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ABSTRACT: It is assumed in standard cosmology that the Universe underwent a period of
inflation in its earliest phase, providing the seeds for structure formation through vacuum
fluctuations of the inflaton scalar field. These fluctuations get stretched by the quasi-
exponential expansion of the Universe and become squeezed. The aim of this paper is to
deepen the understanding of the squeezing process, considering the effect of self-interactions.
Axion-like particles can provide a useful setup to study this effect. Specifically we focus
on the consequences that a non-trivial evolution of the background axion field has on the
squeezing of the perturbations. We follow the evolution of the axion’s fluctuation modes from
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the horizon exit during inflation to the radiation-dominated epoch. We compute Bogoliubov
coefficients and squeezing parameters, which are linked to the axion particle number and
isocurvature perturbation. We find that the quantum mechanical particle production and
the squeezing of the perturbations are enhanced, if one accounts for anharmonic effects, i.e.,
the effect of higher order terms in the potential. This effect becomes particularly strong
towards the hilltop of the potential.

KEYwORDS: Quantum fields in curved spacetimes, axions, particle physics - cosmology
connection, inflation
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1 Introduction

The current version of the standard cosmological model assumes that the Universe underwent
a period of quasi-exponential expansion in its earliest stage, which solves several puzzles of
the Big Bang cosmological scenario. This period of inflation turned out to be also an excellent
mechanism to explain the origin of structure formation in the Universe. The exponential
stretching of the fluctuations of the scalar field driving inflation, the so-called inflaton field,
provides the seeds for the later gravitational collapse. In most inflationary models, these
fluctuations have a quantum origin, however the CMB sky we observe today is classical.
Therefore the question about the quantum or classical origin of the initial perturbations
and how to probe it arise.

The classicalization of a quantum perturbation has been a subject of active research (see
for example [1-6]). Actually, inflation itself provides an explanation for the “classicalization”
of the originally quantum perturbations: they are squeezed due to the fast expansion of



the Universe. A squeezed state is a special quantum state for which one variable has an
arbitrarily small uncertainty, while its conjugate counterpart has a very big uncertainty,
correspondingly. Since squeezed states are associated with a huge uncertainty in one variable,
they are highly quantum mechanical states [7]. However, within standard cosmological
measurements, a squeezed state is indistinguishable from a classical phase-space distribution,
if one considers a Gaussian state [8]. Most of the previous works have focused on the study
of nearly free fields. The aim of this paper is to deepen the understanding of the squeezing
process considering the effect of self-interactions.

In general, to address the problem of the nature of the perturbations there is one further
mechanism that takes place in the Early Universe that has to be taken into account: the
decoherence during reheating. In fact, in order for a squeezed fluctuation to maintain its
quantum nature into the later Universe, it is necessary that it does not undergo decoherence
through the interactions with the cosmological plasma. The phenomenon of decoherence has
been widely discussed in the literature; see for example [9-13].

From this perspective, axion-like particles [14, 15] coupled to other matter fields only
through gravitational interactions provide an ideal setup that can evade decoherence. In
particular, axions can be produced non-thermally from an initial displacement of the axion
field, which is called the misalignment mechanism. In this model axion-like particles are not
required to directly interact with the thermal bath. Another interesting feature of axion-
like particles is that their fluctuations around the classical axion background source axion
isocurvature perturbations, that can be directly linked with observables. Their correlators
constitute in principle a promising way to investigate the quantum origin of the cosmological
perturbations. Indeed axions may evade decoherence and their bispectrum could provide a
way to discern among the quantum or classical nature of the perturbations (see [16-18]). One
further advantage in working with axions is that several constraints are already present in the
literature, giving rise to strong bounds on the cosmological observables. Also for the purpose
of studying interacting fields, axions are useful since they necessarily have self-interactions
due to their periodic potential. The effects induced by higher-order terms in the potential
is often referred to as “anharmonic effects”, and axions provide a computable setup for
incorporating the effect of self-interactions. Indeed in the late Universe the axion field settles
down to the minimum of its potential and thus the self-interaction switches off. Axions thus
reduce to effectively free fields in the asymptotic future, which allows one to apply Bogoliubov
computations for studying the evolution of the fluctuations.

In this work we study the effect of self-interactions on the squeezing of axion fluctuations,
focusing on how the background evolution modifies the evolution of the perturbations
themselves. We focus on axion-like particles (instead of QCD axions [19-21]), and consider
a scenario where the Peccei-Quinn symmetry is broken during inflation. In this way the
axion field gets homogenized, giving rise to a background axion condensate. We study
the perturbations around this background. In previous works on axion squeezing [22, 23],
only the quadratic term has been considered. In this paper we go beyond these analyses,
considering the effect of self-interactions. In particular we study the interaction between the
perturbations and the zero-mode, i.e. the background axion field, neglecting the interactions
among perturbations themselves. We find that the interaction with a non-trivial background
gives already interesting effects. In particular, it strongly enhances the squeezing of the



perturbations, which is directly linked with the number of particles created due to the
expansion of the background. It has been known that anharmonic effects in the misalignment
scenario give rise to the enhancement of the axion density [24, 25], as well as the isocurvature
perturbation [26-28]. We revisit this effect using Bogoliubov calculations, and shed light
on the anharmonic enhancement on the axion squeezing.

The paper is organised as follows. In section 2 we present our setup, and introduce the
concepts of Bogoliubov coefficients and squeezing parameters. In section 3 the evolution in
time of the background field is analysed. In section 4 the numerical results for the mode
functions, the Bogoliubov coefficients and the squeezing parameters are reported. Their
interpretation in terms of cosmological particle creation and squeezing are also presented.
Moreover the dependence of the physical observables on the parameters of the system is
studied. We conclude and discuss our results in section 5. In appendix A we give explanations
on the squeezing parameters, while in appendix B we provide analytic calculations for a
quadratic axion potential. Finally, in appendix C the cases of a non-instantaneous reheating
and a quasi-de Sitter spacetime are considered.

2 Quantization of axion fluctuations

2.1 Setup

We fix the metric to a flat FRW, ds? = a?(7) (—dr? + dz?). Here T is the conformal time,
linked with the cosmic time via dt = a(7) d7. We consider the evolution of the Universe as
simply given by a de Sitter (dS) phase of inflation, followed by a period of radiation domination
(RD). We further assume, for simplicity, that the reheating phase is instantaneous.! In the
simple scenario here introduced, the Hubble rate is given by:

Hing de Sitter
H= ) (2.1)
Hine (a/aren)”” Radiation Domination.

Here Hj,s is the constant Hubble scale during the de Sitter phase and ayep, is the value of the
scale factor at the reheating. We consider the axion to have negligible effect on the cosmological
evolution. It is assumed that the Peccei-Quinn symmetry is broken before inflation, and
specifically that f > max(T}en, Hint), where f is the symmetry breaking scale and T is the
reheating temperature. This ensures that the symmetry is not restored during the reheating
phase. For our assumption of instantaneous reheating, Tyen, ~ v/ Mp1Hins > Hing, hence it
is enough to require f > Tyeh.
Let us now consider the axion potential, which can be written as

V(p) = f*m? {1 — Cos <?>} , (2.2)
where ¢ is the axion field. We assume that the axion mass is constant in time, and also that
m < Hiy; this ensures the axion mass becomes comparable with the Hubble rate during
radiation domination, after reheating has occurred. After the time when m ~ Hj,¢, the

!The cases of non-instantaneous reheating and quasi-de Sitter inflation are considered in appendix C.



field starts oscillating around its minimum and the equations of motion becomes that of
a damped oscillator.

We consider the axion field to be a homogeneous background plus vacuum fluctuations.
The initial value of the axion field affects the subsequent evolution of the background.
Specifically, if the starting point is near the hilltop of the potential then the field scans the full
cosine potential as it rolls down. When deviations from the quadratic potential are considered,
the perturbations are affected by the background evolution. These perturbation modes exit
the horizon during inflation. After inflation has ended they re-enter the horizon. Small-scale
modes re-enter the horizon before the axion field begins to oscillate; hence they propagate
unaffected by the oscillations. On the contrary, large-scale modes feel the oscillations and
their evolution in time is consequently affected. Since we focus on the effect of the oscillations
on the evolution of the perturbations, we will focus on large-scale modes that re-enter the
horizon after the onset of the oscillations.

2.2 Canonical quantization

In order to compute the squeezing parameters describing the system, we first need to calculate
the Bogoliubov coefficients for the axion field. We work with the full potential for the
background field evolution, while considering only the first order expansion of the potential
for the perturbations. The equation of motion for the axion field is:

$+3H¢—(1128i2¢+6“;?:0. (2.3)

Here the dot indicates a derivative with respect to the physical time ¢, and Latin letters are
used to denote spatial indices. We split the axion field as

ot ) = ¢(t) + 0¢(t, @), (2.4)

where ¢ is the homogeneous classical background field, and d¢ is the small perturbation
around it. We are going to expand the axion up to quadratic order in d¢. The first derivative
of the potential, up to linear order, can be written as

'(¢) =fm? |sin é coS é 5—¢
V(¢)—fm[ <f>+ (f)(f)} (2.5)

The equation of motion for the homogeneous background field becomes

&+ 3Ho + fm?sin (?) —0, (2.6)
while at first order in the perturbations one has
. , k2 ) b
0pr + 3HI Py, + ¥+m cos ? 0¢r =0. (2.7)
Here we have moved to Fourier space,
dsm —ik-x
dpr = /(277)3/26 09, (2.8)



and we used k = |k|. The corresponding quadratic action for the perturbations is

1 1 1 0
S = /d?’xdT a® | 209 — Z(0;6¢)* — ~m?a® cos ¢ 5% . (2.9)
2 2 2 f
Here the prime denotes a 7-derivative. One can now introduce a new variable x = ad.
Then the action can be rewritten as

/ /!

1 2 )
S = /d3xd7' 3 X2+ ((;) P 2% X — (81-)()2 —m2a® cos (?) 2 (2.10)

The mixed term yx’ can be removed by integrating by parts and dropping surface terms as

Y- (61')()2 — (m2a2 cos (;%) — ci’) XQ] . (2.11)

From this action we can construct the Hamiltonian as H = [ d®z (px’ — £), where p = ¥/

1
_ 3 -
S—/d:chQ

and L is the Lagrangian. Writing in terms of the Fourier components, the Hamiltonian
acquires the following form:

1 . CL// .
H=1 /d‘q’k‘ [pkpk + (k2 +mlza® — a) Xka} : (2.12)

where the effective mass mgﬁ is given by

m2g = m? cos (?) . (2.13)

Notice that the effective mass depends on time through the evolution of the background ¢.
Moreover it can become tachyonic, i.e. mgﬁ < 0, due to the cosine factor. We also introduce
the time dependent frequency wyg, defined as

"

wi = k? + m2ga® — % . (2.14)

In order to quantize the fields, we introduce time-dependent ladder operators as follows:

Xk() = —e—— (an(7) +al (7)) | (2.15)

V2|wr(7)]

pe(m) = —it 2 (o) —af () (216)

respecting the canonical commutation relations?

[x(r,2),p(r,2")] = i6@) (z — a'), lan(r), af,(7)] = 6@ (k - k). (2.17)

All the other commutators vanish. One should note that the frequency wy can become
imaginary, hence we chose to normalize the fields with |wg| in (2.15) and (2.16).

2In Fourier space the commutation relation between the field xx(7) and its conjugate momentum pys (7) is
given by: [Xk(r),p;;, (7')] =i0® (k- K').



2.3 Bogoliubov transformation

Let us introduce an ‘initial’ time 7y during inflation when the wave modes of interest are still
deep inside the Hubble horizon. Then the time-dependent ladder operators at later times
are related to those at 7y through a Bogoliubov transformation,

ap\T D\ T ao ot
k(T) = ar(T) k+5k( Ja lg (2.18)
Qg

() = aj(r) a®l + Bi(r)a

a

where ay = ag(79). From the commutation relations for the ladder operators, one finds the
following relation among the Bogoliubov coefficients:

o> — [B|* = 1. (2.19)

The variables yx and pg can be written in terms of the time-independent ladder operators
directly, introducing the mode functions u(7):

Xk = up ay + uj aO];c , (2.20)
e = ujay +ula OT . (2.21)

The normalization condition for the mode functions is given by
upuy —upuy, =i. (2.22)

It arises from the commutations of the real space variables and the ladder operators. The
mode functions can then be used to find an expression for the Bogoliubov coefficients ay,
and Si. Indeed, rewriting (2.15) and (2.16) one gets:

[ |ws|
+ )
9 Xk 2|wk Pk
‘ Xk — Pk -
\/ V2 |Wk\

Substituting the expressions (2.20) and (2.21), and comparing with (2.18) one gets the

]

(2.23)

following expressions for ai and [ in terms of the mode functions wuy:

i /
ap = ug + Uy, , 2.24
k 9 F V2 |wg] k ( )
‘wk‘ * { x/
= + uy’ . 2.25
P 2 T 2] " (225)

With these definitions for the Bogoliubov coefficients, and using (2.22), we can compute
a quantity which will be useful later:

1
5"

|sz|

1Bul* = = luwl® + o |ui” — (2.26)

1
2 [wil



Having introduced the Bogoliubov coefficients, we need to interpret these quantities in
terms of physical observables. Their evolution can be understood in terms of particle creation
by a spacetime-dependent background [29-32]. Consider two sets of ladder operators (a, aT)
and (b,b) and their corresponding vacua defined through a|0), = 0 and b|0), = 0. These
sets can be linked via a constant Bogoliubov transformation:

b=Aa+ Badl,

2.27
b= A*a’ + B*a. (227)

The two vacua |0), and |0), do not necessarily coincide. The expectation value of the number
operator of one basis with respect to the vacuum of the other basis is given by |B|?. In other
words, an observer in the a-basis feels the vacuum as filled with b-particles.

In the cosmological case, where time-dependent Bogoliubov transformations has been
introduced, the instantaneous vacuum defined by the time-dependent ladder operators
(ak(T),CLL(T)) is filled with particles associated with the initial-time operators (a%,a};o).
However, unlike in Minkowski space, in a general curved spacetime there is no way to uniquely
define a vacuum state. This ambiguity can be overcome if the effective spacetime seen by
the fluctuations approaches Minkowski both in the far past and in the far future, namely, if
adiabatic vacua exist asymptotically such that the mode functions are given by plane waves.
There the fluctuations can be interpreted as particles, and the Bogoliubov coefficients relating
the ladder operators in the asymptotic past and future give the final particle number as |3|?.

To verify the above discussion explicitly, let us compute the expectation value of the
Hamiltonian (2.12). Using (2.15) and (2.16), we can rewrite the Hamiltonian in terms of
the ladder operators as

Bk [[|wp] o ; i we|  wi £t
i [ (M ) Gk fon]) - (- ) (ool ).

(2.28)
Since we are interested in the late time limit of (2.28), we can simply drop the absolute
value for wy and simplify the previous expression. In fact during radiation domination
the scale factor follows a”/a = 0, and after the onset of the oscillations the effective mass
squared is positive, hence w,% becomes positive. Taking the expectation value over the initial
vacuum, i.e. the vacuum annihilated by the initial time-independent annihilation operator,
al|0) = 0 for all k, we get:

<H> = /d3k; W <a;rcak> + (vacuum energy). (2-29)

The divergent vacuum energy can be removed by a normal ordering. The expectation value
for the ladder operators can be computed from (2.18) as follows:

0 Vv
(azak) = |Be|*(a%y a_L) = ‘5k|2(273, (2.30)

)
where V = [d3z = (27) 62(0) is the comoving volume. The expression for |3;|? is given in
terms of the mode functions, as in (2.26). Notice that the particle interpretation is valid only
when the perturbation mode does not feel the expansion, i.e. in the sub-horizon limit. In this



limit, wy, is positive and can be interpreted as the frequency of the perturbation mode. |3|?
can then be interpreted as the expectation value of the number of particles with comoving
momentum k, created per comoving volume due to the time-dependent background. The
divergent factor §3(0) arises because we are considering an infinite spatial volume, but the
mean density of particles per comoving volume is finite. We therefore expect the norm of
B to approach a constant in the asymptotic future.

2.4 Squeezing parameters

Thanks to the constraint (2.19), the two complex Bogoliubov coefficients can be parameterised
by three real variables, the so-called squeezing parameters, as:

ag(T) = e~ 57 cosh ri(T),

: 2.31
Br(T) = (M) +20k(T)] ginh ri(7), (2:31)

where 7, is restricted to be non-negative. Inverting these relations yields the expressions for
the squeezing parameters in terms of the Bogoliubov coefficients:

. = arcsinh|f|,
U = —arg (o) , (2.32)

or = %al‘g (axBr) -

The process of particle creation explained in section 2.3 can be equivalently described
by means of the squeezing formalism. In particular, the cosmological particle creation
amounts to squeezing the vacuum. The physical meaning of the squeezing parameters can
be understood studying a quadrature pair in phase space of the physical system of interest.
A squeezed state is given by a quadrature pair for which the uncertainty in one variable
is small, while the uncertainty in the other variable is correspondingly large, in order to
respect the Heisenberg uncertainty principle. This state is described by a rotated ellipse in
phase space. The r, parameter is directly linked with the semi-axes of this ellipse, while the
i parameter is related to its orientation. In particular, the r; parameter tells us how much
the ellipse is squeezed along one direction while elongated along the other. The ¥4 angle
is actually unphysical. A detailed description of the physical meaning of the squeezing
parameters is given in appendix A.

The squeezing parameters are also linked to cosmological observables. We have seen in
section 2.3 that |3x|? can be interpreted as the number of particles created by the expansion
of spacetime. The parameter r is given in terms of this net number of particles, as shown
in (2.32). The parameter ¢y is instead linked to the power spectrum of the field fluctuations.
As explained in appendix A, the initial state we are working with, i.e. the vacuum state, is
rotationally invariant; hence only one phase is physically meaningful. From the expectation
value of the field fluctuation:

o [ Bk u? o dk
<5¢>_/(2ﬂ_)3 CL2 - ?Pky (233)




the power spectrum is written as,

k3

P=-—
kT on2 2

lug|? . (2.34)
Substituting the expression for |u|? in terms of the Bogoliubov coefficients (2.24) and (2.25),
and exploiting the constraint (2.19), the power spectrum can be rewritten in terms of ||

and arg (agS):
_ K o+ B
C2m2a2 2wy

3
i 1+ 2(85]% + 2|Bx| /1 + | Br|? cos (arg (cawBr))

T 4n2 g2 |wi|

Py

(2.35)

In terms of the squeezing parameters, arg (ax) corresponds to ¢, which is therefore a
physical quantity.

3 Background evolution

To study the evolution in time of the Bogoliubov coefficients and then in turn of the
squeezing parameters, we first analyse the background field dynamics by numerically solving
the homogeneous equation of motion (2.6). It is convenient to introduce the background
displacement angle

=9/, (3.1)

and solve the equation in terms of this variable. In this way we do not need to specify
the value of the symmetry breaking scale f. The equation of motion for the background
angle in conformal time is given by:

0" +2aHO + a*m?*sinf = 0. (3.2)

We expect the axion background to start oscillating after the Hubble rate becomes
comparable with the axion mass. Solving the equations of motion numerically for different
initial field values during inflation, we obtain the results reported in figure 1 (left). Here
we considered the Hubble rate in equation (2.1) with Hj,y = 10% GeV, and took the mass
as m = 102GeV. Then the third term in (3.2) becomes relevant at around In(a/aen) =
In(Hine/m)Y/? ~ 7, as shown in figure 1 (left). The different colours represent different initial
angles as shown in the legend, while the vertical dashed line identifies when the mass of
the axion field becomes comparable with the Hubble rate. If we choose as the initial field
value 6y = 0.1 7, it is close enough to the minimum such that the axion potential is well
approximated by a quadratic. Indeed, if we compute the background trajectory with a
quadratic potential we find the same result. Looking at figure 1 (left) we see that starting
close to the minimum, the amplitude of the oscillations is reduced. A huge difference in both
the amplitude of the oscillations and the time of the onset of the oscillations can be seen
if we set the initial field value to be very close to the hilltop.
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Figure 1. Time evolution of the background field (left) and of the background energy density (right)
for different initial field values. The values of the initial angle are specified in the legend in the left
plot. The parameters chosen are Hi,s = 102 GeV and m = 102 GeV. The grey dashed vertical line
shows the time when the axion mass becomes equal to the Hubble rate. Dashed vertical lines in other
colours denote the onset of the axion oscillation for the different initial displacement angles.

This behaviour can be further understood by looking at the energy density of the

background field. The energy density can be obtained as

- éQ N f 2 /2

p= ?+V(¢) = @0 +V(Of). (3.3)
Given the solution for the background field evolution, the energy density can be directly
computed. The time evolution of the energy density normalized by f? is reported in figure 1
(right), which zooms into the RD epoch around the time when the oscillations begin. The
energy density is constant until the background field starts oscillating; thereafter it decays as
a~3. The vertical dashed lines in figure 1 (right) show when the oscillations begin; this is
obtained as the time when the energy densities extrapolated from the asymptotic behaviours
in the past (p = const.) and in the future (5 o< a=3) cross each other. The value of the energy
density in the asymptotic future in terms of the initial displacement angle is reported in
figure 2. It has be computed at the final time In(a/an) = 10. The final numerical value
of p/f? itself is not relevant for our discussion. What is relevant is that the energy density
becomes strongly enhanced towards the hilltop. This behavior can be understood by noticing
that the field starts oscillating later as one approaches the hilltop.

4 Evolution of axion fluctuations

4.1 Mode functions

In order to evaluate the evolution in time for the Bogoliubov coefficients and the squeezing
parameters, we need firstly to solve the equation of motion for the mode functions, given by:

"

uy, + <k2 + m2ga® — a) up =0. (4.1)
a

If the potential has only the mass term, an analytical solution can be obtained, while if we
work with the full cosine potential we have to rely on numerical computations. The analytical
derivation for a mass term potential is reported in appendix B.1.

,10,
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Figure 2. Asymptotic value of the energy density of the background field p as function of the initial
displacement angle 6y. The parameters used are Hj,¢ = 10® GeV and m = 102 GeV.

The time evolution of the amplitude of the mode functions is reported in figure 3. It
has been numerically computed for two different values of the initial background field during
inflation: 6y = 0.17 and 6y = 0.999999 7. The initial condition for the mode function is
set such that it starts as a positive-frequency WKB solution obeying the normalization
condition (2.22), when the wave mode is deep inside the horizon during inflation. The
parameters chosen for the evaluation are Hiy = 10% GeV, m = 10? GeV and k/aen = 102 GeV.
These values have been chosen in order to consider a mode that leaves the horizon during
inflation, and stays outside the horizon when the background field starts oscillating around
the minimum, during radiation domination. The dashed vertical lines in figure 3 indicate the
time of the horizon exit, reheating and the onset of the oscillations of the background field.

Looking at figure 3, we see that the mode function’s amplitude stays constant until
horizon exit, then grows outside the horizon until the background field starts to oscillate.
This behaviour is more or less independent of the initial misalignment angle (and thus the
lines overlap). Instead, at the onset of the oscillations the amplitude of the mode functions
differ based on the value of the initial displacement angle. If the initial field is close to
the minimum, then the approximation to the quadratic potential is enough to describe the
system. The time evolution obtained from the analytical solution for a quadratic potential
matches the time evolution for an initial field value 8y = 0.17w. However, if the initial field is
close to the hilltop an extra enhancement in the amplitude of the mode functions is observed
due to the anharmonic effects.

4.2 Bogoliubov coefficients

Exploiting relations (2.24), (2.25) and (2.32), it is possible to evaluate the evolution in time
of the Bogoliubov coefficients and in turn of the squeezing parameters. We start our analysis
from the Bogoliubov coefficients, and specifically from |8|?, which is directly linked with
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Figure 3. Evolution in time of the amplitude of the mode functions for a wave mode k/a,en, = 102 GeV,
and for two different initial values of the background field. An increase in |uy|? is observed approaching
the hilltop of the potential. Dashed vertical lines denote when the mode exits the horizon, reheating
and the onset of the oscillations, respectively. The values chosen for the Hubble rate and the axion
mass are Hins = 108 GeV and m = 102 GeV.

physical quantities, as explained in section 2.3. The numerical results are reported in figure 4,
for the same values of parameters used in figure 3 for the amplitude of the mode functions.
The modulus square of the beta coefficient approaches zero in the asymptotic past, when the
mode is far inside the horizon. Moreover it approaches a constant value in the asymptotic
future, and specifically it becomes constant when the axion field starts oscillating. We further
notice that the behaviour of |3x|? changes depending on the initial field value. The evolution
in time is more or less independent of the initial condition while the axion field is frozen by
the Hubble friction; however, when the potential term becomes comparable with the Hubble
rate, the field dynamics right before the onset of the oscillations affects the asymptotic value
of the Bogoliubov coefficients. We see in figure 4 that, approaching the hilltop of the potential,
the asymptotic value of |3x|? increases. On the other hand with 6y = 0.1 7, the evolution of
|Bx|? follows that for a quadratic potential, which is also analytically studied in appendix B.1.

The spikes in the evolution of |3;|? seen in the plots, as well as the discontinuous jump
at reheating, can be understood in terms of the frequency (2.14). In the asymptotic past, w,%
is dominated by k2. When the perturbation leaves the horizon during inflation, at k = aHius,
the frequency squared reduces to w,% ~ —k2. This implies that right before the horizon exit
the frequency squared has turned from positive to negative. This gives a divergence in |3/,
since it is defined in (2.26) with wy in the denominator. The spike after reheating has a
similar explanation. During RD, w,% =k + mgﬁaQ; the k2 term is always positive, while mzﬁ
could be either positive or negative, depending on the value of the cosine. If the initial field
is close to the hilltop, then mgﬁ is originally negative. With the parameter choice in the
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Figure 4. Evolution in time of the modulus square of the Si-coeflicient for few different initial values
of the background field. The parameters chosen are the same as figure 3. When 6y approaches the
hilltop of the potential the final value of |3;|? significantly increases. Dashed vertical lines denote
when the mode exits the horizon, reheating and the onset of the oscillations, respectively.

plot (m = k/aen = 102 GeV), the tachyonic mass term dominates the frequency right after
reheating. This implies that the frequency squared flips its sign immediately after reheating,
causing the spike in |3;|?. There is another spike at the onset of the oscillations, depending
on the initial displacement angle. In fact, when the background field starts oscillating, mgﬂ
goes from negative to positive. Since w,% o~ mgﬁ»aQ at that time, it crosses zero, making |3|?
diverge. The jump at reheating is instead caused by the discontinuity of the frequency wy,
which arises due to a”/a suddenly vanishing upon instantaneous reheating.

However we remark that the spikes and jumps of |3x|? appear only while adiabaticity
is violated and hence |B;|? cannot be interpreted as the particle number, as we will explain
in the next subsection. The irregular behaviours are artifacts due to our definition of |3y |?,
as well as the choice of the cosmological background, and hence should not have physical
consequences. We actually show in appendix C that a non-instantaneous reheating removes
the jump of |Bx|?, but does not alter the final value of |3|2.

4.2.1 Adiabaticity condition

We have seen that |3;|? approaches a constant when the background field starts oscillating.
In order to understand why this is the case, let us analyse the so-called adiabaticity condition,
which is given by:

wl 2 w//
£ <1 (4.2)
Wi Wi

Here wy, is the effective frequency associated with the mode, defined in (2.14). If wy is real
and the adiabaticity condition holds, then the solution to the equation of motion for the
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perturbations should approach a plane wave solution. In particular, it implies that the WKB
approximation holds so that the mode function can be written as

up (1) ~ A et TR _ Bk et J T en(dr’ (4.3)
ka (T ) ka(T )
When this is the case, the time-dependent Bogoliubov coefficients oy and S reduce to the
C-numbers Ay and By, up to a time-dependent phase.
Let us analytically assess the adiabaticity condition for a quadratic potential, i.e. mgff =
m?. In the dS epoch, the first adiabaticity parameter |w},/w?| is tiny before the mode exits
the horizon, however when the mode is far outside the horizon then it settles to a constant
value of 1/4/2. This can be shown by ignoring the axion mass which is much smaller than
the inflationary Hubble scale, giving

 2a2H2

inf

1

~

V2

The second adiabaticity parameter w} /w} exhibits a similar behaviour.

/
“k

(4.4)

2
Wi

The adiabaticity condition becomes satisfied again after inflation when the axion field

starts oscillating. During radiation domination, the first adiabaticity parameter reduces to
wy, a®H m?
- g a2m) (4.5)
Wi (k% 4 a?m?)

Given this result, there are two possible regimes:

3 2
Wi )® L k> am, (46)
W}% g k < am.

We restrict ourselves to wave modes that are outside the horizon at the onset of the oscillations,
i.e. k < acgsem. Hence after the oscillation begins, namely when a > aosc and H < m, the
adiabaticity parameter is given by the second line, which is smaller than unity. Therefore
starting from that point the adiabaticity condition is always recovered. The behaviour long
before aqsc depends on the actual value of k. The second adiabaticity parameter is

wi:/ B m2 - m2H2a5
3 7 |Ha 2 1 22 )" (4.7)
wp (k24 a?m?2) k? + a’*m
Considering again the two possible regimes, we have:

" m2a*H?

% Sl WLV G :
k aZm= << am.

Also in this case the condition is surely satisfied when a > acgc.

The above discussions apply similarly to the full cosine potential, for which we numerically
checked with initial misalignment angles close to the hilltop. The behaviours of the adiabaticity
parameters are the same while the axion is frozen by the Hubble friction. Soon after the
axion starts to oscillate the adiabaticity parameters also oscillate, however, within a few
e-folds the adiabaticity condition becomes satisfied.
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Figure 5. Asymptotic value of |3;|? as functions of the initial displacement angle (left), and of

7/(m — ) (right). The parameters are chosen as Hi,s = 10° GeV, m = 102 GeV, and k/a,en, = 10? GeV.
The purple line refers to |Sx|? computed through the mode functions. The pink line shows the second
derivative of the axion density in terms of the initial field value, as given in the right-hand side
of (4.20).

4.2.2 Enhancement in the number of particles

In order to understand the enhancement in the beta coefficient due to the anharmonic effects,
we show in figure 5 (left, purple line) the value of |3|? in the asymptotic future as a function
of the initial field value 6y = ¢o/f. (The pink line will be explained in section 4.2.4.) The
asymptotic value of the Bogoliubov coefficient significantly increases as one approaches the
hilltop at 8y = w. This behaviour can be interpreted analysing the time at which the field
starts oscillating. As we have seen in section 3, increasing the initial field value delays the
onset of the oscillations. Approaching the hilltop this delay becomes more and more evident.
If we consider the field perturbation around a background value close to the minimum, the
delay in the onset of the oscillation is too tiny to affect the evolution in time of d¢. However,
if the field perturbation is considered around a background field value close to the maximum
of the potential, then the evolution in time of the perturbation changes dramatically. In fact,
close to the hilltop even a small difference in the initial position leads to a huge difference
in the time of the onset of the oscillations. This implies that patches of the Universe that
differ by a tiny variation of the initial misalignment angle will start to oscillate at very
different times, sourcing huge fluctuations. This in turn reflects into the modulus square
of the mode functions, that enters directly into |3;|?. In the hypothetical situation where
the angle is set initially to =, the field does not start oscillating at all. Hence d¢y is going
to become infinite, thus making |3;|* divergent.

To better analyse the behaviour of |3i|? near the hilltop it is worth working in terms of
7/(m — 6p). In terms of this variable, the hilltop at 6y = 7 is shifted to co. In figure 5 (right,
purple line), |Bx|? is reported in terms of this new variable. We find that the asymptotic
value of |Bx|? grows towards the hilltop® as (7 — ) 2.

We should remark that the above discussions do not apply arbitrarily close to the
hilltop. In particular if the initial displacement from the hilltop, m — g, is comparable to

3A similar scaling was also found for the two-point correlator of the field fluctuations in the context of
axionic curvatons [33].
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or smaller than the angular quantum fluctuation §6 (whose amplitude is of Hiu¢/f), then
the perturbative expansion around the classical background breaks down. In this regime the
field can roll down to the other side of the hill in some patches of the universe, and give rise
to axionic domain walls. In this work we do not consider such cases.

4.2.3 Parameter dependence

Let us now study the dependence of |Bx|? on the parameters Hiye, m, k. The dependence
on the parameters can be derived analytically for a quadratic potential. The complete
derivation is reported in appendix B.2, where we show that the asymptotic value of |3|?
for a quadratic potential is given by

o 1 2 [ Greh 3H11/2
2 = g T/ (M) e (1.9)

A physical interpretation of this result in terms of the energy density will be presented in
section 4.2.4. The dependence of |Bx|? < k=3 shows the scale invariance of the perturbation.
The expression (4.9) applies for initial field values close to the minimum, such that
the potential is well approximated by a quadratic. To understand the dependence on the
parameters for field values where anharmonic effects are relevant, we have to rely on numerical
simulations. The results are shown in figure 6, where the asymptotic value of |B;|? as a
function of the initial misalignment angle is plotted. The different lines correspond to different
choices for the Hubble rate, the axion mass, or the wave number; the horizontal dashed
lines are the analytical value computed using (4.9). What we find is that |S;|? always
depends on the same combination of parameters as given in (4.9), which sets the overall
normalization for |Si|?. Since the dependence of |Si|? on k is the same, we can also see
that the energy density remains scale independent when the anharmonic effects are taken
into account. Moreover, we see that the shape of |3;|* as a function of 6y is identical for
each choice of the parameters. This indicates that the anharmonic enhancement of |3|?
is determined only by the initial angle.
The final value for |3;|? also allows us to compute the number of axions today. From (2.29)
(or (4.17)), the physical number density of axion particles that were quantum mechanically
produced in the early universe is
dk _ BB

n= [ —ng ng =
k ’ 2m2a3

(4.10)

where ny denotes the number density of particles with comoving momentum ~ k. (It should
be noted that the total number of axions is dominated by the zero mode axions classically
produced from the vacuum misalignment.) Using the expression (4.9) for axions produced
close to the potential minimum, and rewriting the redshift at instantaneous reheating in
terms of the inflation scale as

1/2

CLtoday 28 Hinf )

—— ~ 107" =~ 4.11

Qyeh (1012 GeV ’ ( )

the number density today is obtained as
—-1/2 H. 2
-3 m inf

Nk today ™ 100 cm (16\/) <1012Ge\/) . (4.12)
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Figure 6. Asymptotic value of the Bogoliubov coefficient |3 |? as a function of the axion misalignment

angle #y. Colours denote different choices of the inflationary Hubble scale, axion mass, and the wave
number upon reheating, as listed in the legend in units of GeV. Dashed horizontal lines denote the
offset at 6y — 0, as given in (4.9).

4.2.4 Alternative calculation for |32

In order to understand the physics underlying the expression (4.9), let us present an alternative
derivation of the asymptotic value of |Bj|? using the energy density of the axion field:

_ (¢ ;?La@‘ﬁ V(9). (4.13)

Expanding this in terms of the field fluctuation d¢, then the expectation value of the density
operator in the initial vacuum defined above (2.29) is written as

_ ) (6™
(o) =p+{p +nZ‘§ dqsn n!> (4.14)

Here p is the energy density of the background field as given in (3.3), and we considered terms
linear in d¢ to have vanishing expectation values. The quadratic-order density operator po
is given by
1

p2 = 55 {(00)° + (0:36)(9:06) + a*miydd’ } (4.15)

whose vacuum expectation value is written in terms of the Bogoliubov coefficients as
1 d3k o 1 B+ aif;
) = 5 | s [\ (1062 5 — STk )

K+ a*(mZs + H?)
||

By + g B
2

(182 + 5 + )+ iat (e - aiﬁi;)] -

(4.16)
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After the onset of the axion oscillations the effective mass asymptotes to the mass around
the minimum, meg ~ m (> H, k/a), and the frequency to |wi| ~ am. In this epoch (4.16)
takes the form of

m 3
o) =% [ e (188 +3) (@.17)

This is equivalent to the asymptotic value of the Hamiltonian density (H)/a*V, cf. (2.29).

We can also compute the axion density by treating it as a purely classical quantity. For
this, notice that the axion field during inflation follows a slow-roll attractor where the field
velocity is set by the field value as ¢/ o« —dV/d¢. Hence the asymptotic energy density can
be considered to be uniquely determined by the axion field value at some initial time 7;
during inflation, i.e., p = p(¢;). Then the spatial inhomogeneity of the asymptotic density
can be understood to originate from that of the initial field, ¢;(x) = ¢; + d¢;(x), where ¢;
is the average field value over the entire universe at 7;, and d¢; is the classical fluctuation
around the average. (We are being somewhat sloppy and using the same notation as we
used in (2.4) for splitting between the classical background and quantum fluctuations, but
we stress that here everything is classical.) Expanding the asymptotic density in terms of
d¢i(x), and also taking a spatial average yields

— L 0%0(61) (60D ave | <= 0"p(i) (067 )ay
(0o = ) + g Oy 57 L0 L6l

(4.18)
n=3
By identifying the spatially averaged quantities with the vacuum expectation values of the
corresponding operators, we can equate (4.18) with (4.14). Moreover, the variance (6¢?)avg
can be evaluated as the vacuum expectation value of the quadratic operator, as shown
in (2.33). Hence the second term of (4.18) is rewritten as

d?p(¢i) (607 )avg - }dQP(flgz‘) / 3k H2, (4.19)
délz 2 2 d&% k<aiHie (27)3 2k3 ’

Here we ignored modes that are sub-horizon at the time 7;, since the contributions from such

modes should be renormalized and absorbed into the cosmological constant. Additionally, for
the mode function during inflation, we substituted its value in the super-horizon limit for an
effectively massless field, |ug|?/a? ~ H2;/2k3 (cf. k < aHiys limit of (B.4) with v = 3/2).
Upon comparing (4.14) and (4.18), let us identify p with p(¢;), and further ignore
the higher-order correlators. Then we can equate the second terms of each expression,
namely, (4.17) and (4.19). Let us further suppose that this equality holds mode by mode,
and also drop the 1/2 in (4.17). Then we find a relation between the asymptotic value of
the Bogoliubov coefficient, and the second-order derivative of the background energy density

in terms of the initial field value,

372 2 (1
2 a Hinf 9 p(d)l)
Bul” ~ 5 s (4.20)

Since the energy density after the axion started oscillating redshifts as p oc a=3, the right-
hand side is actually time-independent.

If the initial field value is close to the potential minimum, i.e. |¢;| < f, then the axion
potential is approximately quadratic and the field begins a harmonic oscillation when H ~ m.
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Hence the asymptotic axion density can approximately be written as

_ . 3 ) 3
pldi) v gt (220 ) Sl PR G () (4.21)

a a

1/2

where upon moving to the far right-hand side we used aosc ~ apen(Hint/m)'/°. Plugging this

into (4.20), we can estimate the Bogoliubov coefficient around the minimum as
1 (aren\® HyY
2 - reh inf
1Bel” ~ 4 ( - ) i (4.22)

This matches with the exact result (4.9) up to a numerical factor of order unity.*

We have numerically computed both sides of (4.20); these are displayed as functions
of the initial angle® in figure 5, where the purple line shows the left-hand side, while the
pink line shows the right-hand side. At 6y < 1, where the potential can be approximated
by a quadratic, the two results are in good agreement. In particular, both asymptote to the
value of (4.9) as 6y — 0. Close to the hilltop, on the other hand, |3;|? is consistently larger
than the right-hand side of (4.20) by an order of magnitude. We have also checked that the
p-dependences of either sides of (4.20) are unaltered by changing the values of m, Hj,¢, and
k; hence the behaviors discussed above are also parameter-independent.

We should remark that our calculation incorporates axion self-interactions through the
interaction between the homogeneous background field (zero mode) and the fluctuation mode,
however we have ignored mode-mode interactions by expanding the action only up to quadratic
order in the fluctuation. The relation (4.20) has also been derived by neglecting higher-order
correlators. One would naively expect the mode-mode interactions to be suppressed by a
hierarchical parameter choice such that m < Hi,s < f. However the uniform discrepancy
between both sides of (4.20) at 6y = 1 may be implying the importance of the interactions
between the fluctuation modes. We leave a detailed investigation of this for the future.

4.3 Squeezing parameters

We can now proceed to the analysis of the squeezing parameters. Through relations (2.32),
one gets the evolution in time of the squeezing parameters. The result is shown in figure 7
for ri and g, which are the two parameters linked with physical quantities, as explained
in section 2.4 and in appendix A. Their evolution is reported for four different values of
the initial misalignment angle.

The r, parameter is directly linked with the modulus square of the beta coefficient; we
can therefore see an enhancement in its value towards the hilltop. r; gives a measure of the
stretching of the ellipse describing the phase space distribution of two conjugate variables, as

“The numerical factor of (4.9) can also be obtained from (4.20) by using the exact result for the asymptotic
axion density [34] (see their eq. (A3), and combine with H = Hint(aren/a)?):
1)12 )
LED) I (22)"
4 inf 770 a

®The background field ¢; in (4.20) denotes the value after the wave mode of interest has left the horizon
(cf. discussions below (4.19)), while in the plots we use fy = ¢o/f which is the value when the mode is still
deep inside the horizon. However we do not distinguish between ¢; and ¢o, since the axion background is
effectively frozen during inflation for our choice of parameters.
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Figure 7. Time evolution of the squeezing parameters r; and ¢y, for different values of the initial
misalignment angle. The parameters chosen for the evaluation are Hi,y = 108 GeV, m = 102 GeV, and
k/aren = 10? GeV. The dashed vertical lines set the horizon exit (k = aH), reheating (a = a,en) and
the onset of the oscillations of the background field (m = H).

explained in appendix A. If r increases, as observed taking into account the anharmonic
effects, then the ellipse gets stretched along one of its axis, and the state described by the two
conjugate variables becomes more and more squeezed. We therefore conclude that anharmonic
effects give extra squeezing at the onset of the oscillations.

The angle ¢} is instead linked with the rotation of the ellipse in phase space. @y is
constant until the mode exits the horizon, then shifts to another constant value after the
horizon exit. When the background field starts oscillating, and the adiabaticity condition
starts to hold, the phase starts to rotate. This behaviour is visible in figure 7. The sharp
lines are present since the phase is restricted to the range —7 < ¢ < 7. In phase space, the
ellipse described by this phase is constantly rotating by this time dependent angle.

5 Conclusions

We have computed the time evolution of the Bogoliubov coefficients and the squeezing param-
eters for an axion-like field during inflation and radiation domination, keeping into account
self-interactions. In particular we considered the non-trivial evolution of the background
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field. We have shown that the net number of particles created due to the expansion of the
Universe, given by |Bx|?, increases as the initial background field approaches the hilltop
of the cosine potential. The rp parameter determining the amount of squeezing increases
accordingly. Hence we conclude that the self-interaction due to the cosine potential, and
specifically the interaction between the perturbation and the non-trivial background field
dynamics, gives rise to extra post-inflation squeezing.

An analytical expression for |8;|? in terms of the relevant parameters of the system has
also been found in the quadratic potential limit in (4.9). A full derivation has been carried
out in terms of the analytical mode functions in appendix B.1. The expression (4.9) has also
been confirmed via numerical computations to set the overall normalization of |3;|?. The
behaviour of the final value of |3;|? as a function of the initial displacement angle is not
affected by the physical parameters Hi,¢, m and k, provided the mode considered re-enters the
horizon after the background has started oscillating. Moreover the anharmonic enhancement
of the squeezing is solely determined by the initial misalignment angle.

We have also derived a relation between the asymptotic values of the Bogoliubov co-
efficients, and the field derivatives of the background energy density, as shown in (4.20).
This relation exactly holds for small misalignment angles where the axion potential is well
approximated by a quadratic, however we also found that it breaks down towards the hilltop.
Here we note that in this paper we evaluated the effect of axion self-interactions through the
interaction between the homogeneous background field and the fluctuation, while we have
ignored interactions among the fluctuation modes. The breakdown of (4.20) towards the
hilltop may be indicating that mode-mode couplings can further enhance axion squeezing.
We leave an investigation of this effect for future work.

A connection with observables has also been pointed out. The net number of particles
created by the expansion of the Universe is given by |3¢|?, which is directly linked also to
the parameter r; and consequently to the amount of squeezing of the perturbations. The
more particles are created, the more squeezed the state is. The other physically relevant
squeezing parameter, i.e. the phase ¢y, is related with the power spectrum of the field
fluctuations, as shown in (2.35).

One interesting question left for future work is how we could observationally discern
among the quantum or classical origin of the axion perturbations. The main problem in
addressing this question is the fact that the two-point correlation functions of a squeezed
state can be perfectly mimicked by a stochastic classical distribution. Despite this, a squeezed
state is an intrinsically quantum state and in particular it is an entangled state. Hence one
possible test of the quantum nature of the perturbations is a Bell type experiment on the
Cosmic Microwave Background (CMB). In the case of the curvature perturbations this kind
of experiment is however inconclusive, see [35] and references therein. Even if considering
Leggett-Garg inequalities [36] instead of Bell inequalities, the curvature perturbations could
be useless, since the conjugate momentum of the curvature perturbation (, i.e. its time
derivative, is vanishing on super-horizon scales. Working with axion fields may avoid this
latter problem. We have indeed shown that the phase ¢, oscillates in the late time limit,
making the ellipse in phase space describing the system to rotate. This suggests that the
time derivative of the perturbation is non-negligible, and hence axions may provide an ideal
target for a cosmological Leggett-Garg experiment.
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Another way to probe the nature of the primordial fluctuations is to consider interacting
theories and compute higher order correlators. One attempt in this regard have been
performed in [16] (see also in a different context, e.g., [17, 18]). In the recent work by Green
and Porto [16] it has been pointed out how the quantum origin of the perturbations could be
singled out by looking at the poles of the bispectrum, therefore a careful analysis of the axion
bispectrum might be enlightening. In order to compute the bispectrum of an axion field, the
effect of the non-trivial background computed in this work will have to be taken into account.

Although we have focused on axion fields throughout this paper, the study of the squeezing
of the perturbations can also be important for addressing the evolution of gauge fields that
could have been excited in the early Universe. Recently a paper has been published on this
topic [37] and further analysis along this direction is an interesting expansion of our work.
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A Physical interpretation of the squeezing parameters

The squeezing formalism is an alternative way to describe the process of particle creation. Its
advantage is to give a clear phase space representation of the system’s evolution. Introductions
to the squeezing formalism can be found in [38, 39] (see also [8, 40-42]). The evolution in
time of the ladder operators can be given in terms of an evolution operator U as

ap(r) =U(T)aQUT(r),  al(r)=U(r)ay U'(r). (A.1)

The form of this operator has been deduced by Parker in [43]. Using the language introduced
by [44] in the context of quantum optics, it can be rewritten as U = RS, where

R(V)) = exp [z’/d?’k ﬁkazTag} (A.2)
is the rotation operator, and
1 . ,
S(rk, pr) = exp [2/d3k; Tk (e_QZ‘pkagagk - e%“"kaga(ﬁk)} (A.3)
is the two-mode squeeze operator. Here rg, 5 and 9y are the squeezing parameters introduced

in (2.31). Their time dependence in (A.2) and (A.3) have been made implicit to avoid
clutter. The time evolution (A.1) thus corresponds to the application of a rotation with the
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parameter Vg, followed by a squeezing with the parameters r; and ¢. The action of these two
operators can be computed using the expansion e Be=4 = B+[A, B]+1/2[A, [A, B]]+... as

UaQ Ut = e7"%% coshry, a + ' PF228) ginh a(y,'c ,

. . (A.4)
UazT Ut = e coshry, CLZT + e ORt20k) ginhry, agk .

Rewriting the squeezing parameters in terms of the Bogoliubov coefficients using (2.32), we see
that (A.4) matches with (2.18). These expressions also show that the modes +k and —k are
mixed, hence a two-mode squeeze operator is needed to describe particle pairs in states tk.

The rotation operator shifts the phase of the ladder operators as Ra% Rt = e‘wkag,
RazT Rt = ¢k azT. The vacuum state is invariant under this rotation [39, 40], and hence the
parameter v is unphysical. Physical observables thus depend only on the parameters ry
and ¢y. Using (2.32), this in turn implies that the relevant combinations of the Bogoliubov
coefficients are |fi|? and arg (axfk). In particular, the squeezing parameter 7 is related
to the number of particles created. The expectation value of the number operator in the
vacuum annihilated by a) follows from (A.4) as,

27)3 .
BT (afaw) = sinb® i = |84l (A.5)

as we have also derived in (2.30), and V is the spatial volume. Thus cosmological particle

creation amounts to squeezing the vacuum, as observed by Grishchuk and Sidorov [2].

In order to understand better the physical meaning of the squeezing parameters we
need to move to the phase space representation for a quadrature pair. A squeezed state is
described by a quadrature pair for which fluctuations in one variable are reduced below the
symmetric quantum limit, while fluctuations in the other canonically conjugate quadrature
component are enhanced so that the Heisenberg uncertainty principle is not violated. To
see this explicitly, we introduce a set of operators:

1 + i t
T = ﬁ (ak + a_k) , Y = —ﬁ (ak — a_k) , (A.6)
which are the same as xj and pg in the main text, up to the normalization factor /|wg]|.
These satisfy the commutation relation,

(2, yhe | = 6% (ke — ). (A.7)

We further introduce a linear combination of the operators by rotating in the xx—yi plane
by an angle ¥ (€R),

€, () = costp ay, + sin g yp. (A.8)

The vacuum expectation value of a quadratic combination of & can be written as,
1/2

T
‘W = {cosh(2r) + cos(2) — 2y, sinh(2ry,) }'/2. (A.9)
§[=Tk7 yk]

The right-hand side takes the values e™ for ¢ = ¢ and e™"* for ¢ = ¢} + 7, moreover for
rr = 0 it becomes unity for all ¢b. The quantity of (A.9) denotes the standard deviation of z
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Figure 8. Phase space distribution of a conjugate pair (2, yx). The green circle corresponds to a
vacuum state, while the green ellipse is a squeezed state described by the parameter r; and rotation
angle ¢g. This picture has been adapted from [45].

and yg along the 1-direction, in units of half the quantum uncertainty (A.7). It also implies
that the probability distribution in the xp—yi plane is an ellipse with semi-major axis e*
and semi-minor axis e~ (normalized by the quantum uncertainty), with the major axis
rotated by an angle g, as illustrated in figure 8. This can be understood by noting that
when projecting this ellipse onto the v-axis, then its half length is given by the right-hand
side of (A.9).® When 7, = 0 the ellipse in phase space reduces to a circle; in this case, the
state is the vacuum state of the system. The 9 angle does not enter the discussion here
since we are considering vacuum expectation values. More details about the phase space
representation using the squeezing parameters can be found in [41, 46, 47].

5The ellipse in an z—y plane is described by

e 2"k (cos gy  + sin g y)* + €27 (— sin g z 4 cos r y)* = 1. (A.10)

To obtain the length of this ellipse projected along the -axis, consider a line running through the origin with a
polar angle 1, and another line that is orthogonal to the first line and passes through a point (pcos, psin))
with p > 0, i.e.,

x P
= — . A1l
Y tan v + sin ¢ ( )

This line is tangent to the ellipse if (A.10) and (A.11) admit only one set of solutions for (z,y). This
requirement sets p as the projected half length, and reproduces the right-hand side of (A.9).

— 24 —



For the axion field fluctuation analyzed in the main text, the parameters r; and
depend on time such that the ellipse in phase space becomes more and more squeezed, and
also rotates as the Universe expands. These effects start to apply when the fluctuation’s wave
mode exits the Hubble horizon during inflation. The squeezing continues until adiabaticitiy
is recovered, when the background axion field starts to oscillate. In this example, the
expanding Universe and the rolling axion background both induce a cosmological squeezing
of the axion fluctuations.

B Quadratic potential

In this appendix we study a quadratic axion potential, and derive analytic solutions for the
mode function, as well as the asymptotic values of the Bogoliubov coefficients. The analytical
results presented coincide with the numerical results obtained for the full cosine potential in
the limit of a small initial displacement angle, close to the minimum of the potential.

B.1 Mode functions

The equation of motion for the mode function is given by (4.1), with meg replaced by a
constant and positive mass m, as here we focus on a quadratic potential. Let us solve
this equation in the dS and RD epochs, assuming the two epochs to be connected by an
instantaneous reheating.

dS epoch. With a constant Hubble rate H = Hi,¢, the conformal time is related to the
scale factor as

1

T=— . B.1
aHinf ( )
Here we set the time at reheating as Tyeh = —1/arenHing. The equation of motion then
reduces to the form,
1 m?
" 2 —
Supposing m?/ Hiznf < 9/4, the solution is given in terms of Hankel functions as,
() {er HO (—hr) + e0 HO (k) oMY (B
=\~ 2 - - = I — . .
Uk T C1 11, T Co 11, T : 1% 1 Hi2nf

The two constants ¢; and ¢y can be fixed by requiring that the mode function approaches a
positive frequency solution in the asymptotic past, and also that it satisfies the normalization
condition (2.22). This yields, up to an unphysical phase,

1
_ T 2 (1)( k’ >
h <4aHmf> B\ e ) (B-4)

where we have rewritten the solution in terms of the scale factor.
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RD epoch. In a radiation-dominated universe where H o a2, the equation of motion
can be rewritten as

d?uy, 22 K2
o4 =0 B.5
d22+<4+2ﬂ up, =0, (B.5)
where L
m 1 a
K = , — s z = 2 2 . B6
arehHinf H Hinf ( 'u) Greh ( )
Solutions to this equation are the parabolic cylinder functions,
up = c3D_\ (e’%z) +caDy_q (eia%z) A= 1 + ﬁ (B.7)
_ _ , TR .

The two constants c¢3 and ¢4 are fixed by imposing continuity of the solutions (B.4) and (B.7),
as well as their time derivatives, at the time of reheating.

B.2 Asymptotic |Bx|?

In order to evaluate the Bogoliubov coefficient |3j|? in the asymptotic future, we introduce
linear combinations of parabolic cylinder functions,

_n?

[ r
T = Dox(e'2) B.8
T i) (+5) (B-8)
37&;42 (2 )l _'3J 77:2
€ K -3 m)2e m .
- (e D, (e B.
F. <2M)%(GrehHinf)% {D)\ 1 (e 1 z) + NES ) A (e 42)} , (B.9)

and rewrite the mode function in the RD epoch (B.7) as
ur = A F+ + By F—. (B.IO)

Here Aj and Bj are time-independent coefficients. The functions F; and F_ are chosen
such that in the asymptotic future, they respectively approach the WKB solutions with
positive and negative frequencies:

22
e$i f‘r 47 wi(7) eq:z(T—&—const.)
~ . (B.11)
2wy (7) (24)7 (aven Hint 2)?

This can be checked by noting that for an argument w with a sufficiently large amplitude
and s # 0,1,2,---, the parabolic cylinder function is approximated by

w2 V2T o w?
Ds(w) ~ e T w® — F(—Z) et T (B.12)

for m/4 < argw < 57 /4. For |argw| < 37w /4, the approximate expression is given only by
the first term in the right hand side. Hence the amplitudes of the coefficients A and By
in (B.10) match with those of the Bogoliubov coefficients o, and S in the asymptotic future.
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By matching the mode functions (B.4) and (B.10), as well as their time derivatives u),
at a = aren, the coefficient By can be obtained as,

2

3

_ 37k

i Em

B, — mie
2

INIS N
NI

1
WH(5)D s — B () {(3 v+ i) Do+ e VO D

X -
1D _xt1Dx—1+ D_y {DA + 6"1\/2MDA—1}

(B.13)

Here the arguments of the parabolic cylinder functions are e/™/*/2u for D_y and D_ At1s

while €®37/4, /211 for Dy and Dy_;. This expression for By, can by simplified by first expanding

in small %, and then further simplifying the leading term by considering a small x. This gives,”

B~ () 31# . (B.14)

3 1
2212 K

NI

This gives a good approximation for (B.13) at x? < u < 1; here note that 2 < pu is
equivalent to k < (aH )ose. Hence for wave modes that are outside the Hubble horizon when
the axion begins to oscillate during the RD epoch, the asymptotic value of the Bogoliubov
coefficient is obtained as

|Bi|* ~ r G)]Q (areh>3 Hi%}f . (B.15)

C More realistic models for the evolution of the universe

In the results derived in the main text, we assumed a pure dS spacetime followed by an RD
spacetime, further assuming the reheating phase to be instantaneous. In this appendix, we
check that changing the evolution of the Hubble rate does not affect our main conclusions
on the asymptotic value for |8|? and the squeezing parameters.

C.1 Smooth reheating

We first smooth the Hubble rate evolution between the dS and RD epochs to see if our results
are affected by a non-instantaneous reheating phase. The expression we use is the following:

o )
H = Hj,; —=—. C.1
a?+ a2,
We numerically solved the axion’s equations of motion with the Hubble rate (C.1), and we
found that it does not change the evolution of the background field nor the fluctuation’s

"We use that the Hankel function of the first kind at w — 0 asymptotes to

1 (w) ~ ~216) (5)

for Re(s) > 0. We also use
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Figure 9. Time evolution of |8;|? for instantaneous reheating (purple) and smooth reheating (pink
dashed), for an initial angle 6y = 0.99 7. The values chosen for the parameters are Hins = 102 GeV,
m =102 GeV and k/a,en = 102 GeV.

mode function. However it affects the evolution of S as shown in figure 9. The behaviour of
|3|? is modified near the reheating phase, but it coincides with the result from instantaneous
reheating after a few e-folds. Hence the final value of |3;|? is not affected by this modification
to the Hubble evolution. This is because the post-inflation squeezing is determined by the
field dynamics near the onset of the oscillations; the Hubble rates in (C.1) and (2.1) differ for
a few e-folds around reheating, however they coincide by the time the oscillations begin.

C.2 Single field inflation

We now study a quasi de Sitter inflationary background, by considering a single-field inflation
model with a quadratic potential

1
U= imi ©°. (C.2)

We assume that the background dynamics is completely determined by the inflaton, with the
axion field being only a spectator field. We also suppose instantaneous reheating, followed by
a period of radiation domination. Therefore the Hubble rate is now given by:

m L_29(-2 inflation
o Jmeys () 3

% (aih)_Q RD.

In contrast to the exact dS background invoked in the main text, now the Hubble rate

varies in time during inflation, with the inflation scale set by the inflaton mass. Upon
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Figure 10. Time evolution of |8|? in a quasi de Sitter inflationary background, for different initial

background field values. The parameters used are m, = 10% GeV, m = 102 GeV and k/a,en, = 10% GeV.

computing the evolution of the axion fluctuations in the above cosmological background,
we have chosen m, = 108 GeV (hence Hiys ~ 108 GeV), combined with m = 102 GeV and
k/agen = 102 GeV; these parameters have the same order of magnitude as those in figure 9.
We checked that the mode function present similar behaviours as in the case of an exact dS
spacetime. The results for the time evolution of |3;|? are reported in figure 10 for different
initial misalignment angles. The general features of the evolution of |3;|? are similar to
those in figure 9 for an exact dS spacetime followed by an instantaneous reheating; |3x|?
approaches a constant value after the onset of the oscillations, and its numerical value
depends on the initial field.

From these analyses we conclude that our main conclusions for the axion squeezing are
independent of the details of the inflation and reheating models.
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