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1 Introduction

The dark matter (DM) field is an active area of research comprehending new extensions to
the Standard Model (SM) of particle physics. One simple well-motivated scenario is the
global U(1) complex scalar extension to the SM, which after the spontaneous and explicit
symmetry breaking gives rise to a pseudo-Nambu-Goldstone boson (pNGB) and a second
Higgs boson [1–3]. This pNGB, being cosmologically stable, has been studied as a thermal relic
in a standard freeze-out, presenting viable DM masses in the ballpark of the electroweak scale.
A second Higgs may be relevant in the explanations of anomalies seen at LEP and LHC [4].

On the other hand, the question of whether the DM genesis was thermal or not has given
rise to interesting possibilities. For instance, non-thermal DM, such as feebly-interacting
massive particles (FIMPS) [5], or DM subject to an exponential growth [6], evolve increasing
their yields from a negligible initial abundance until Hubble expansion dominates and the
relic abundance is set. Analogously, could thermal relics present a feature like this growing
yield in the early universe? Recently, it has been suggested that in specific scenarios, the
yield of a DM particle could have been undergoing a different pattern of decoupling, with a
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period of exponential growth before complete freeze-out. This idea has been called bouncing
dark matter [7]. Although this bouncing effect in the yield of some species has been already
observed in the context of thermal DM, see e.g. [8–11], the connection of this feature with
indirect detection has only been worked out in [7].

In this work, we study a multi-component DM scenario in which one of the stable relics
undergoes this bouncing effect. The model consists of the introduction of two gauge singlets:
a fermion and a complex scalar field, both transforming under a global symmetry.1 After
spontaneous symmetry breaking (SSB), the singlet scalar gets vacuum expectation value,
giving rise to a second Higgs boson which will mix with the Higgs excitation of the SM Higgs
doublet, and a Nambu-Goldstone boson χ. Imposing a U(1) soft-breaking term in the scalar
sector, χ becomes a cosmological stable pNGB if its mass is lower than twice the fermion
singlet mass. In this way, the model presents two DM components that communicate to
the SM through two Higgs-like particles.

We study the thermal freeze-out of both stable relics, with special emphasis on the details
of the bouncing effect undergone by the yield of the pNGB, and also some prospects of indirect
detection. Finally, as the minimal scenario of the pNGB as the only source of DM allows
masses above 50 GeV [3], unless resonance annihilation effects are present, in the present
multi-component scenario we explore the viability to have pNGB DM masses below 50 GeV.

The paper is organized in the following way. In section 2 we introduce the model. In
section 3 we present the Boltzmann equations for the system, with a detailed analysis of
the relic abundance of both components, highlighting the bouncing of the pNGB yield, and
some average cross sections relevant for indirect detection. In section 4 we present the
phenomenology of the model for two-DM components, imposing relevant constraints, and
studying some indirect signals. Finally, in section 5 we discuss and conclude our work.

2 Model

Aside from the SM particle content, we add two SM singlets, a Dirac fermion ψ (for the
Majorana case the construction follows equivalently, e.g. [13]) and a complex scalar S.
Decomposing ψ = ψL +ψR, we impose a chiral approximate global symmetry U(1)V × U(1)A,
with the new fields transforming as [16]

U(1)V : S → S, ψL → ei
βV

2 ψL, ψR → ei
βV

2 ψR, (2.1)

U(1)A : S → eiβAS, ψL → ei
βA
2 ψL, ψR → e−iβA2 ψR, (2.2)

with βV,A arbitrary constants. More concisely, the spinor under U(1)V × U(1)A transform as
ψ → ei(βV +γ5βA)ψ. This symmetry and particle content give rise to the Lagrangian:

LBSM = ψ̄i/∂ψ + (∂µS)†∂µS − gψψ̄LψRS − g∗
ψψ̄RψLS

† − V (H,S), (2.3)

with the potential given by

V (H,S) = −µ2
H

2 |H|2 − µ2
S

2 |S|2 + λH
2 |H|4 + λS

2 |S|4 + λHS |H|2|S|2 + Vsoft. (2.4)

1For related model building constructions see [12–15].
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Here H is the Higgs field, and the U(1)A soft breaking term is given by

Vsoft = −
m2
χ

2
(
S2 + S∗2

)
, (2.5)

where we have assumed that a subgroup Z2 of U(1)A remains unbroken (i.e. βA = π), in such
a way that only soft-breaking terms with even powers of S are allowed. The couplings gψ and
m2
χ can be made real by field redefinitions. Note that the global symmetry does not allow a

mass term for the fermion singlet, but it will be generated through the spontaneous symmetry
breaking of S. Analogously to the global U(1) complex scalar model [3], the Lagrangian
is invariant under a CP-symmetry: ψL,R → ψR,L and S → S∗. Notice that Z2 symmetry
in which S → −S is broken by the vacuum vs [17].

The stationary point conditions at (h, s) = (0, 0) are

µ2
H = λHv

2
h + λHSv

2
s , (2.6)

µ2
S = λHSv

2
h + λSv

2
s −m2

χ. (2.7)

As µ2
S < 0, S triggers the SSB, making U(1)A symmetry is spontaneously broken. Explicitly,

choosing the Hermitian basis, S = (s′ + iχ)/
√

2, the minimum is acquired when s′2 + χ2 =
v2
s > 0, with vs the vacuum expectation value of the complex field. Without loss of generality,

we set ⟨s′⟩ = vs and ⟨χ⟩ = 0. Noting that ψ̄LψR + ψ̄RψL = ψ̄ψ and ψ̄LψR − ψ̄RψL = ψ̄γ5ψ,
the interactions around the new vacuum after the SSB of U(1)A are given by

L = −gψvs√
2
ψ̄ψ

(
1 + s

vs

)
− gψ√

2
iψ̄γ5ψχ− V (H, s, χ).

Note that the fermion has acquired a mass mψ ≡ gψvs/
√

2, a scalar interaction with s, and a
pseudo-scalar interaction with χ. After electroweak symmetry breaking (EWSB), the Higgs
field mixes with s, which introduces a mixing angle θ which satisfies

tan 2θ = 2λHSvhvs
λSv2

s − λHv2
h

, (2.8)

with vh = 246 GeV, h = cos θh1 + sin θh2 and s = − sin θh1 + cos θh2, and the masses of
the scalars are

m2
h1,h2 = 1

2

(
λSv

2
s + λHv

2
h ∓ λSv

2
s − λHv

2
h

cos 2θ

)
, (2.9)

where we identify h1 with the 125 GeV Higgs boson. From this last relation, we see that

λH = 1
2v2
h

[
m2
h1 +m2

h2 + cos 2θ(m2
h1 −m2

h2)
]
, (2.10)

λS = 1
2v2
s

[
m2
h1 +m2

h2 − cos 2θ(m2
h1 −m2

h2)
]
. (2.11)

In the physical basis, the interaction of the singlet fermion with the scalars is given by

L ⊃ − gψ√
2
ψ̄ψ(−h1 sin θ + h2 cos θ) − gψ√

2
iψ̄γ5ψχ− V (h1, h2, χ), (2.12)
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Figure 1. Tree level diagrams relevant for the calculation of the relic abundance of ψ and χ. Here X
refers to an SM particle, including hi with i = 1, 2.

with the potential V (h1, h2, χ) explicitly detailed in the appendix C. The free parameters
of the model are three masses and two couplings:

{mψ,mχ,mh2 , gψ, θ}. (2.13)

The model described by eq. (2.12) may present one or two DM candidates, depending on
the mass hierarchy between ψ and χ. If mχ ≥ 2mψ, the fermion is the only stable field,
and for mχ < 2mψ the pNGB becomes stable, then the model presents two DM candidates
(for a more detailed study of the stability of the pNGB, see [18]. Also see [19]). In this
work, we consider the latter case.

3 Relic abundances and cross sections

In the following, we analyze the relic abundance of the two-component DM scenario previously
described obtained via freeze-out of each DM species, analyzing the hierarchy between the DM
particles in order to distinguish the bouncing effect. Furthermore, we analyze cross-sections
at low temperature relevant for indirect detection observables.

3.1 Boltzmann equations

We assume that in the early Universe both DM candidates were in thermal equilibrium with
the SM particles. In figure 1 we show the corresponding Feynman diagrams that participate
in the relic density calculation. Based on [20] and without loss of generality assuming that
mψ < mχ, the evolution of the individual singlet abundances Yi ≡ ni/s, with i = ψ, χ, as a
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function of the temperature x ≡ µ/T , with µ = mψmχ/(mψ + mχ), are given by

dYψ
dx

= −λψψ̄XX
(
Y 2
ψ −Y 2

ψ,e

)
+λχχψψ̄

(
Y 2
χ −Y 2

ψ

Y 2
χ,e

Y 2
ψ,e

)
−
∑
i=1,2

λψψ̄χhi

(
Y 2
ψ −Yχ

Y 2
ψ,e

Yχ,e

)
, (3.1)

dYχ
dx

= −λχχXX
(
Y 2
χ −Y 2

χ,e

)
−λχχψψ̄

(
Y 2
χ −Y 2

ψ

Y 2
χ,e

Y 2
ψ,e

)

+1
2
∑
i=1,2

[
λψψ̄χhi

(
Y 2
ψ −Yχ

Y 2
ψ,e

Yχ,e

)
−λχψψhi (YψYχ−YψYχ,e)

]
, (3.2)

where we have defined

λabcd(x) := ⟨σabcdv⟩(x) · s(T )
x ·H(T ) , for a, b, c, d = ψ, s, h1, h2, X, (3.3)

where X here represents an SM particle. The entropy density s and Hubble rate H in a
radiation-dominated universe are given by

H(T ) =

√
4π3G

45 g∗(T ) · T 2, s(T ) = 2π2

45 g∗s(T ) · T 3, (3.4)

where G is the Newton gravitational constant, and g∗ and gs∗ are the effective degrees of
freedom contributing respectively to the energy and the entropy density at temperature
T , respectively. The equilibrium densities, Yi,e ≡ nie/s, are calculated using the Maxwell-
Boltzmann distribution, whose number density is given by:

ni,e(T ) = gi
m2
i

2π2TK2

(
mi

T

)
, (3.5)

with gi the internal spin degrees of freedom, and K2 is the modified Bessel function of the
second kind. The equation gets modifications as the hierarchy of the singlets changes, and in
this way, the equation may be derived using the detailed balance principle na,enb,e ⟨σabcdv⟩ =
nc,end,e ⟨σcdabv⟩, with the indexes a, b, c, d for the respective particles. We implemented the
model into LanHEP [21] and into micrOMEGAs code [22] to perform the calculations. For the
rest of the paper, sometimes it will be convenient to use the quantity ∆i = 2mψ −mχ −mhi .

3.2 Mass hierarchies

We distinguish two hierarchies between the DM particles which can make the yield behavior
quite different, particularly for χ: (i) mψ > mχ, what we call the normal hierarchy, and
(ii) mψ < mχ, the inverse hierarchy. In the former case, the freeze-out of the DM particles
results to follow the standard freeze-out of two interacting DM particles, each one decoupling
from the SM plasma at x ≈ 15 − 20. We have exemplified this with a few parameter space
points in figure 2(left) where we show the yields of each DM candidate as a function of the
temperature. As the two DM particles present several interactions, they continue decreasing
their yields for some time after each particle completely freezes out.

On the other hand, in the inverse hierarchy, and at high temperatures, ψ and χ being
in thermal equilibrium with the SM plasma, we assume that both particles have vanishing

– 5 –
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Figure 2. In the first two plots we show the yields of ψ (solid lines) and χ (dashed lines), assuming
gψ = 1 and θ = 0.1. In the plot on the left we show the yields in the normal hierarchy for
(mψ,mχ) = (200, 150) GeV, whereas in the plot in the middle, we present the inverse hierarchy for
(mψ,mχ) = (100, 150) GeV. The plot on the right shows the evolution of the chemical potentials of
each DM particle.

chemical potentials, µψ = µχ = 0.2 Since mχ > mψ, the fermion is less Boltzmann suppressed
than χ, and assuming that ψ does not rise in abundance and they keep the same chemical
potential, one has that nχ = (nχ,e/nψ,e)nψ ∼ e−(mχ−mψ)/Tnψ, i.e., the abundance of χ
decreases as T decreases. After chemical decoupling from the SM sector, the DM particles
may develop a chemical potential ni ≈ ni,ee

µi/T , in such a way that the yield of χ now results in

nχ ≈ nχ,e
nψ,e

e(µχ−µψ)/Tnψ. (3.6)

Provided µχ > µψ and even having a decreasing nψ, the Boltzmann suppression in eq. (3.6)
from the factor nχ,e/nψ,e can be compensated by the exponential e(µχ−µψ)/T , rising expo-
nentially the number density of χ for some time until Hubble expansion dominates. After
the dark particles decouple chemically from the SM thermal bath, the process sustaining
chemical equilibrium within the dark sector are semi-annihilations ψψ̄ ↔ χhi, with i = 1, 2,
such that µχ ≈ 2µψ. The resulting effect is shown in figure 2 (middle) for a specific choice
of parameters, where the rising of Yχ results for a finite interval of temperature. The size
of the yield increment is model-dependent, and as it can be noted in figure 2 (middle), the
height of the bouncing depends on mh2 . The decreasing in the yield of the bouncing comes
from the kinematical suppression of the process responsible for it, i.e. ψψ̄ → χh2, since
2mψ < mχ + mh2 , suppressing ⟨σψψχh2v⟩, in turn decoupling χ and ψ at earlier times in
comparison to the case with lower mh2 . We say that for those cases we have ∆2 < 0 (for
this particular case, we also have ∆1 < 0).3 In figure 2 (right), we observe graphically the
non-zero values taken by the chemical potential of the two stable particles, fulfilling µχ ≈ 2µψ,
with the highest value of µχ − µψ being the case with the strongest bouncing. To obtain

2In other words, before chemical departure, there is no primordial asymmetry in the fermion sector (see for
instance [23]). Furthermore, since universally the Greek letter “µ” is used for both reduced mass and chemical
potential, we distinguish each case depending on whether it has a sub-index or not. That is, in the text, µ will
always be reduced mass, whereas µX , with X being any particle, will refer to a chemical potential.

3Notice that, after the bouncing of χ shown in each case of figure 2(middle), the orange case takes a slightly
different behavior. In that case, Yχ continues decreasing as the temperature decreases, due exclusively to
semi-annihilations of the type ψχ → ψhi, this is, the last term in eq. (3.2).
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Figure 3. (left) Yield behavior as a function of temperature in the inverse hierarchy. Here we set
mψ = 500 GeV, mh2 = 600 GeV, gψ = 1 and tan θ = 0.1. (middle) Chemical potential for each stable
particle considering the same parameters as in the left plot. (right) Relic abundance for ψ and χ,
assuming mψ = 1000 GeV, mχ = 1500 GeV, gψ = 1. The pink region represents ∆2 < 0.

each chemical potential, we have solved µi from ni ≈ ni,ee
µi/T , such that

µi(T ) ≈ T log
(
Yi
Yie

)
, i = ψ, χ (3.7)

with Yi(T ) obtained with micrOMEGAs code after solving the coupled Boltzmann equations
(cBE), eq. (3.1).

Another relevant feature regarding the bouncing is the variation in the minimum Yχ at
which the bouncing starts to appear. If the pNGB remains more time in thermal equilibrium
with the SM, the bouncing will start at later times, and it may grow the yield several orders
of magnitude before coming to an end. This is exemplified in figure 3(left) for the parameters
indicated in the plot. As shown, in this case, it is clear that the bigger mχ, the bigger the
bouncing. This effect is due to the fact that the semi-annihilation term is proportional to
λψψ̄χhi and impacts directly in the decoupling temperature of χ from the thermal bath, with
a strong dependence on mχ. In appendix A we study this effect in greater detail from a
numerical and semi-analytical way.

As explained before, the bouncing effect proceeds through either semi-annihilation
ψψ̄ → χh1 or ψψ̄ → χh2, each process with a dependence of sin2 θ and cos2 θ, respectively,
affecting the relic abundance directly. For instance, in figure 3(right) we plot the relic
abundance as a function of the second Higgs mass, for mψ = 1000 GeV, mχ = 1500 GeV
and gψ = 1, for different values of θ. For this parameter choice, the bouncing effect is
present for all the shown combinations of values of (mh2 , θ). As it is shown by the solid
red line (θ = 0.1), Ωχ remains constant for mh2 ≳ 500 GeV since, even though ⟨σv⟩ψψ̄χh2

is
kinematically suppressed (i.e., the pink region representing ∆2 < 0), the process ψψ̄ → χh1
becomes the leading one for the bouncing effect. On the contrary, for a more decoupled
dark sector-SM case, e.g. θ = 10−5, ψψ̄ → χh1 process becomes suppressed by sin θ, and
ψψ̄ → χh2 remains as the effective process, with Ωχ decreasing as mh2 gets higher values.4

4We have checked that for such small θ values the dark sector remains still in thermal equilibrium with
the SM through the comparison of particle reaction rates with the Hubble expansion rate in a radiation
dominated universe before the onset of chemical decoupling of the dark relics. For thermalization effects in
Higgs portal with singlet-doublet Higgs mixing see also [24–26], where similar conclusions were obtained, i.e.
the thermalization is lost in the ballpark of θ ∼ 10−7 − 10−6, for GeV scale mass of h2.
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Figure 4. Random scans with each point fulfilling the correct relic abundance, assuming mψ =
500 GeV, and the color indicating the value of θ. In the first row we consider mχ = 300 GeV, whereas
in the second one mχ = 700 GeV. In the first two y-axes, fi ≡ Ωi/Ωc, with Ωi the relative abundance
of the i = ψ, χ initial state. For more details of the scan see the text.

In that case, the bouncing effect becomes smaller. Therefore, the mixing angle and mh2

are important parameters behind the bouncing effect, impacting the value of Ωχ, and also
determining the leading semi-annihilation in the relic density calculation.

3.3 Cross sections

In this subsection, we study the values of some of the most relevant average annihilation cross
section times relative velocity at vrel → 0 from DM (semi)annihilation, especially when they
surpass the thermal canonical value 2 − 3 × 10−26 cm3/s [7]. We run two random scans, one
considering mχ = 300 GeV and the other mχ = 700 GeV. In both scans we have considered
mψ = 500 GeV, mh2 = [50, 2000] GeV, gψ = [0.1, 10] and tan θ = [10−2, 101]. We have selected
all the points which match the observed relic abundance. As shown in the first row of figure 4,
we have projected the points in different planes, with the color of each point indicating the
corresponding value of tan θ. As it is expected in the normal hierarchy mψ > mχ, the first
two plots corroborate the fact that the weighted cross sections never surpass the thermal
cross section reference (pink regions).5 The other two plots in the right of the first line show
the corresponding values for the couplings of the model.

In the lower row of figure 4, we project the random scan for the inverse hierarchy
mψ < mχ. Contrary to the previous case, here many points surpass the thermal reference
value in the first two plots, although with clear differences in their value acquired by θ. Notice
that for the case of fermion DM annihilation, those points above the thermal relic tend to
be disfavored by the high values of gψ, due to perturbativity. For the case of the pNGB
DM annihilation, the points with strong cross-sections seem to respect perturbativity for

5To obtain the average cross sections, we have used micrOMEGAs making use of the functions vs1120F(T)
and vs2200F(T), where 1 and 2 refers to ψ and χ, respectively. We have taken T = Tend = 10−3 GeV, a
temperature small enough to consider the processes in their non-relativistic regime.
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gψ and λHS . Nonetheless, as we show in the next section, θ ≳ 0.1 enter in conflict with
both direct detection and collider constraints.

Finally, a few comments to highlight. First, analogously to the 125 GeV Higgs boson h1,
we have been assuming that the mediator h2 remains in thermal equilibrium with the SM
plasma at any moment, so its chemical potential vanishes. Secondly, a necessary condition
for the existence of the bouncing is mχ > mψ, but it is also present in either case mψ > mh2

or mψ < mh2 . Third, ∆1 > 0 and/or ∆2 > 0 do not guarantee the bouncing effect. In the
following section we study the phenomenology of the model.

4 Phenomenology

In this section we consider the setup at hand as a fully realistic DM model, considering
constraints from collider and DM searches. We explore the viability of pNGB DM below
50 GeV, and also we study the normal and inverse hierarchy for masses of hundreds of GeV.
Finally, we explore a few indirect detection observables.

4.1 Constraints

4.1.1 Theoretical constraints

We consider perturbativity on the couplings, i.e. gψ ≤ π and λHS ≤ π.

4.1.2 Dark matter constraints

The relic abundance measure today is given by the most updated Planck result [27]. We
take the value Ωch

2 = 0.12 as the measured DM relic density, with an error of 10% in the
calculation of it with micrOMEGAs. As usual, the total relic abundance in the two-component
DM model is given by the sum of each stable particle, i.e. Ωh2 = Ωψh

2 + Ωχh
2.

On the other hand, direct detection (DD) for the pNGB DM candidate is relaxed due to its
Goldstone nature [3] (unless new explicit global symmetry-breaking sources are present [28]).
It has been shown that the direct detection rate of a pNGB DM particle is too low to be
observed with present experiments [3], even at the one-loop level [29], then we do not take
into account the relative contribution of the pNGB for DD constraints.6 On the contrary,
ψ is subject to sizable constraints appearing from the scattering in t-channel exchange of
h1 and h2. At tree level, it is given by [13]

σSIψ ≈
m4
Nm

2
ψf

2
p

4πv2
h(mψ +mN )2

(
1
m2
h1

− 1
m2
h2

)2

(gψ sin 2θ)2, (4.1)

where mN denotes the nucleon mass and fp = fn ≈ 0.27. Even though in most of the cases
we take the most recent bounds on direct detection from Lux-Zeplin experiment (LZ) [30], in
some cases we also used XENON1T [31] and XENONnT projection [32]. As an example of
the intensity of LZ constraints on the parameter space of the model, in figure 5(left) we show
the resulting allowed parameter space for a representative fermion mass of 500 GeV, taking
gψ = π (black lines) and gψ = 0.5 (grey lines). The region above each curve is excluded

6We have checked with micrOMEGAs that the resulting SI cross section for the pNGB DM is always below
the bounds given by present DD bound experiments.
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by LZ, and the corresponding dashed lines represent the bound when the fermion acquires
10% of the total relic abundance. As it can be appreciated, direct detection bounds are
strong, particularly for mh2 < mh1 .

4.1.3 Collider constraints

A second Higgs is constrained throughout the combination of its mass and coupling to the
SM particles, i.e. its mixing angle. Direct searches of a second Higgs set that θ ≲ 0.15 for
mh2 < 50 GeV, whereas for mh2 > 100 GeV, electroweak precision tests (EWPT) set that
θ ≲ 0.3 [33, 34]. If either of the DM particles has a mass below half of the mass of the 125 GeV
Higgs boson, the latter may decay into a pair of DM particles, resulting in an invisible decay
of the Higgs boson at colliders. Measurements set limits on the branching fraction of the
Higgs into invisible particles, with the most updated value being BR(h1 → invisible) ≲ 14%
at 95% C.L. [35]. In our scenario, if the kinematic is allowed, we have that

Γ(h1 → invisible) = Γ(h1 → ψψ) + Γ(h1 → χχ) (4.2)

where each decay width is given by

Γ(h1 → ψψ̄) =
g2
ψ

16π

(
1 − 4

r2

)3/2
mh1 sin2 θ, (4.3)

Γ(h1 → χχ) =
g2
ψr

2

32π mh1 sin2 θ

√√√√1 − 4
m2
χ

m2
h1

, (4.4)

with r ≡ mh1/mψ. For the parameter space that we are interested in, h2 is short-lived,7

therefore the decay h1 → h2h2 gives not invisible products, but it is important for the
total width decay of the Higgs boson. Furthermore, as h2 is short-lived, it does not affect
constraints from Big Bang Nucleosynthesis (BBN). Finally, electroweak precision test set
constraints on the combination (mh2 , θ), but for mh2 < mh1/2 they result to be much weaker
than Higgs to invisible constraints [33].

4.2 pNGB mass below mh/2

In the original scenario of pNGB DM [3], masses for the latter below ∼ 50 GeV are normally
not possible, since Higgs to invisible bounds on the Higgs portal coupling become relevant,
and to fulfill the correct relic abundance, the Higgs portal can not take arbitrarily small values,
otherwise an overabundance is obtained. One way to avoid the latter is having 2mχ ∼ mh2

in such a way that the annihilation of the pNGB occurs on-shell in the s-channel, then
decreasing sufficiently the Higgs portal coupling to evade the Higgs to invisible constraint
(see e.g. [4]). In our two-component DM scenario, we show that it is possible to have viable
pNGB with masses below mh/2 without entering into resonance effects, fulfilling the correct
relic abundance, and evading Higgs to invisible bounds and direct detection. The dynamics
for the calculation of the relic abundance is independent of the mixing angle provided θ ≲ 0.1,
since all the diagrams containing h1 are suppressed by tan2 θ, then the relic abundance is
determined by the fields of the dark sector and h2. In figure 5(middle) we show the relic

7To have τh2 > 1 s for h2 masses in the ≳ O(GeV), it should occur that θ ≲ 10−10.
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Figure 5. (left) Direct detection constraints on the fermion DM considering LZ bounds. The solid
black (grey) curves represent the contours of σSI for mψ = 500 GeV and gψ = π(0.5), whereas the
respective dashed curves consider that the fermion contributes with a 10% of the total relic abundance.
LZ data rule out the region above each curve. (Middle) Relic abundance in the low-mass regime,
assuming mχ = 30 GeV, mh2 = 29 GeV, gψ = 1, and θ < 0.1. The horizontal pink region corresponds to
the observed relic abundance. (right) Direct detection and invisible Higgs decays constraint assuming
mψ = 55 GeV, mχ = 30 GeV, mh2 = 29 GeV and gψ = 1 (i.e., the parameter space point that in the
plot in the middle fulfill the correct relic abundance). In red we show constraints from XENON1T,
LZ and the projection of XENONnT, and in green the excluded regions by the invisible Higgs decay
considering a branching of 0.14 (dark green) and a projection of 0.01 (light green).

abundance behavior for the two DM candidates as a function of mψ, assuming mχ = 30 GeV,
mh2 = 29 GeV, gψ = 1 and θ < 0.1. Here, mψ ≈ 55 GeV is the required value to achieve the
correct relic abundance. Notice that mh2 must be lighter than the two DM components, in
order to avoid overabundance. In the same line, we observe in the right plot of figure 5, that
the maximum value that θ can take to evade LZ is ∼ 0.006. Notice here that the solid line
considers the scaling of σSI by the fraction of relic abundance of the fermion. It is interesting
to observe here that constraints from 125-GeV Higgs decaying into invisible particles are
complementary to direct detection (green regions), although less strong than LZ in this case.
Notice that future projections from XENONnT and collider searches will be competitive
between them, excluding even much more parameter space.

In summary, it is possible to have pNGB DM for masses below ∼ 50 GeV, without
recurring to resonance effects. The price to pay in order to evade strong direct detection and
Higgs to invisible constraints is to decrease θ enough in such a way to compensate the growing
behavior of the spin-independent cross section with light h2, since σSI ∼ sin2(2θ)/m4

h2
.

4.3 Indirect detection prospects

Considering that the two-DM scenario presents sizable average annihilation cross section at
low temperatures, now we focus on specific (semi)annihilations prospects relevant for indirect
detection observables. We pay special attention to the (semi)annihilation processes ψψ̄ → χhi
and χχ → XX, with X an SM state.8 The corresponding partial average annihilation
cross-sections have been calculated using CalcHEP, expanding around vrel = 0, in order to
retain the s-wave contribution only (see appendix B for the resulting analytical expressions).

8For a related study of ID signals of the former cross section, see [13, 18, 36].
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Figure 6. (top) Relic weighted average cross section times relative velocity as a function of mχ. In
each plot we have taken mψ = 500 GeV, mh2 = 600 GeV, and tan θ = (10−3, 10−2, 10−1) (from left to
right). gψ takes the necessary value to obtain the correct relic abundance, considering perturbativity
constraints. The pink band represents the thermal canonical value 2 − 3 × 10−26 cm3/s. The solid
lines are the values corresponding to the fermion DM annihilation, whereas the dashed lines are
the corresponding pNGB annihilation. (bottom) Zero-velocity average annihilation cross section for
different DM (semi)annihilation channels as a function of the mixing angle. The values of the parameters
here have been taken as mψ = 500 GeV, mχ = 800 GeV, mh2 = (130, 300, 600) GeV (from left to right
in the plots), and gψ takes the necessary value to obtain the correct relic abundance. The pink band is a
reference for the thermal value, the grey one represents LZ bounds, and the red one collider constraints.

The partial cross sections result to be highly dependent on the parameters of the model.
As we exemplify in the upper row of figure 6, considering mψ = 500 GeV, mh2 = 600 GeV
and gψ getting the appropriate value to match the correct relic abundance, the cross sections
not only vary by orders of magnitude depending on mχ, but as θ decreases, the parameter
space available to obtain the correct relic abundance shrinks allowing only mχ ≈ mh2/2,
otherwise an overabundance is obtained. In this way, in the normal hierarchy and small
mixing angles it is possible to obtain sizable cross sections, as shown by the orange solid line
and the dashed curves in the left plot of the upper row of figure 6, but only in a reduced
parameter space. On the contrary, higher tan θ values, e.g. tan θ = 0.1, imply less suppression
for (semi)annihilation processes into SM states including h1 in the final state, presenting
strong cross sections specially in the case mχ > mψ, where the bouncing effect is present.
This can be seen in the third plot of the first row of figure 6, showing a wider range of mχ

allowed. For completeness, we also present the case with tan θ = 10−2.

We confront the resulting zero-velocity relic weighted cross sections with direct detection
bounds from LZ for three scenarios in which we vary mh2 , with each case fulfilling the correct
relic abundance. In figure 6(below), we show the results as a function of the singlet-doublet
mixing angle assuming mψ = 500 GeV, mχ = 800 GeV, and mh2 = (130, 300, 600) GeV (from
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left to right, respectively). We have taken small values for mh2 to see the relaxing effect on
direct detection bounds. LZ data rule out the shaded region in each plot. In the left plot of
figure 6(below), LZ bounds are relaxed, due to the algebraic cancellation between the close-in
mass of h1 and h2. Asmh2 deviates away frommh1 , LZ bounds start to be notorious and strong,
as it is shown by the middle and the plot in the right, even for θ ≪ 1. In this way, all the cross
sections with values above the thermal value obtained in the case in which mψ < mh2 < mχ,
result disfavored by LZ. Notice also that if we take mh2 ≪ mh1 , direct detection becomes even
stronger, therefore we do not look into that region. In any case, even though direct detection
constrains the average cross-section above the thermal value (strongest bouncing effect regime),
the model remains viable, with indirect detection near the ballpark of the thermal reference
value. A detailed analysis of the full viable parameter space is beyond our goal in this work.

5 Conclusions

We have studied a simple extension to the SM which under reasonable assumptions presents
two DM candidates simultaneously, a fermion and a pNGB, with each one communicating to
the SM via the Higgs portal through two Higgs-like bosons. Assuming a thermal scenario in
which both DM candidates freeze-out in a radiation-dominated universe, we have found a
peculiar yield behavior for the pNGB when this is heavier than the fermion singlet: it bounces.
This exponential yield increment may reach several orders of magnitude. This model is one
of the first scenarios in which the bouncing effect is exemplified in more detail.

This effect has a direct impact on indirect searches. In this way, we have explored the zero
velocity average annihilation cross sections relevant for indirect searches, finding parameter
space regions in which both the fermion semi-annihilation and the pNGB annihilation today
present values above the canonical thermal value. We have seen that as the fermion is subject
to strong tree-level spin-independent DD constraints, the model requires a suppression on
the mixing angle θ unless the two Higgses become too degenerated. In either case, collider,
and specially LZ upper bounds, force to reduce some of the parameters of the model in
such a way that the strongest indirect detection signals must be suppressed when they fulfill
the correct thermal value.

Last but not least, we have shown that it is possible to recover pNGB DM for masses
below 50 GeV, in contrast to the simple model in which invisible Higgs decays ruled out the
parameter space for low masses (unless a resonance effect is present). The cost of this is to
decrease the singlet-doublet mixing angle to values much below the unity. All in all, the
model, being a multi-component DM scenario, is not only elegant in its construction, but it
presents the interesting effect of pNGB yield bouncing in the early universe, although the
model itself suffers severe constraints from direct detection experiments.
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A Boltzmann equations for the bouncing effect

In this appendix we study the interplay and impact of some terms of the cBE in eq. (3.1)
and (3.2) on the resulting yield evolution. We take a simple approach considering only the
first and third terms of each equation, solving them numerically and in a semi-analytical
way. As we are interested in the bouncing effect details, we always consider mχ > mψ.
For the sake of simplicity, we define λA1 ≡ λψψXX , λA2 ≡ λχχXX and λS ≡

∑
i=1,2 λψψ̄χhi ,

then the cBE becomes

dYψ
dx

= −λA1
(
Y 2
ψ − Y 2

ψ,e

)
− λS

(
Y 2
ψ − Yχ

Y 2
ψ,e

Yχ,e

)
, (A.1)

dYχ
dx

= −λA2
(
Y 2
χ − Y 2

χ,e

)
+ 1

2λS

(
Y 2
ψ − Yχ

Y 2
ψ,e

Yχ,e

)
. (A.2)

First, we solve the cBE eq. (A.1) and (A.2) numerically in Python with solver_ivp, assuming
thermal equilibrium at x = 1. In order to solve the system, we assume mψ = 100 GeV, and
mχ = 150 (solid red) and mχ = 180 GeV (dashed red). The results are shown in the plot in
the left of figure 7, where the solution for Yχ results to be highly sensitive to mχ. Here, we
are assuming λA1 = λA2 = λS , where each average annihilation cross section is taken to the
value 10−9 GeV−2. As it is clear, the heavier is χ, the longer it stays in thermal equilibrium
with the SM. This result has also been checked with micrOMEGAs. For comparison, in
figure 7(middle plot), we show the resulting behavior considering λS = 0, a typical freeze-out
of two non-interacting DM particles. Thereby, the presence of the semi-annihilations in the
cBE, results in a significant impact on Yχ, keeping χ longer in thermal equilibrium, with
a strong dependence on mχ.

In the following, we take a semi-analytical approach to solve the cBE. Based on what
we have gotten in the numerical solution, we assume that Yψ tracks its equilibrium yield for
x < 15, which is our temperature region of interest, then we take Yψ = Yψ,e. Furthermore,
following the freeze-out approximation [37], we take Yχ ≈ (1+δ)Yχ,e, with δ a positive number
that grows slowly. After some algebra, and taking dδ/dx ≪ δ, we obtain

−dYχe
dx

∣∣∣∣
xf

= λA2(xf )δf (2 + δf )
1 + δf

Y 2
χe(xf ) + λS(xf ) δf

1 + δf
Y 2
ψ,e(xf ), (A.3)

where we have evaluated all the quantities at xf . This is a transcendental equation for
xf which can be solved easily. We solve this equation considering δf = 1,9 which is the
moment at which starts the chemical decoupling. As it can be seen in figure 7(right), the
orange line represents the left side of eq. (A.3), whereas the rest of the lines correspond to
the r.h.s. of eq. (A.3), with each line considering (w/s) and not (n/s) the semi-annihilation
term proportional to λS .

9The solution to eq. (A.3) varies too slow with δ, then it is safe to take the unit as a reference number.
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Figure 7. (left and middle) Numerical yield behavior for the cBE in eq. (A.1) and (A.2), assuming
mψ = 100 GeV, λA1 = λA2 = λS , with each cross section set to the canonical value ⟨σv⟩ = 10−9 GeV−2.
The plot in the left considers the semi-annihilation term proportional to λS , whereas the plot in
middle does not. (right plot) Solution to the transcendental equation eq. (A.3), with the intersection
of the orange curve with the rest at xf . In the legend, each pair of values in the parenthesis represents
(mψ,mχ) GeV.

As it was anticipated by the numerical solution in the first part of this appendix, the
overall effect of the presence of semi-annihilations in the cBE, makes χ to be longer in
thermal contact with the plasma, since the contribution of the second term in the r.h.s. of
eq. (A.3) add a new positive contribution. Secondly, higher values of mχ result in a later
chemical freeze-out temperature in the case in which semi-annihilations are present (w/s case).
Therefore, the numerical and the semi-analytical approach for the temperature decoupling
of Yχ agree, with the semi-annihilation not only predicting a bouncing as mχ > mψ, but
impacting strongly the behavior of Yχ before the bouncing.

B Cross sections

In this appendix, we present algebraic expressions for each DM average annihilation cross
section times relative velocity relevant for the calculation of indirect detection. All the cross
sections here were obtained with CalcHEP. As we expand each cross-section in powers of
vn, with v the relative velocity of the colliding non-relativistic DM particles, with n taking
positive even numbers, these expressions are not precise enough around poles or thresholds. In
this way, we take the non-relativistic expansion s = 4m2

i

(
1 + v2

4

)
, with i = ψ or χ, retaining

the s and p wave only. For the case of the fermion DM, we have

⟨σv⟩ψψ̄χh1
=
g4
ψ tan2 θ

(
m4
χ+2m2

χm
2
h1

+(m2
h1

−4m2
ψ)2
)2√

m4
χ−2m2

χ(m2
h1

+4m2
ψ)+(m2

h1
−4m2

ψ)2

256πm4
ψ(1+tan2 θ)(m2

χ−4m2
ψ)2(m2

χ+m2
h1

−4m2
ψ)2 .

(B.1)
The expression for ⟨σv⟩ψψ̄χh2

is the same as the previous one but without tan2 θ in the
numerator, and mh1 → mh2 . Additionally, the annihilation of the fermion DM into gauge
bosons is velocity suppressed:

⟨σv⟩ψψ̄W+W− =
g2
ψm

2
Zs

2
W tan θ2 (m2

h1
−m2

h2

)2
√

1 − m2
W

m2
ψ

(
4m4

ψ − 4m2
ψm

2
W + 3m4

W

)
32pi (tan θ2 + 1)2

v2
h

(
m2
h1

− 4m2
ψ

)2 (
m2
h2

− 4m2
ψ

)2
(m2

Z −m2
W )

v2. (B.2)
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The annihilation cross-section for the pNGB are

⟨σv⟩χχW+W− = −
g2
ψm

2
χm

2
Zs

2
W tan2 θ

√
1− m2

W

m2
χ

(
4m4

χ−4m2
χm

2
W +3m4

W

)(
m2
h1

−m2
h2

)2

m2
ψπ
(
tan2 θ+1

)2
v2
h

(
m2
h1

−4m2
χ

)2 (
m2
h2

−4m2
χ

)2 (m2
W −m2

Z)
, (B.3)

⟨σv⟩χχZZ =
g2
ψm

2
χm

2
Zs

2
W tan2 θ

√
1− m2

Z

m2
χ

(
4m4

χ−4m2
χm

2
Z +3m4

Z

)(
m2
h1

−m2
h2

)2

2m2
ψπ
(
tan2 θ+1

)2
v2
h

(
m2
h1

−4m2
χ

)2 (
m2
h2

−4m2
χ

)2 (m2
Z −m2

W )
, (B.4)

The expressions for ⟨σv⟩χχhihj , with i, j = 1, 2, are too long to be written here. However,
they result to be s-wave, therefore relevant for indirect detection observables.

C Scalar potential

The complete scalar potential takes the form:

V (h1,h2,χ) = 1
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