paper The following article is Open access

Online triggers for supernova and pre-supernova neutrino detection with cryogenic detectors

, , and

Published 10 October 2022 © 2022 The Author(s)
, , Citation P. Eller et al JCAP10(2022)024 DOI 10.1088/1475-7516/2022/10/024

1475-7516/2022/10/024

Abstract

Supernovae (SNe) are among the most energetic events in the universe still far from being fully understood. An early and prompt detection of neutrinos is a one-time opportunity for the realization of the first multi-messenger observation of these events. In this work, we present the prospects of detecting neutrinos produced before (pre-SN) and during a SN while running an advanced cryogenic detector. Recent advances in the cryogenic detector technique and the discovery of coherent elastic neutrino-nucleus scattering offer a wealth of opportunities in neutrino detection. The combination of the excellent energy resolution of this experimental technique, with the high cross section of this detection channel and its equal sensitivity to all neutrino flavors, enables the realization of highly sensitive neutrino telescopes of the size of a few tens of cm, as the newly proposed RES-NOVA experiment. We present a detailed study on the detection promptness of pre-SN and SN neutrino signals, with direct comparisons among different classes of test statistics. While the well-established Poisson test offers in general best performance under optimal conditions, the nonparametric Recursive Product of Spacing statistical test (RPS) is more robust for triggering astrophysical neutrino signals with no specific prior knowledge. Based on our statistical tests the RES-NOVA experiment is able to identify SN neutrino signals at a 15 kpc distance with 95% of success rate, and pre-SN signal as far as 450 pc with a pre-warn time of the order of 10 s. These results demonstrate the potential of RPS for the identification of neutrino signals and the physics reach of the RES-NOVA experiment.

Export citation and abstract BibTeX RIS

Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.