The energy density carried by gravitational waves
of physical momentum k can now be expressed as

degw = 2kfgw
d3k

(2π)3 , (2.9)

where the factor 2 counts the physical polarization states. In a locally Minkowskian time,
making use of the rotational invariance of the thermal ensemble, the production rate can
subsequently be expressed as

degw

dt d ln k =
k4ḟgw

π2 . (2.10)

The time variation of the phase-space distribution can be extracted from a Boltzmann
equation. Assuming the particle content of the Standard Model (with three generations of
charged leptons ℓ, neutrinos ν, and up and down-type quarks u, d, each with left and right
chiralities L and R), this takes at O(κ4) the form

ḟgw
O(κ4)

⊃ 1
8k

∫
dΩ2→2

κ4

4

{
fB(p1)fB(p2)

[
2︸︷︷︸

SUL(2)

Φscalar

]

+fF(p1)fF(p2)
[
3

(
3︸︷︷︸

ℓL,ℓR,νL

+ 1︸︷︷︸
νR

+ 4Nc︸︷︷︸
uL,uR,dL,dR

)
Φfermion

]

+fB(p1)fB(p2)
[(

1︸︷︷︸
UY(1)

+ 3︸︷︷︸
SUL(2)

+ N2
c − 1︸ ︷︷ ︸

SUc(Nc)

)
Φgauge

] }
, (2.11)

where pi ≡ |pi|, Nc = 3, and the Bose and Fermi distributions have been introduced as
fB(ϵ) ≡ 1/(eϵ/T − 1) and fF(ϵ) ≡ 1/(eϵ/T + 1), respectively. The prefactor 1/(8k) is a
combination of the standard 1/(2k) associated with phase space, a factor 1/2 for cancelling
the sum over graviton polarizations that we had included in

∑
|M|2, as well as 1/2 for

cancelling the overcounting of identical particles or the redundant sum over particles and
antiparticles introduced above. Furthermore, we note that eq. (2.11) includes only the gain
terms, no loss terms, because the graviton phase-space density is much below the equilibrium
value, fgw(k) ≪ fB(k). For the same reason, there are no Bose enhancement factors for
the final-state gravitons in the gain terms.

Let us remark that right-handed neutrinos have been included as degrees of freedom
in eq. (2.11). However, they only interact via Yukawa couplings, whose magnitudes are
unknown. If they are small, right-handed neutrinos might not equilibrate fast enough to be
part of the thermal ensemble, and should be omitted as initial states. We will illustrate the
numerical difference between including and not including right-handed neutrinos in figure 2.
It is perhaps appropriate to mention that the equilibration rates of many other particles
have also been discussed in the literature, however this typically concerns particle asymmetry
changing reactions relevant for chemical equilibration (cf., e.g., ref. [23]), whereas kinetic
equilibrium should be efficiently maintained by gauge interactions.
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The phase-space average in eq. (2.11) can be conveniently implemented by taking the
s-channel momentum transfer as the integration variable. For this, we write Pi = (pi,pi)
and Ki = (ki,ki) with K ≡ K2. Then,∫

dΩ2↔2 ≡
∫ d3p1 d3p2 d3k1 d4Q

(2p1) (2p2) (2k1) (2π)9 (2π)4 δ(4)(P1 + P2 − Q
)
δ(4)(Q − K1 − K

)
=

∫ d3p2 dq0 d3q
|q − p2| p2 |q − k|

δ
(
|q − p2| + p2 − q0

)
δ
(
q0 − |q − k| − k

)
8(2π)5 , (2.12)

where integrals were carried out over p1 and k1. The constraints fix two angles as

cos θq,p2
= q2 + q0(2p2 − q0)

2qp2
, cos θq,k = q2 + q0(2k − q0)

2qk . (2.13)

The remaining angle can be expressed in terms of an azimuthal variable, φ, as

cos θk,p2
= cos θq,k cos θq,p2

+ sin θq,k sin θq,p2
cosφ . (2.14)

Carrying out the angular integrals in order to remove the Dirac-δ’s, we then obtain∫
dΩ2↔2 = 1

(4π)3k

∫ ∞

k
dq0

∫ q0

|2k−q0|
dq

∫ q+

q−

dp2

∫ π

−π

dφ
2π , q± ≡ q0 ± q

2 . (2.15)

Subsequently, the integrals over p2 and φ can be performed analytically, as detailed in
appendix A. We represent the result as∫ q+

q−

dp2

∫ π

−π

dφ
2π fB(q0 − p2︸ ︷︷ ︸

p1

)fB(p2) Φscalar ≡ fB(q0) (q2
0 − q2)2 Θscalar , (2.16)

and correspondingly for Θfermion and Θgauge. The expressions originating from eqs. (2.6), (2.7)
and (2.8) are given in eqs. (A.7), (A.9) and (A.11), respectively.

The physical production rate can now be assembled from eqs. (2.10), (2.11), (2.15),
and (2.16). It entails a 2-dimensional integral,

degw

dt d ln k ⊃ κ4k2

2(4π)5

∫ ∞

k
dq0

∫ q0

|2k−q0|
dq fB(q0) (q2

0 − q2)2

×
{

2 Θscalar + 12 (1 +Nc) Θfermion + (3 +N2
c ) Θgauge

}
, (2.17)

which is rapidly convergent and readily evaluated numerically.3

3 Numerical results

A numerical illustration of eq. (2.17) is given in figure 2. We have plotted the rate in units of
T 7/m2

pl, whereby it scales with the temperature as T 2/m2
pl. The reason for this choice is that

the result can then be conveniently compared with the rate originating from single-graviton
3In this respect the rate at O(κ4) differs from that at O(ακ2): the latter is logarithmically IR divergent in

naive perturbation theory, and requires Hard Thermal Loop resummation [24, 25], in order to obtain a finite
result [13]. After the resummation, it contains a logarithmically enhanced term, of O(ακ2 ln(1/α)) [12].
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Figure 2. Left: the single (h) [13] and double (hh) graviton production rates from a Standard Model
plasma. The slow evolution of the single-graviton rate with the temperature is due to a logarithmic
running of the couplings, whereas the double-graviton rate scales with the temperature as T 2/m2

pl in
the units chosen. At T = 1018 GeV, the double-graviton rate is still more than an order of magnitude
smaller than the single-graviton rate, but it would become dominant at T > 4 × 1018 GeV. Right:
different contributions to the double-graviton rate from eq. (2.17) at T = 1018 GeV. In the fermionic
part and the sum, the narrow band indicates the effect of omitting right-handed neutrinos.
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Figure 3. The time-integrated contribution of single and double-graviton production to the differential
gravitational energy density today, h2dΩgw,0/d ln f0, as a function of the current-day frequency, f0,
and various maximal temperatures, Tmax. We have assumed radiation-dominated expansion at
T < Tmax [33], and denoted by h the reduced Hubble rate. The results are compared with a curve of
the same shape (grey line), which after integration over f0 yields h2Ωgw,0 ≡ 5.62 × 10−6∆Neff (cf., e.g.,
ref. [9]). Here we have set ∆Neff = 0.2, which is the maximal observationally allowed contribution to
the effective number of massless neutrino species [34].
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production [13], which is practically constant in these units. For both results we have assumed
the Standard Model matter content. Additional particle species could be included in a fairly
straightforward manner (cf., e.g., refs. [26–31]), but we do not expect them to change the
overall pattern, even though they could have a quantitative influence.

The main observation from figure 2 is that in the domain of the peak frequency, the double-
graviton production rate is below the single-graviton production rate at T < 4 × 1018 GeV. In
order to put this in context, we recall that the inflationary constraint Hmax < 10−5mpl [32],
combined with the assumption of instantaneous reheating, suggests Tmax < 1016 GeV. There-
fore, within standard inflationary scenarios, the thermal part of the gravitational wave
production rate can always be estimated from the single-graviton contribution.

If we ignore the standard inflationary paradigm, another constraint on gravitational
waves originates from Neff, parametrizing the energy density residing in light degrees of
freedom at the time of primordial nucleosynthesis (∆egw,bbn ≡ ∆Neff (7/8)(4/11)4/3eγ,bbn).
In order to obtain the gravitational contribution, we integrate the evolution of the phase
space distribution, appearing in eq. (2.10), over the cosmological history, along a comoving
trajectory [12]. The time integral can be converted into an integral over temperature, from
the current T0 up to a maximal one, Tmax, yielding

degw,0

d ln k(t0)
= −

∫ Tmax

T0

dT dt
dT

a4(T )
a4(T0)

[ degw

dt d ln k

]
k=k(t0) a(T0)

a(T )

, (3.1)

where t0 is the current time, a is the cosmological scale factor, and the relationship t ↔ T

is to be determined from the Friedmann equations. Subsequently, normalizing with the
current critical energy density, ecrit = h2eγ,0/2.473 × 10−5/(T0/2.7255 K)4, where eγ,0 is the
current photon energy density and h is the reduced Hubble rate, and converting k(t0) into the
current frequency, f0, yields the gravitational energy fraction, h2dΩgw,0/d ln f0.4 The result
is shown in figure 3. Once we integrate over f0, obtaining h2Ωgw,0, the total gravitational
energy density contributes to Neff as ∆Neff ≈ h2Ωgw,0/5.62 × 10−6 (cf., e.g., ref. [9]).

Given that our result for h2Ωgw,0 depends on Tmax, we now get a relationship between Tmax
and ∆Neff. This can be compared with existing theoretical and experimental knowledge about
∆Neff. In particular, the current estimated uncertainty of the Standard Model prediction,
∆Neff ≤ 0.001, corresponds to Tmax ≤ 2 × 1017 GeV [13]. At Tmax = 4 × 1018 GeV, when the
double-graviton rate overtakes the single-graviton rate, ∆Neff ≈ 0.02.5 This is still below
the current experimental limit, ∆Neff < 0.2 [34]. For illustration, a spectrum that would
yield ∆Neff = 0.2 is also shown in figure 3.

4 Conclusions and outlook

In this work we have computed the double-graviton production rate from a thermal Standard
Model plasma present during an early radiation-dominated epoch. Previous calculations

4In the literature, Ωgw,0 sometimes denotes the differential spectrum, but here we need a separate notation
for the differential (dΩgw,0/d ln f0) and integrated spectra (Ωgw,0).

5As mentioned in section 1, the single-graviton production rate involves ∼ α/m2
pl, but the age of the

universe scales with ∼ mpl, whereby the integrated contribution to Neff behaves as ∼ α Tmax/mpl.
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had only considered scalar field contributions to the double-graviton rate [16]. For momenta
k ∼ πT , the double-graviton rate scales as degw/[dtdln k] ∼ T 9/m4

pl. This can be compared
with the single-graviton production rate [13], which is of order degw/[dt dln k] ∼ αT 7/m2

pl,
where α is a fine-structure constant.

Our result for the double-graviton production rate is given in eq. (2.17) and illustrated
numerically in figure 2. A comparison with the single-graviton production rate shows that
the O(T 9/m4

pl) contribution overtakes the O(αT 7/m2
pl) one at T ∼ 4 × 1018 GeV. This

temperature is much higher than expected to be reached after standard inflationary scenarios.
Therefore, single-graviton production is normally the dominant source. If one considers BSM
scenarios associated with a non-renormalizable coupling, ∼ 1/Λ2 (cf., e.g., ref. [27]), then we
should effectively replace α → T 2/Λ2 in the single-graviton rate. In these cases, if Λ ∼ mpl,
the single and double-graviton contributions could be of comparable magnitudes.

In order to obtain our results, we needed to evaluate the matrix elements squared
corresponding to the Feynman diagrams in figure 1, producing the results given in eqs. (2.6)–
(2.8). Similar matrix elements squared have been considered in previous literature, either
out of theoretical interest (cf., e.g., ref. [22]), or in view of the scattering of gravitational
waves on matter (cf., e.g., ref. [35]). As we are concerned with very high temperatures, the
Standard Model particles can be considered as massless for the purposes of our analysis. We
noted that the literature results had assigned masses to gauge fields in a way which did not
permit to recover the massless limit of eq. (2.8).

Let us elaborate briefly on the more general conceptual implications of our results. As
explained below eq. (2.1), the gravitational wave production rate within General Relativity
is a double series, in α and T 2/m2

pl. Normally, to estimate the convergence of the series in
T 2/m2

pl, we would compare terms with a same power of α. However, the term of O(α0T 2/m2
pl)

is absent, because it is kinematically forbidden, and the term of O(α1T 4/m4
pl) is unknown,

as it is of next-to-leading order, either in α with respect to the known contribution of
O(α0T 4/m4

pl), or in T 2/m2
pl with respect to the known contribution of O(α1T 2/m2

pl). But we
can still compare the known terms. Because of the absence of α, the term of O(α0T 4/m4

pl)
overtakes the O(α1T 2/m2

pl) contribution sooner than the proper probe of O(α1T 4/m4
pl) would.

Therefore, the criterion T < 4×1018 GeV can be seen as a conservative (or sufficient) condition
for the highest temperature at which General Relativity together with the Standard Model
can be employed as a self-consistent effective theory.

Returning to the phenomenological side, we end by remarking that reaching a high
temperature after inflation does not guarantee a substantial thermal gravitational wave
background. The reason is that if the inflaton equilibration rate is small compared with
the Hubble rate, as may be expected for an extremely weakly coupled field, then inflation
is followed by a period of matter domination (cf., e.g., ref. [36]). Similarly to a phase
transition produced signal (cf., e.g., ref. [37]), the thermal background would be diluted
during such a stage.
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A Azimuthal and radial momentum integrals

We show here how two of the integrals in eq. (2.15) can be carried out analytically, in order
to determine the factors Θ defined in eq. (2.16) that enter our final result in eq. (2.17).

Making use of the identities

fB(ϵ2)fB(q0 − ϵ2) = fB(q0)
[
1 + fB(ϵ2) + fB(q0 − ϵ2)

]
, (A.1)

fF(ϵ2)fF(q0 − ϵ2) = fB(q0)
[
1 − fF(ϵ2) − fF(q0 − ϵ2)

]
, (A.2)

the definition in eq. (2.16) as well as the matrix element squared in eq. (2.6) imply that

Θscalar =
∫ q+

q−

dp2

∫ π

−π

dφ
2π

(
t2u2

s4

) [
1 + fB(p2) + fB(q0 − p2)

]
. (A.3)

Here u = −s− t, so that the integrand is a polynomial in t/s. Inserting four-momenta, we
get t/s = 2(k · p2 − kp2)/s, which after the use of eqs. (2.13) and (2.14) can be expressed as

t

s
=

(2k − q0)(2p2 − q0) − q2 + cosφ
√
q2 − (2k − q0)2

√
q2 − (2p2 − q0)2

2q2 . (A.4)

The azimuthal average in eq. (A.3) reduces to averages of cosnφ, trivially carried out. Left
over are integrals over powers of p2, weighted by a Bose or Fermi distribution. These can
be expressed in terms of polylogarithms, which we define as

l1b(ϵ) ≡ ln
(
1 − e−ϵ/T

)
, l1f(ϵ) ≡ ln

(
1 + e−ϵ/T

)
, (A.5)

lnb(ϵ) ≡ Lin
(
e−ϵ/T

)
, lnf(ϵ) ≡ Lin

(
−e−ϵ/T

)
, n ≥ 2 . (A.6)

Thereby

Θscalar = q

30 + T [q2 − (2k − q0)2]2

8q4
[
l1b(q+) − l1b(q−)

]
−T 2[q2 − (2k − q0)2][q2 − 5(2k − q0)2]

2q5
[
l2b(q+) + l2b(q−)

]
−T 3[5q4 − 42q2(2k − q0)2 + 45(2k − q0)4]

2q6
[
l3b(q+) − l3b(q−)

]
−3T 4[3q4 − 30q2(2k − q0)2 + 35(2k − q0)4]

q7
[
l4b(q+) + l4b(q−)

]
−6T 5[3q4 − 30q2(2k − q0)2 + 35(2k − q0)4]

q8
[
l5b(q+) − l5b(q−)

]
, (A.7)
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Θfermion =
∫ q+

q−

dp2

∫ π

−π

dφ
2π

(
− t2u2

s4 + tu

2s2

) [
1 − fF(p2) − fF(q0 − p2)

]
(A.8)

= q

20 + T [q4 − (2k − q0)4]
8q4

[
l1f(q+) − l1f(q−)

]
+T 2[−3q2 + 5(2k − q0)2](2k − q0)2

2q5
[
l2f(q+) + l2f(q−)

]
+3T 3[q4 − 12q2(2k − q0)2 + 15(2k − q0)4]

2q6
[
l3f(q+) − l3f(q−)

]
+3T 4[3q4 − 30q2(2k − q0)2 + 35(2k − q0)4]

q7
[
l4f(q+) + l4f(q−)

]
+6T 5[3q4 − 30q2(2k − q0)2 + 35(2k − q0)4]

q8
[
l5f(q+) − l5f(q−)

]
, (A.9)

Θgauge =
∫ q+

q−

dp2

∫ π

−π

dφ
2π

(
t2u2

s4 − 2tu
s2 + 1

2

) [
1 + fB(p2) + fB(q0 − p2)

]
(A.10)

= q

5 + T [q4 + 6q2(2k − q0)2 + (2k − q0)4]
8q4

[
l1b(q+) − l1b(q−)

]
+T 2[3q4 − 6q2(2k − q0)2 − 5(2k − q0)4]

2q5
[
l2b(q+) + l2b(q−)

]
+3T 3[q4 + 6q2(2k − q0)2 − 15(2k − q0)4]

2q6
[
l3b(q+) − l3b(q−)

]
−3T 4[3q4 − 30q2(2k − q0)2 + 35(2k − q0)4]

q7
[
l4b(q+) + l4b(q−)

]
−6T 5[3q4 − 30q2(2k − q0)2 + 35(2k − q0)4]

q8
[
l5b(q+) − l5b(q−)

]
. (A.11)
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