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1 Introduction

In order to solve possible theoretical issues of general relativity, such as non-renormalizability
and the cosmological constant problem, and alleviate possible tensions between its predictions
and the data [1, 2], many theories of gravitational modification have been proposed [3–
5]. There are many directions one could follow to construct gravitational modifications.
For instance, one can start from the standard curvature formulation of gravity and result
to f(R) gravity [6, 7], to f(G) gravity [8], to f(P ) gravity [9], to Lovelock gravity [10],
etc. Alternatively, one can start from the torsional formulation of gravity and obtain
f(T) gravity [11, 12], f(T,TG) gravity [13, 14], etc. Finally, there is an alternative way to
build classes of modified gravities, namely to use non-metricity [15, 16] resulting to f(Q)
gravity [16–49, 51–56].

The above novel classes of modified gravity in curvature, torsional and non-metricity
case, arise although the non-modified theories are equivalent at the level of equations. The
reason behind this is that the torsion scalar T and the non-metricity scalar Q differ from
the usual Levi-Civita Ricci scalar R̊ of general relativity by a total divergence term, namely
R̊ = −T + B and R̊ = Q + C respectively, and thus arbitrary functions f(R̊), f(T) and
f(Q) do not differ by a total derivative anymore. Finally, note that one can also introduce
scalar fields in the above framework, obtaining scalar-tensor [57, 58], scalar-torsion [59–61]
and scalar-non-metricity [62, 63] theories.

In the framework of teleparallel gravities one may incorporate the boundary B into
the Lagrangian, resulting to f(T, B) theories [64], which as expected exhibit richer phe-
nomenology [65]. Nevertheless, in the framework of non-metricity the role of C has not been
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incorporated into the Lagrangian of symmetric teleparallel gravity.1 Hence, in this work we
are interested in investigating such a direction, namely to formulate f(Q, C) gravity and
apply it to a cosmological framework.

The present article is organized as follows: in section 2 we present the geometrical
framework of symmetric teleparallelism. Then, in section 3 we formulate f(Q, C) gravity,
extracting the general metric and affine connection field equations, while in section 4 we apply
it to a cosmological setup, thus obtaining f(Q, C) cosmology. Finally in section 5 we conclude.

2 Symmetric teleparallel geometries

Let us begin with a brief introduction on the general framework, namely the teleparallel
geometries. In general, a metric-affine geometry consists of a 4-dimensional Lorentzian
manifold M , a line element governed by the metric tensor gµν in a coordinate system
{x0, x1, x2, x3} and a non-tensorial term, the affine connection Γα

µν , defining the covariant
derivative ∇λ. Although the metric and the connection are completely independent objects,
if one imposes both the metric-compatibility and torsion-free conditions, then there is a
unique connection available, namely the Levi-Civita connection Γ̊α

µν , in which case it has
a well-known relation with the metric g given by

Γ̊α
µν = 1

2gαβ (∂νgβµ + ∂µgβν − ∂βgµν) . (2.1)

In such a cimple case the triplet (M, gµν , Γα
µν) constitutes the Riemannian geometry, which

is the basis of general relativity.
Nevertheless, things change if we start relaxing the aforementioned conditions. One

direction is to maintain metric compatibility but introduce connections that have zero
curvature but non-zero torsion, such as the Weitzenböck connection used in the Teleparallel
Equivalent of General Relativity (TEGR) [12]. One other direction, is to consider a torsion-free
and curvature-free affine connection Γα

µν , namely with

Tα
µν := 2Γα

[νµ] = 0 , (2.2)
Rλ

µαν := 2∂[αΓλ
|µ|ν] + 2Γλ

σ[αΓσ
|µ|ν] = 0 , (2.3)

however relaxing metric compatibility, resulting to a class of geometries called symmetric
teleparallel geometries. In particular, due to the disappearance of the Riemannian curvature
tensor, the parallel transport defined by the covariant derivative and its associated affine
connection is independent of the path, hence the term “teleparallel”. In addition, due to
the torsionless constraint on the connection, the affine connection is symmetric in its lower
indices, hence the term “symmetric”.

The incompatibility of the above affine connection with the metric is quantified by the
non-metricity tensor [16]

Qλµν := ∇λgµν = ∂λgµν − Γβ
λµgβν − Γβ

λνgβµ ̸= 0 . (2.4)
1While this manuscript was being proofread, the work [66] appeared on arixv with discussions on the

role of the boundary term on non-metricity gravity, namely f(Q, B) gravity in their notation, but without
cosmological applications. We agree on [66] in regions of overlap.
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Moreover, we can express

Γλ
µν := Γ̊λ

µν + Lλ
µν , (2.5)

where Lλ
µν is the disformation tensor. Thus, it follows that

Lλ
µν = 1

2(Qλ
µν − Qµ

λ
ν − Qν

λ
µ) . (2.6)

We can now construct two different types of non-metricity vectors, i.e.

Qµ := gνλQµνλ = Qµ
ν

ν , (2.7)
Q̃µ := gνλQνµλ = Qνµ

ν , (2.8)

and similarly we can write

Lµ := Lµ
ν

ν , (2.9)
L̃µ := Lνµ

ν . (2.10)

Furthermore, the superpotential (or the non-metricity conjugate) tensor P λ
µν is given by

P λ
µν = 1

4
[
−2Lλ

µν + Qλgµν − Q̃λgµν − δλ
(µQν)

]
, (2.11)

while the non-metricity scalar Q is defined as

Q = QαβγP αβγ . (2.12)

In summary, after introducing the torsion-free and curvature-free constraints (2.2), (2.3),
one can further obtain the relations (all quantities with a (̊ ) are calculated with respect
to the Levi-Civita connection Γ̊):

R̊µν + ∇̊αLα
µν − ∇̊νL̃µ + L̃αLα

µν − LαβνLβα
µ = 0, (2.13)

R̊ + ∇̊α(Lα − L̃α) − Q = 0 . (2.14)

Hence, it becomes clear that since Qα − Q̃α = Lα − L̃α, from the preceding relation we
also define the boundary term

C := R̊ − Q = −∇̊α(Qα − Q̃α)

= − 1√
−g

∂α

[√
−g(Qα − Q̃α)

]
. (2.15)

3 f(Q, C) gravity

In the previous section we presented the symmetric teleparallel geometry. In this section
we will show how one can use it as the framework to construct a new theory of gravity,
namely f(Q, C) gravity.

General relativity is constructed in the framework of Riemannian geometry, and the
gravitational action, the Einstein-Hilbert action, is

SGR =
∫ 1

2κ
R̊

√
−g d4x , (3.1)
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with R̊ the Ricci scalar calculated with the Levi-Civita connection. Similarly, Teleparallel
Equivalent of general relativity (TEGR) is constructed in the framework of Weitzenböck
geometry, and the gravitational action is

STEGR =
∫ 1

2κ
Te d4x , (3.2)

with T the torsion scalar calculated with the Weitzenböck connection, and e = det(eA
µ ) =

√
−g.

Hence, in the same lines, Symmetric Teleparallel general relativity (STGR) is constructed in
the framework of symmetric teleparallel geometry, and the gravitational action is given by

SSTGR =
∫ 1

2κ
Q

√
−g d4x , (3.3)

where the non-metricity scalar Q is calculated with the symmetric teleparallel connection
and it is given in (2.12). All these theories are completely equivalent at the level of equations,
since their Lagrangians differ only by boundary terms.

As it is known, one can start from the above three gravitational formulations, and
construct modifications, resulting to f(R̊) gravity [7], to f(T) gravity [12], or to f(Q) gravity
with action [16, 24–27]

S =
∫ 1

2κ
f(Q)

√
−g d4x . (3.4)

However, as expected, the resulting modified theories of gravity, namely f(R̊), f(T) and f(Q)
ones, are not equivalent since their differences are not boundary terms any more. Finally,
Since R̊ = −T + B, where

B = 2∇̊µT σµ
σ , (3.5)

is the boundary term, one could construct an even richer gravitational modification, namely
f(T, B) gravity [64] with interesting cosmological phenomenology [64, 67–75], which in the
case f(T, B) = f(−T + B) coincides with f(R̊) gravity.

In this work we proceed to the construction of a new theory of gravity based on sym-
metric teleparallel geometry, but incorporating both Q and the boundary C of (2.15) in the
Lagrangian, namely f(Q, C) gravity. Hence, we write the action as

S =
∫ [ 1

2κ
f(Q, C)

] √
−g d4x , (3.6)

where f is an arbitrary function on both Q and C. Variation of the action with respect to
the metric (see appendix A for the details), adding also the matter Lagrangian a Lm for
completeness, gives rise to the field equations

κTµν = −f

2 gµν + 2√
−g

∂λ

(√
−gfQP λ

µν

)
+ (PµαβQν

αβ − 2PαβνQαβ
µ)fQ

+
(

C

2 gµν − ∇̊µ∇̊ν + gµν∇̊α∇̊α − 2P λ
µν∂λ

)
fC , (3.7)

where Tµν is the matter energy momentum tensor, and where fQ := ∂f
∂Q and fC := ∂f

∂C . We
mention here that since the affine connection is indepedent of the metric tensor, by performing
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variation of the action with respect to the affine connection we obtain the connection field
equation (see appendix A):

(∇µ − L̃µ)(∇ν − L̃ν) [4(fQ − fC)P µν
λ + ∆λ

µν ] = 0 , (3.8)

where ∆λ
µν = − 2√

−g
δ(

√
−gLm)

δΓλ
µν

is the hypermomentum tensor [76]. As

∂ν
√

−g = −
√

−gL̃ν , (3.9)

while taking the coincident gauge, the preceding connection field equation can be re-ex-
pressed as

∂µ∂ν
(√

−g [4(fQ − fC)P µν
λ + ∆λ

µν ]
)

= 0 , (3.10)

in which case the field equation similar to that of f(Q) gravity will be recovered [63]. See
also the analysis of [77, 78] for useful relations.

Let us make some comments here. In the literature of symmetric teleparallel theories,
the so-called “coincident gauge” is frequently used to designate a coordinate system in which
the connection disappears and covariant derivatives reduce to partial derivatives (see the
discussion in [79]). As described in [27], this occasionally poses a significant problem when
attempting to investigate other spacetimes using the same vanishing affine connections. In
most cases, the symmetries of the system make it inconsistent unless the non-metricity scalar
Q is forced to be a constant. Hence, one concludes that a fully-covariant formulation would
be very useful for incorporating non-vanishing connections.

As we observe from the field equation (3.7), the second and third terms on the right-
hand side constitute the f(Q) theory. Following the standard calculation (for instance,
see [27, 80]), we obtain

2√
−g

∂λ

(√
−gfQP λ

µν

)
+ (PµαβQν

αβ − 2PαβνQαβ
µ)fQ =

(
2P λ

µν∂λ + G̊µν + Q

2 gµν

)
fQ ,

(3.11)
where G̊µν is the Einstein tensor corresponding to the Levi-Civita connection. Hence, we
can rewrite the metric field equation covariantly as

κTµν = −f

2 gµν + 2P λ
µν∇λ(fQ − fC) +

(
G̊µν + Q

2 gµν

)
fQ +

(
C

2 gµν − ∇̊µ∇̊ν + gµν∇̊α∇̊α

)
fC .

(3.12)
As a next step, we define the effective stress energy tensor as

T eff
µν = Tµν + 1

κ

[
f

2 gµν − 2P λ
µν∇λ(fQ − fC) − QfQ

2 gµν −
(

C

2 gµν − ∇̊µ∇̊ν + gµν∇̊α∇̊α

)
fC

]
,

(3.13)
and thus we result to

G̊µν = κ

fQ
T eff

µν . (3.14)

Hence, in the framework of f(Q, C) gravity we obtain an extra, effective sector of geo-
metrical origin.
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If the function f is linear in C, namely f(Q, C) = f(Q) + βC and thus fC = const.,
then (3.12) reduces to the usual field equation for (Q) gravity:

κTµν = −f

2 gµν + 2P λ
µν∇λfQ +

(
G̊µν + Q

2 gµν

)
fQ . (3.15)

This is the unique form of the function f which yields second-order field equations. On the
other hand, the generic field equations (3.12) contain terms of the form ∂µ∂νfC which are of
fourth order. Additionally, since R̊ = Q + C, in order to recover f(R̊) theory we consider
f(Q, C) = f(Q + C), in which case we acquire

κTµν = −f

2 gµν +
(
R̊µν − ∇̊µ∇̊ν + gµν∇̊α∇̊α

)
fR̊ , (3.16)

which are the usual field equation for f(R̊) gravity theory.
We close this section with a discussion on the energy conservation in f(Q, C) theories of

gravity. In general relativity, as well as in f(R̊) theories of gravity, the field equations are
compatible with the classical energy conservation due to the second Bianchi identity, which
is not the case in simple f(Q) gravity [52]. On the other hand, in the covariant formulation
of f(Q, C) gravity, equation (3.12) leads to

κ∇̊µT µ
ν = −∇νf

2 + 2∇̊µP λµ
ν∇λ(fQ − fC) + 2P λµ

ν∇̊µ∇λ(fQ − fC)

+
(

G̊λ
ν + Q

2 δλ
ν

)
∇λ(fQ − fC) + ∇νQ

2 (fQ − fC)

+
(
R̊µν − ∇̊µ∇̊ν + ∇̊ν∇̊µ

)
∇µfC + ∇νR̊

2 fC . (3.17)

Now, one can easily verify that −∇νf + (∇νQ)(fQ − fC) + (∇νR̊)fC = 0, while the con-
tracted second Bianchi identity leads to

(
R̊µν − ∇̊µ∇̊ν + ∇̊ν∇̊µ

)
∇µfC = 0, and therefore

equation (3.17) reduces to

κ∇̊µT µ
ν =

(
2∇̊µP λµ

ν + 2P λµ
ν∇̊µ

)
∇λ(fQ − fC) +

(
G̊λ

ν + Q

2 δλ
ν

)
∇λ(fQ − fC) . (3.18)

Furthermore, as we show in appendix B, the following identity is crucial in determining the
covariant divergence of the stress-energy tensor:

2(∇λ − L̃λ)(∇µ − L̃µ)
[
(fQ − fC)P λµ

ν

]
= κ∇̊µT µ

ν , (3.19)

whose left-hand-side matches the expression of the connection’s field equation (3.8) in the
absence of the hypermomentum tensor. Hence in view of (3.18), we can conclude that
in f(Q, C) theory the conservation of the stress energy tensor is equivalent to the affine
connection’s field equation, as long as the matter Lagrangian is independent of the affine
connection. Lastly, note that in the content of the Palatini formulation, that is when the
hypermomentum tensor is non-zero, we extract the following additional constraint on the
f(Q, C) theories(

2∇̊µP λµ
ν + 2P λµ

ν∇̊µ + G̊λ
ν + Q

2 δλ
ν

)
∇λ(fQ − fC) = 0 , (3.20)

on the basis of the assumption that Q and C are not both constants, and f is not a linear
function, ensuring (fQ − fC),λ ≠ 0.
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4 f(Q, C) cosmology

In this section we apply f(Q, C) gravity at a cosmological framework, namely we present
f(Q, C) cosmology. We consider a homogenous and isotropic flat Friedmann-Robertson-
Walker (FRW) spacetime given by the line element in Cartesian coordinates

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2], (4.1)

where a(t) is the scale factor, and its first time derivative provides the Hubble parame-
ter H(t) = ȧ

a(t) .
As we showed in the previous section, in the framework of f(Q, C) gravity we obtain an

extra, effective sector of geometrical origin given in (3.13). Thus, in a cosmological context,
this term will correspond to an effective dark-energy sector with energy-momentum tensor

T DE
µν = 1

fQ

[
f

2 gµν − 2P λ
µν∇λ(fQ − fC) − QfQ

2 gµν −
(

C

2 gµν − ∇̊µ∇̊ν + gµν∇̊α∇̊α

)
fC

]
.

(4.2)
The cosmological symmetry, namely the homogeneity and isotropy, of the FRW met-

ric (4.1) can be represented by the spatial rotational and translational transformations. A
symmetric teleparallel affine connection is a torsion-free, curvature-free affine connection,
with both spherical and translational symmetries, implying that the Lie derivatives of the
connection coefficients with respect to the generating vector fields of spatial rotations and
translation vanish. There are three types of affine connections with such symmetries [56].
In order to proceed to specific cosmological applications we need to consider each of these
symmetric teleparallel connections and this is performed in the following subsections.

4.1 Connection Type I

We first consider the case with vanishing affine connection Γα
µν = 0 when fixing the coincident

gauge (in general for that type of connection this is not the case). In particular, performing
a coordinate transformation from the coordinates x̃µ to the coincident gauge xµ, then from
the condition that the connection coefficients vanish in the coincident gauge we obtain that
in the cosmological coordinates they become [81]

Γ̃µ
νρ = ∂x̃µ

∂xσ

∂2xσ

∂x̃ν∂x̃ρ
. (4.3)

Indeed, the connection components given in [56] can be easily recovered using (4.3). We
calculate

G̊µν = −(3H2 + 2Ḣ)hµν + 3H2uµuν , (4.4)
R̊ = 6(2H2 + Ḣ), (4.5)
Q = −6H2, (4.6)
C = R̊ − Q = 6(3H2 + Ḣ), (4.7)

where uν = (dt)ν , hµν = gµν + uµuν . Introducing these into the general field equations (3.7)
we derive the Friedmann-like equations as

3H2 = κ(ρm + ρDE) (4.8)
−(2Ḣ + 3H2) = κ(pm + pDE), (4.9)

– 7 –
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where ρm and pm are the energy density and pressure of the matter sector considered as a
perfect fluid, and where we have defined the effective dark-energy density and pressure as

ρDE := 1
κ

[
3H2(1 − 2fQ) − f

2 + (9H2 + 3Ḣ)fC − 3H ˙fC

]
(4.10)

pDE := 1
κ

[
−2Ḣ(1 − fQ) − 3H2(1 − 2fQ) + f

2 + 2HḟQ − (9H2 + 3Ḣ)fC + f̈C

]
. (4.11)

Comparing the above equations with the modified Friedmann equations of f(T, B) gravity
under the metric teleparallelism [65], we observe that we have a coincidence (note also
that in flat FRW geometry C = B). Thus, we conclude that in this connection choice,
f(Q, C) cosmology does not yield new cosmological dynamics comparing to the interesting
cosmological phenomenology [64, 67–75] of f(T, B) theory [64].

Let us now proceed to the investigation of non-vanishing affine connections in terms of
Cartesian coordinates within symmetric teleparallel class, namely with vanishing curvature
and torsion. In particular, we will examine two cases. In fact, these two connections belong to
the only two possible classes of (non-vanishing) affine connections which are invariant under
rotations and spatial translations due to the homogeneity and isotropy of the spatially-flat
FRW metric (4.1).

4.2 Connection Type II

We consider a non-vanishing affine connection Γ whose non-trivial coefficients are given by [56]

Γt
tt = γ(t) − 3H(t), Γi

it = γ(t) Γi
ti = γ(t), (4.12)

with (i = 1, 2, 3), which as mentioned above lead to vanishing torsion and Riemann tensor
components, whereas the non-metricity tensor components are not all zero, giving rise to

Q = −6H2 + 9γH + 3γ̇, (4.13)
C = R̊ − Q = 6(3H2 + Ḣ) − 9γH − 3γ̇. (4.14)

In this case, substitution into the general field equations (3.7) gives rise to the Friedmann
equations

κρm − 1
2f =

[
6H2 − 3

2(3Hγ + γ̇)
]

fQ +
[
−3Ḣ − 9H2 + 3

2(3Hγ + γ̇)
]

fC

+3
2γḟQ + 1

2 (−3γ + 6H) ḟC , (4.15)

κpm + 1
2f =

[
−2Ḣ − 6H2 + 3

2(3Hγ + γ̇)
]

fQ +
[
3Ḣ + 9H2 − 3

2(3Hγ + γ̇)
]

fC

+1
2 (3γ − 4H) ḟQ − 3

2γḟC − f̈C . (4.16)

It proves convenient to focus on the case 9γH + 3γ̇ = 0 which gives

γ(t) = γ0
a3(t) , (4.17)
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since in this case we obtain the same non-metricity scalar and boundary term as in Type I,
namely

Q = −6H2, (4.18)
C = R̊ − Q = 6(3H2 + Ḣ). (4.19)

In this case, the Friedmann equations become (4.8), (4.8), but now the effective dark energy
density and pressure read as

ρDE := 1
κ

[
−f

2 − 3H2fQ − 3γ0
2a3

˙fQ + (9H2 + 3Ḣ)fC − 3H ˙fC + 3γ0
2a3

˙fC

]
(4.20)

pDE := 1
κ

[
f

2 + 3H2fQ +
(

2H − 3γ0
2a3

)
ḟQ − (9H2 + 3Ḣ)fC + 3γ0

2a3
˙fC + f̈C

]
. (4.21)

As we observe, this case is different than f(T, B) cosmology. Finally, note that the divergence
of the energy-momentum tensor Tµν from (3.19) yields the modified continuity relation as

ρ̇m + 3H(ρm + pm) = 3γ0
2κa3

[
3H(ḟQ − ḟC) + (f̈Q − f̈C)

]
. (4.22)

Thus, the present scenario gives rise to an effective interaction between dark energy and
dark matter, and such terms are known to lead to interesting phenomenology and alleviate
the coincidence problem [82–88].

4.3 Connection Type III

Finally, we consider a non-vanishing, torsion-free and curvature-free affine connection Γ whose
non-trivial coefficients are given by (i = 1, 2, 3) [56]

Γt
tt = −H(t), Γt

ii = γ(t) , (4.23)

which lead to

Q = −6H2 + 3γH

a2 + 3γ̇

a2 , (4.24)

C = R̊ − Q = 6(3H2 + Ḣ) − 3γH

a2 − 3γ̇

a2 . (4.25)

In this case, substitution into the general field equations (3.7) gives rise to the Friedmann
equations

κρm − 1
2f =

[
6H2 − 3

2
1
a2 (Hγ + γ̇)

]
fQ +

[
−3Ḣ − 9H2 + 3

2
1
a2 (Hγ + γ̇)

]
fC

−3
2

γ

a2 ḟQ + 1
2

(
3 γ

a2 + 6H

)
ḟC , (4.26)

κpm + 1
2f =

[
−2Ḣ − 6H2 + 3

2
1
a2 (Hγ + γ̇)

]
fQ +

[
3Ḣ + 9H2 − 3

2
1
a2 (Hγ + γ̇)

]
fC

+1
2

(
γ

a2 − 4H

)
ḟQ − 1

2
γ

a2 ḟC − f̈C . (4.27)
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For simplicity we focus on the case γH + γ̇ = 0, which gives again γ(t) = γ0/a3(t), and thus
we acquire the same non-metricity tensor and boundary term (4.18), (4.19) as in Type I and
Type II. In this case, the Friedmann equations become (4.8), (4.8), but now the effective
dark energy density and pressure read as

ρDE := 1
κ

[
−f

2 − 3H2fQ + 3γ0
2a3

˙fQ + (9H2 + 3Ḣ)fC −
(3γ0

2a3 + 3H

)]
˙fC (4.28)

pDE := 1
κ

[
f

2 + 3H2fQ −
(

γ0
2a3 − 2H

)
ḟQ − (9H2 + 3Ḣ)fC + γ0

2a3
˙fC + f̈C

]
. (4.29)

Finally, in this case the modified continuity equation is given by

ρ̇m + 3H(ρm + pm) = 3γ0
2κa3

[
H(ḟQ − ḟC) − (f̈Q − f̈C)

]
, (4.30)

where as in the previous case we also obtain an effective interaction between dark energy
and dark matter.

4.4 Specific example

In this subsection we provide a numerical elaboration of a specific example. We use formulation
of section 4.2, namely ansatz (4.12) with condition (4.17). Hence, since we have imposed a
specific form for the connection coefficients, we do not need to specify f(Q, C) since this will
arise from the solution of the connection equation. As usual we focus on physically interesting
observables such as the matter and dark energy density parameters, defined as

Ωm := κρm
3H2 (4.31)

ΩDE := κρDE
3H2 , (4.32)

as well as on the effective dark-energy equation-of-state parameter

wDE := pDE
ρDE

. (4.33)

Additionally, we will use the redshift z as the independent variable.
We evolve equations the Friedmann equation (4.8), (4.9) numerically and in figure 1

we depict the evolution of Ωm(z) and ΩDE(z). As we observe, we obtain the usual thermal
history of the universe, with the sequence of matter and dark-energy epochs. Additionally,
in figure 2 we present the corresponding effective dark-energy equation-of-state parameter
wDE(z). Interestingly enough we see that the effective dark energy crosses slightly into the
phantom regime during the evolution, a feature that shows the capabilities of the scenario.
Indeed according to the definitions of the effective dark-energy density and pressure given
above, one can deduce that wDE can be quintessence-like, phantom-like, or exhibit the
phantom-divide crossing during evolution.

5 Conclusions

In the symmetric teleparallel formulation of gravity one uses non-metricity instead of curvature.
Since the non-metricity scalar Q differs from the standard Levi-Civita Ricci scalar R̊ by

– 10 –
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Figure 1. The evolution of the effective dark energy density parameter ΩDE and of the matter density
parameter Ωm, as a function of the redshift z, for f(Q, C) cosmology with Type II non-vanishing
connection (4.12) with condition (4.17), with γ0 = 1 in units where κ = 1. We have imposed
Ωm(z = 0) := Ωm0 = 0.31 in agreement with observations [89].

0.0 0.5 1.0 1.5 2.0 2.5
-1.1

-1.0

-0.9

-0.8

-0.7

w D
E

z

Figure 2. The evolution of the effective dark-energy equation-of-state parameter wDE given in (4.33),
as a function of the redshift z, for f(Q, C) cosmology with Type II non-vanishing connection (4.12)
with condition (4.17), with γ0 = 1 in units where κ = 1. We have imposed Ωm(z = 0) := Ωm0 = 0.31
in agreement with observations [89].

a total divergence term, namely R̊ = Q + C, general relativity and symmetric teleparallel
general relativity are equivalent at the level of equations. However, modifications of the form
f(R̊) and f(Q) are not equivalent, since they do not differ by a total derivative.

In the present work we formulated f(Q, C) gravity and cosmology, by incorporating
the boundary term C alongside Q in the Lagrangian. First we have extracted the general
field equations, and then we have applied them in a cosmological framework, namely to flat
Friedmann-Robertson-Walker (FRW) metric. Making three connection choices, we finally
obtained the corresponding modified Friedmann equations. As we showed, we acquired an
effective dark-energy sector of geometrical origin, which can lead to interesting cosmological
phenomenology. Additionally, one may obtain an effective interaction between matter and
dark energy.
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Using a specific example, we showed that we can obtain the usual thermal history of the
universe, with the sequence of matter and dark-energy epochs, as required. Furthermore,
as we saw, the effective dark-energy equation-of-state parameter can be quintessence-like,
phantom-like, or cross the phantom-divide, features that show the capabilities of the scenario.

In summary, we saw that f(Q, C) gravity is a novel class of gravitational modification, and
its cosmological application leads to interesting features. However, there are many investiga-
tions that one should do before considering f(Q, C) gravity as a candidate for the description
of Nature. One should proceed to a detailed confrontation with data from Supernovae type
Ia (SNIa), Baryonic Acoustic Oscillations (BAO), Cosmic Microwave Background Radiation
(CMB), Cosmic Chronometer (CC) etc. observations, in order to extract constrains on the
involved functions and parameters, and examine whether the model can alleviate the H0
tension. Moreover, one could try to perform a dynamical-system analysis, in order to bypass
the complexities of the scenario and extract the global features of the evolution. Additionally,
one could proceed to the investigation of perturbations in order to examine the σ8 tension as
well as the effect on gravitational waves, however it should be pointed out that the theoretical
framework for the description of perturbations in a general non-Riemannian geometry requires
to extend the standard cosmological perturbation theory in the lines of [90], which in the case
of symmetric teleparallel gravities may lead to perturbation spectrum reduction [91]. These
necessary studies lie beyond the scope of the present work, and are left for future projects.
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A Derivation of field equations

In this appendix we provide the derivation of the field equations (3.7)–(3.8). The coincident
gauge shall be taken while deriving (3.7), so that partial derivatives and covariant derivatives
can be used interchangeably. As usual, throughout the appendix all the divergence terms
contributing to the boundary terms of the integrals will be neglected during the derivations.

In order to derive (3.7), we perform the variation on the action (3.6) with respect to
the metric to obtain

0 = δgS

= 1
2κ

∫ √
−g

[
−f

2 gµνδgµν + fQδgQ + fCδgC − κTµν

]
d4x. (A.1)

The variation of Q is given in the following identity [80]

δgQ = (−2P λ
µν∇λ + PµαβQν

αβ − 2PαβνQαβ
µ)δgµν , (A.2)
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while the second term on the right-hand side of (A.1), after neglecting the divergence
term, reads

√
−gfQδgQ =

√
−g

[
2∂λ(

√
−gfQP λ

µν)√
−g

+
(
PµαβQν

αβ − 2PαβνQαβ
µ

)
fQ

]
δgµν . (A.3)

On the other hand
√

−gfC(δgC) =
[
−fCC + (∇αfC)(Qα − Q̃α)

]
δg

√
−g +

√
−g(∇αfC)δg(Qα − Q̃α) . (A.4)

Since δgQλµν = (−Qλαµgβν − gαµQλβν − gαµgβν∇λ)δgαβ, we have

δg(Qα − Q̃α) = δg

[
(Qλµν − Qµνλ)gλαgµν

]
= [−Qα

µν − gµν∇α + δα
µ(Qν + ∇ν)] δgµν . (A.5)

Substituting this into (A.4), gives

√
−gfC(δgC) =

√
−g

[
C

2 gµνfC − Qα − Q̃α

2 gµν∇αfC − Qα
µν∇αfC + Qν∇µfC

]
δgµν

+
√

−g
[
−gµν(∇̊αfC)∇α + (∇̊µfC)∇ν

]
δgµν . (A.6)

Moreover, we derive

−
√

−ggµν(∇̊αfC)∇αδgµν =
√

−g(∇α − L̃α)(gµν∇̊αfC)δgµν

=
√

−g(Qαµν∇̊αfC + gµν∇̊α∇̊αfC)δgµν√
−g(∇̊µfC)∇νδgµν

=
√

−g(−∇̊ν∇̊µfC + Lα
µν∇̊αfC + L̃ν∇̊µfC)δgµν . (A.7)

By using the fact that Qν = −2L̃ν , and (2.11), we obtain
√

−gfCδgC =
√

−g

[
C

2 gµνfC + gµν∇̊α∇̊αfC − ∇̊ν∇̊µfC − 2P α
µν∇̊αfC

]
δgµν . (A.8)

Finally, eq. (3.7) can be obtained after substituting (A.3) and (A.8) into (A.1).
Now, we apply the method of Lagrange multipliers to derive the connection field equa-

tion (3.8). In particular, we write

S1 = 1
2κ

∫ √
−g

[
rλ

µανRλ
µαν + tλ

µνTλ
µν

]
d4x , (A.9)

which implements both the torsion-free and curvature-free constraints is added to the ac-
tion (3.6). Variation with respect to the affine connection reads

0 = δΓS = 1
2κ

∫ √
−g

[
(fQ − fC)δΓQ − κ∆λ

µνδΓλ
µν + rλ

µανδΓRλ
µαν + tλ

µνδΓTλ
µν

]
d4x ,

(A.10)
where we use the fact that the Ricci scalar R̊ depends only on the metric components. We
calculate each term separately as follows:

δΓQ = −4P νµ
λδΓλ

µν , (A.11)
√

−grλ
µανδΓRλ

µαν =
√

−grλ
µαν(∇αδΓλ

µν − ∇νδΓλ
µα)

= 2
√

−g(∇α − L̃α)rλ
µ[να]δΓλ

µν , (A.12)
√

−gtλ
µνδΓTλ

µν = −2
√

−gtλ
[µν]δΓλ

µν . (A.13)
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After substituting these equations into (A.10) one arrives at

Y νµ
λ = 2(∇α − L̃α)rλ

µ[να] − 2tλ
[µν] , (A.14)

where we denote Y νµ
λ = 4(fQ − fC)P νµ

λ + κ∆λ
µν . The Lagrange multiplier terms tλ

µν can
be eliminated if the symmetric part of the equation in the indices µ and ν is considered,
which reads

Y (νµ)
λ = (∇α − L̃α)(rλ

µ[να] + rλ
ν[µα]) . (A.15)

Finally if we apply the operator (∇ν − L̃ν)(∇µ − L̃µ) to this equation and then follow the
calculations as in [92], the Lagrange multiplier terms rλ

νµα will be removed and we result to

(∇ν − L̃ν)(∇µ − L̃µ)Y (νµ)
λ = 0 . (A.16)

Finally, taking into account of the symmetry of (∇ν −L̃ν)(∇µ −L̃µ), we extract the connection
field equation (3.8).

B Proof of relation (3.19)

In this appendix we extract the useful relation (3.19). Indeed it can arise as an immediate
consequence of the following identity(

2∇̊µP λµ
ν + G̊λ

ν + Q

2 δλ
ν

)
∇λζ + 2P λµ

ν∇̊µ∇λζ = 2(∇λ − L̃λ)(∇µ − L̃µ)(ζP λµ
ν) , (B.1)

where ζ is an arbitrary scalar field. Firstly, the left-hand-side of (B.1) can be expanded as

2(∇λ − L̃λ)(∇µ − L̃µ)(ζP λµ
ν) = 2ζ(∇λ − L̃λ)(∇µ − L̃µ)P λµ

ν

+ 2[(∇µ − L̃µ)(P λµ
ν + P µλ

ν)]∇λζ + 2P λµ
ν∇µ∇λζ .

(B.2)

As shown in [52] one has

(∇λ − L̃λ)(∇µ − L̃µ)P λµ
ν = 0, (B.3)

which implies that the first term on the right-hand-side vanishes. Additionally, we use a
second identity given in [52], namely

2(∇λ − L̃λ)P λα
ν = G̊α

ν + Q

2 δα
ν + 2Lσ

νβP αβ
σ , (B.4)

while a direct calculation gives

2(∇µ − L̃µ)P λµ
ν = 2∇̊µP λµ

ν + 2Lλ
σµP σµ

ν − 2Lσ
νµP λµ

σ , (B.5)

and
2P λµ

ν∇µ∇λζ = 2P λµ
ν∇̊µ∇λζ − 2P λµ

νLσ
λµ∇σζ . (B.6)

Summing these equations, one arrives at (B.1). Hence, by virtue of (3.18) and (B.1), we
finally obtain relation (3.19).
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