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Abstract. The axionic inflaton with the Chern-Simons coupling may generate U(1) gauge
fields and charged particles simultaneously. In order to incorporate the backreaction from
the charged particles on the gauge fields, we develop a procedure to obtain an equilibrium
solution for the gauge fields by treating the induced current as effective electric and magnetic
conductivities. Introducing mean field approximation, and numerically solving self-consistency
equations, we find that the gauge field amplitudes are drastically suppressed. Interestingly,
as the production becomes more efficient, the charged particles gain a larger part of the
transferred energy from the inflaton and eventually dominate it. Our formalism offers a basis
to connect this class of inflationary models to a rich phenomenology such as baryogenesis
and magnetogenesis.
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1 Introduction

Among various models of inflation, the axion inflation is particularly well motivated because
of the shift symmetry, which ensures the flatness of the inflaton potential [1, 2]. In order
to reheat the universe after the inflation, however, one needs to introduce the coupling of
the axion (inflaton) to the matter. Inclusion of the interaction term is acceptable if it also
preserves the shift symmetry in this case. From such a perspective, the Chern-Simons (CS)
coupling between the axion and gauge fields is naturally introduced since it can be rewritten
as the derivative coupling of the axion field.

If the CS coupling is present, gauge fields are generally sourced by the inflaton motion
during the inflation. For Abelian gauge fields, it is known that there is a helicity dependent
amplification of the magnetic fields due to the tachyonic instability [3–8]. As a result, polarized
gravitational waves are generated from the anisotropic shear-stress of the growing gauge
field [9–14]. In addition, in the case of U(1)Y gauge field in the Standard Model (SM), such a
substantial production of the cosmological Hyper-magnetic fields in the early universe has
intriguing implications to particle cosmology. The intergalactic magnetic fields of U(1)em
hinted by gamma-ray observations from distant blazars [15–24] can be originated from helical
Hyper-magnetic fields [25–27]. The present matter anti-matter asymmetry of the universe can
be attributed to the helicity of the U(1) gauge fields through the quantum anomaly [28–33],
which can be originated from axion inflation [34–38]. In such circumstances, giving a precise
prediction for the gauge field production during inflation has significant importance.

However, the CS coupling to U(1)Y gauge field introduces complications because Hyper-
charged SM particles are inevitably produced by the Schwinger effect of the sourced gauge
field [39–42]. Consequently, one needs to take into account the backreaction from the created
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particles on the gauge fields. Nevertheless, the effect of charged particles during inflation is
mostly neglected in the above mentioned works except for a few recent attempts [37, 43–46].
The evaluation of such a process is quite challenging due to the non-linearity of the system
and the non-perturbative nature of the Schwinger effect. A systematic approximation of the
gauge-field dynamics, or their spectrum, has not been fully established. In order to deal with
these difficulties and provide a reasonable prediction, we develop an effective treatment of
the U(1) gauge field and the charged particles. Focusing on the dynamics in the middle of
inflation, we assume constant φ̇ and Hubble parameter H for simplicity in this work.

As for the charged particles, our strategy is basically similar to that in refs. [37, 43]
where the authors evaluated the induced current and identified the effect of fermions as
the conductivity for the electromagnetic fields. Once the induced current is expressed in
terms of the gauge field, the equation of motion for the gauge field becomes non-linear. In
order to obtain the ansatz for the field dynamics, we develop a mean field approximation
for the gauge field which effectively reduces the equation of motion to the linear equation.
Roughly speaking, a single k-mode of interest, which is going to grow, is identified as the
perturbation. The other modes including the dominant mode, which behave as the static and
homogeneous background, are treated as the mean field. We are forced to introduce both the
electric and magnetic conductivity parameters of the Schwinger current for the perturbation,
which depend on the mean field strength.1 Once the single mode starts to evolve, it becomes
dominant at some point and in turn behaves as part of the mean field with respect to the
subsequently generated mode. This requires the self-consistent condition that the solution
reproduces the mean field strength or the certain value of the conductivity parameters. By
numerically computing the self-consistent value of the Schwinger conductivity, we obtain the
equilibrium solution of the gauge field where the back-reaction from the charged particles is
effectively taken into account. We also carefully check the validity of our expression for the
induced current and the mean field approximation.

The rest of the paper is organized as follows. In section 2, we make a brief review of the
U(1) gauge field production in axion inflation with the CS coupling. Then we investigate the
effect of the charged particles in section 3, through the mean field approximation and the self-
consistent Schwinger conductivity. To simplify the analysis, single species of a charged particle
is concerned instead of the full SM. In order to discuss the validity of our approximation and
investigate the self-consistent solutions, we perform several consistency checks in section 4.
Section 5 is devoted to the conclusion.

2 The U(1) gauge field without charged particles

In this section, we briefly review the evolution of the U(1) gauge field without the charged
particles. We consider the following Lagrangian in which the inflaton φ is coupled with the
U(1) gauge field Aµ through the CS coupling;

L = 1
2∂µφ∂

µφ− V (φ)− 1
4FµνF

µν − 1
4f φFµνF̃

µν , (2.1)

where Fµν ≡ ∂µAν − ∂νAµ is the electromagnetic field strength and F̃µν ≡ εµνρσFρσ/(2
√
−g)

is its dual. The determinant of the spacetime metric is denoted by g and the totally anti-
symmetric tensor is defined by ε0123 = 1. In this paper, we do not specify the inflaton

1This is in contrast to refs. [37, 43] and [45–47]. There, either the magnetic or electric conductivity is
introduced respectively, but not simultaneously. See also eqs. (3.11) to (3.16).
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potential V (φ) or the value of the axion decay constant f . In the spatially flat FLRW universe,
ds2 = a2(τ)(dτ2 − dx2), and the Coulomb gauge in vacuum, A0 = ∂iAi = 0, EoM for the
comoving gauge field is given by

∂2
τAi − ∂2

jAi −
1
f

(∂τφ)εijl∂jAl = 0, (2.2)

where the conformal time is denoted by τ and the rank-3 totally anti-symmetric tensor is
ε123 = 1. Note that we ignore the perturbation of the inflaton φ and consider it as a function
of time. The gauge field is decomposed by the circular polarization and quantized as

Ai(τ,x) =
∑
λ=±

∫ d3k

(2π)3 e
ik·xe

(λ)
i (k̂)Âλ(τ,k), (2.3)

Âλ(τ,k) = â
(λ)
k Aλ(τ, k) + â

(λ)†
−k A

∗
λ(τ, k), (2.4)

where e(±)
i (k̂) are the right/left-handed polarization vectors which satisfy ik × e(±)(k̂) =

±k e(±)(k̂), and â(±)†
k /â(±)

k are the creation/annihilation operators which satisfy the usual
commutation relation, [â(λ)

k , â
(σ)†
−k′ ] = (2π)3δ(k + k′)δλσ.

During inflation aH = −1/τ , the EoM for the mode function is written as[
∂2
τ + k2 ± 2k ξ

τ

]
A±(τ, k) = 0, (2.5)

with

ξ ≡ ∂τφ

2faH = φ̇

2fH , (2.6)

where dot denotes the cosmic time derivative. If ξ > 0, for instance, A+ modes undergo
an exponential enhancement around the horizon crossing. With Bunch-Davies vacuum and
constant ξ, one can find the analytic solution for A+ as

A+(τ, k) = 1√
2k
eπξ/2W−iξ,1/2(2ikτ), (2.7)

where Wα,β(z) is the Whittaker W function. For brevity, we define this Whittaker function
and its derivative as

W (z) ≡W−iξ,1/2(−2iz), W ′(z) ≡ ∂zW−iξ,1/2(−2iz). (2.8)

With this solution, the physical electromagnetic spectra for the + mode are given by

P̃+
BB(τ, k) = a−4P+

BB(τ, k) = k5

2π2a4 |A+(τ, k)|2 = |kτ |
4H4

4π2 eπξ |W (−kτ)|2 , (2.9)

P̃+
EE(τ, k) = a−4P+

EE(τ, k) = k3

2π2a4 |∂τA+(τ, k)|2 = |kτ |
4H4

4π2 eπξ
∣∣W ′(−kτ)

∣∣2 , (2.10)

P̃+
BE(τ, k) = a−4P+

BE(τ, k) = − k4

2π2a4A+(τ, k)∂τA∗+(τ, k) = |kτ |
4H4

4π2 eπξW (−kτ)W ′∗(−kτ),
(2.11)

where PλXX are the comoving spectra and PλEB = (PλBE)∗. Figure 1 shows the auto-power
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Figure 1. The electromagnetic power spectra, H−4P̃+
BB (blue) and H−4P̃+

EE (orange) for ξ = 5,
given in eqs. (2.9) and (2.10). Their peak amplitudes are much larger than the Hubble scale, while the
peak length scale and the damping time scale are roughly given by the Hubble scale. P̃EE is larger
than P̃BB by O(ξ2).

spectra, P̃+
EE and P̃+

BB, in the case of ξ = 5. One observes that P̃+
EE is larger than P̃+

BB and
their peak amplitudes greatly exceeds the Hubble scale. Namely, the physical electromagnetic
fields, Ẽ = a−2E, B̃ = a−2B, have a hierarchy,

Ẽ > B̃ � H2. (2.12)

Note here that one may show Ẽ ∼ ξB̃ for ξ � 1, which leads to the first inequality. The
power spectra reach their peak amplitudes at |kτ | ' ξ−1 and thus the correlation length scale
is roughly estimated as

Lem '
ξ

H
. (2.13)

After passing their peaks, the physical spectra decay as ∼ a−4, and their dynamical time scale
is given by

tem '
1

4H . (2.14)

The net electromagnetic field values can fluctuate within this time scale as these modes are
continually generated and diluted, but on average, they are understood to be in stable equilib-
rium. One can also show that the phase rotations of W (−kτ) and W ′(−kτ) stop at around
|kτ | = 2ξ, and their terminal phases always satisfyW (−kτ)W ′∗(−kτ) = W ∗(−kτ)W ′(−kτ) =
−|W (−kτ)||W ′∗(−kτ)|. Using it, we obtain

P̃+
BE√

P̃+
EEP̃

+
BB

|kτ |�2ξ−−−−−→ −1. (2.15)

This relation implies that the produced electric and magnetic fields take the anti-parallel
configuration, Ê · B̂ = −1, where Ê and B̂ are the unit vectors E/|E| and B/|B|. This is
a manifestation of the parity violating nature of the axion and the CS coupling, while the
minus sign here is merely the consequence of our choice, ξ > 0. For ξ < 0, the electromagnetic
fields would be parallel. Note that this relation becomes a good approximation soon after
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|kτ | = 2ξ, particularly including the peak mode |kτ | ∼ 1/ξ. Therefore, the electromagnetic
fields can be safely assumed to be anti-parallel (or parallel for ξ < 0) in average.

In summary, we have observed the following four properties of the electromagnetic fields
sourced by the axionic inflaton in the case without the charged particles: (i) for ξ & O(1)
of our interest, strong electromagnetic fields are produced: Ẽ, B̃ � H2, (ii) the correlation
length scale is Lem ∼ 1/H, (iii) the dynamical time scale is tem ∼ H−1, and (iv) the electric
and magnetic fields are anti-parallel, Ê · B̂ ' −1, for ξ > 0.

3 Charged particles as the conductivity

3.1 Schwinger current

In this section, we develop an effective method to take charged particles into consideration.
We first introduce a matter field charged under the U(1) gauge symmetry. To be concrete, let
us consider a Dirac fermion which has a unit charge e and mass m. Our interaction term
between the U(1) gauge field Aµ and the Dirac fermion ψ is

√
−gLint = −a4eJµAµ, Jµ = ψ̄γµψ, (3.1)

where the gamma matrix satisfies {γµ, γν} = gµν . Under an environment of strong electro-
magnetic fields, the charged fermions are generated through the Schwinger effect and they
backreact onto the gauge field EoM as an induced current. We consider the small mass regime,
m2 � eẼ, where the Schwinger production and the backreaction are the most efficient.

Let us assume the charge neutrality J0 = 0 and the current conservation ∂iJi = 0 on the
scales of our interest. Then we can formally incorporate the above interaction into the EoM
for Ai (2.2) as

∂2
τAi − ∂2

jAi + 2ξ
τ
εijl∂jAl = a2eJi. (3.2)

It is generally difficult to perform a precise calculation of the induced current because one
has to solve the coupled dynamics of the gauge field and the Dirac field. However, one can
solve the fermion dynamics under the assumption of homogeneous, static, and anti-parallel
physical electromagnetic field, and estimate the production of the induced current as [43]2

∂τ (a2eJi) = e3BEi
2π2 coth

(
πB

E

)
. (3.3)

Note that this expression remains valid when scattering among the produced fermions is
negligible compared to the acceleration due to the Schwinger effect. Hereafter we assume that
this is the case for our system and a qualitative discussion is summarized in appendix A. More
essentially, E/a2 = Ẽ ' const., B/a2 = B̃ ' const., and E·B = −EB are assumed in eq. (3.3).
Although these assumptions are not exactly fulfilled, the properties of the electromagnetic
fields (i)–(iv) summarized at the end of section 2 imply that the above expression is the
leading approximation of the induced current in our system. A typical comoving wave length
of the Dirac fermion right after the Schwinger production is Lψ ∼ 1/

√
eE, and a typical time

scale of the Schwinger production is also tψ ∼ 1/
√
eE. The properties of the electromagnetic

2Eq. (4.14) of ref. [43] says eJDM
i ∝ a3 instead of eJi ∝ a in our Eq. (3.5). This apparent discrepancy

comes from the differences in definition. In ref. [43], JDM
i is a comoving current which is defined after rescaling

fermion fields appropriately. However, our Ji is just a current of a lower index without rescaling fermions. This
implies JDM

i = −J iDM = −a4J i = a2Ji.
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fields (i)–(iii) indicate that we have a significant scale separation between the fermions and
the electromagnetic fields,

Lψ ∼ tψ ∼ (eE)−1/2 � Lem ∼ tem ∼ H−1. (3.4)

Thus the Dirac fermions see the electromagnetic fields as a static and homogeneous background.
For the time being, we also assume the anti-parallelism of the electromagnetic fields which is
apparently ensured by the property (iv). There is a subtlety and we will address it in the next
subsection. One might worry that the backreaction of the Dirac fermions could significantly
change these properties of the electromagnetic fields. We will confirm its validity at the end
of this section.

Now the Dirac fermions are effectively integrated out and the coupled equations, (3.2)
and (3.3), only in terms of the gauge field describe our system. However, they are still hard to
be solved as they are non-linear equations in Ai due to the Schwinger current (3.3). In order
to solve them, we then introduce two approximations; constant physical electromagnetic fields
and mean field approximations. The first approximation is that the physical electromagnetic
fields are static, Ẽ, B̃ ' const., for a longer time scale than the Hubble time, H−1. This
approximation allows us to integrate eq. (3.3) and obtain

eJi '
e3BEi

6π2a3H
coth

(
πB

E

)
. (3.5)

Since the correlation time of the electromagnetic fields is about the Hubble time, tem ∼ H−1,
this approximation may not be very accurate. Nevertheless, our entire system is stationary
which is driven only by the constant energy injection from the inflaton, and we expect that
the time-averaged physical amplitude of the electromagnetic fields is constant. Moreover,
tem ∼ H−1 implies that we would have at most an O(1) correction to eq. (3.5) because no
shorter time scale is involved. We will check the validity of this approximation in section 4.1.

3.2 Mean field approximation
By substituting eq. (3.5) into the right hand side of eq. (3.2), the coupled equations are
reduced into a single equation of motion describing our system. However, the resultant EoM
is still non-linear and it is generally difficult to be solved. In order to seek the possible form
of the solution, we here utilize the mean field approximation for the gauge field which can
reduce the EoM to the linear equation. Let us decompose the electromagnetic fields into a
mean part and a perturbation part as

E(τ,x) ' E0 + δE(τ,x), B(τ,x) ' B0 + δB(τ,x). (3.6)

Here, we identify the perturbation part δE(τ,x) and δB(τ,x) as the contribution from a
single k-mode in Fourier space and the mean part E0 and B0 as the summation of all the
other modes.3 This decomposition enables us to consider the evolution of the single mode
δAi(τ,k) (perturbation) as a function of the static physical background Ẽ0 and B̃0 (mean
field). The self-consistency condition is required by the assumption that the background fields
themselves consist of the summation of these perturbations. That is, we assume that the
amplitudes of the background fields are given by

Ẽ0 =
√

2ρE(Ẽ0, B̃0), B̃0 =
√

2ρB(Ẽ0, B̃0), (3.7)
3In this sense, the mean part is implicitly labeled by k. Here we assume that any single mode is subdominant

compared to the mean part and thus mean field approximately take common value E0 and B0 for all k.
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on average, where ρE and ρB denote the physical energy densities of the perturbations δE
and δB (see eq. (3.23)). The consistent background amplitudes Ẽ0 and B̃0 will be found so
that the input Ẽ0 and B̃0 return the same values through the condition (3.7). Below, we
further assume that the background fields are anti-parallel, E0 ·B0 = −E0B0, because they
are mainly contributed by sufficiently superhorizon modes |kτ | � 2ξ. In such a way, we will
approximately solve the fully non-linear coupled equations (3.2) and (3.3). The validity of
these approximations on the mean field will be checked in section 4.

In order for the perturbative prescription, we further have to decompose the Schwinger
current. As already mentioned, the expression for the induced current (3.5) is only applicable
to the static, homogeneous, and anti-parallel electromagnetic fields. Thanks to the scale
separation (3.4), the contributions to the electromagnetic fields even from the modes under
the tachyonic instability on sub-horizon scales seem to be sufficiently static and homogeneous
for the fermions. Based on this observation, ref. [43] uses the Schwinger current (3.5) even
for the perturbation part and solve the perturbation equation self-consistently by regarding
it as a magnetic conductivity, eδJ = σBδB. Refs. [45, 46] instead identify the Schwinger
current (3.5) for the perturbation as an electric conductivity, δJ = σEδE.

However, as seen in eq. (2.15), the contributions from such modes at |kτ | ∼ 2ξ are not
necessarily anti-parallel. In other words, the perturbation part, δE and δB, may not be
anti-parallel, while we expect that the background part, which is dominantly contributed by
longer modes |kτ | � 2ξ, approximately takes the anti-parallel configuration. Thus, we need
to generalize the expression for the induced current in eq. (3.5) by relaxing the anti-parallel
condition of the perturbation part. As we will see soon, this forces us to introduce the both
electric and magnetic conductivities simultaneously in the perturbed equation of motion.

As is well known, one can always find a coordinate frame where the electromagnetic
fields are anti-parallel and eq. (3.5) is valid. Then one obtains the expression for the induced
current in the original frame through the Lorentz boost. As we describe in appendix B, at
the leading order of perturbation in ε ∼ δE/E0 ∼ δB/B0, it turns out that the amplitude of
the full current is simply expressed by eq. (3.5) with E(τ,x) and B(τ,x), but its direction is
given by

Ĵ =
[
1− E0δEz −B0δBz

E2
0 +B2

0

]
ez + E0δE −B0δB

E2
0 +B2

0
, (3.8)

where we took the direction of the background electric field as z-direcion without loss of
generality and hat denotes the normal vector, Ĵ = J/|J |. As a result, the induced current
can be expanded as follows:

a2eJ = a2e(J0 +δJ),

a2eJ0 = e3B0E0
6π2aH

coth
(
πB0
E0

)
ez,

a2eδJ = e3

6π2aH

[(
B3

0δEz−E3
0δBz

E2
0 +B2

0
coth

(
πB0
E0

)
+(B0δEz+E0δBz)

πB0
E0

csch2
(
πB0
E0

))
ez

+E2
0B0δE−B2

0E0δB

E2
0 +B2

0
coth

(
πB0
E0

)]
. (3.9)

Here J0 is the contribution from the mean field which is balanced with the mean part itself.
Since the induced current is now expressed in the linear order of δAi(τ,x), the EoM is
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approximately reduced to the linear equation and we can find the solution for the δAi. Note
again that these expressions for J0 and δJ assume the static physical electromagnetic fields
for both background and perturbation Ẽ0, B̃0, δẼ, δB̃ ' const. as well as the antiparallelism
of the background fields, Ê0 · B̂0 ' −1 before solving the linearized EoM. We will confirm
the validity of this treatment in section 4.1.

3.3 Self-consistent evolution

We are ready to study how the backreaction of the induced current affects the evolution of
the electromagnetic fields. Since we obtained the expression of the Schwinger current in the
mean-field approximation, let us plug it into the perturbed version of eq. (3.2). Moving to
the Fourier space, we find the EoMs for the mode function A(σ)

+ including the effect of the
induced current (see appendix C for derivation)[

∂2
τ −

ΣE + ΣE′ sin2 θk

τ
∂τ + k2 + k

τ

(
2ξ − (ΣB + ΣB′ sin2 θk)

)]
A(σ)

+ (τ,k) = 0, (3.10)

where |A(σ)
+ | � |A

(σ)
− | is assumed. Here θk is the angle between Ê0 and k̂, and then we have

Ê0 · e±(k̂) = − sin θk/
√

2.4 The superscript (σ) indicates that we include the conductivity
parametrized by

ΣE ≡
e3B0

6π2a2H2

(
E2

0
E2

0 +B2
0

coth
(
πB0
E0

))
, (3.11)

ΣB ≡
e3E0

6π2a2H2

(
B2

0
E2

0 +B2
0

coth
(
πB0
E0

))
, (3.12)

ΣE′ ≡
e3B0

12π2a2H2

(
B2

0
E2

0 +B2
0

coth
(
πB0
E0

)
+ πB0

E0
csch2

(
πB0
E0

))
, (3.13)

ΣB′ ≡
e3E0

12π2a2H2

(
E2

0
E2

0 +B2
0

coth
(
πB0
E0

)
− πB0

E0
csch2

(
πB0
E0

))
. (3.14)

When the physical mean electromagnetic fields are static, Ẽ0 = E0/a
2 =const. and B̃0 =

B0/a
2 =const., these conductivity parameters are also constant.
Let us solve eq. (3.10). Changing the time variable into z ≡ −kτ , the EoM reads[

∂2
z −

Σ
z
∂z + 1− 2ξeff

z

]
A(σ)

+ = 0, (3.15)

with

Σ ≡ ΣE + ΣE′ sin2 θk, ξeff ≡ ξ −
1
2
(
ΣB + ΣB′ sin2 θk

)
. (3.16)

This equation clearly shows the need of both the electric conductivity Σ and the magnetic
conductivity ΣB(B′). The effect of non-zero electric conductivity Σ appear as a friction term,

4Without loss of generality, we can take the z-axis in parallel with E0. A polarization vector with k
pointing to (θ, ϕ) is given by e±(k̂) = (cosϕ cos θ ∓ i sinϕ, sinφ cos θ ± i cosϕ, − sin θ)/

√
2. Thus, one finds

Ê0 · e±(k̂) = − sin θ/
√

2.
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while the magnetic conductivity ΣB(B′) reduces ξ effectively.5 The general solution of the
EoM is found as

A(σ)
+ (τ,k) = 1√

2k
eπξeff/2zΣ/2

[
c1W−iξeff ,(Σ+1)/2(−2iz) + c2M−iξeff ,(Σ+1)/2(−2iz)

]
, (3.17)

where c1 and c2 are integration constants and Mα,β(z) is the Whittaker M function. In the
sub-horizon limit, the scale of the electromagnetic fields becomes smaller than that of the
fermions and our approximation based on eq. (3.4) is no longer valid. Moreover, the induced
current should vanish in deep subhorizon because a deep UV mode is not influenced by any
environment involving IR modifications. Thus, at some early time τ = −γ/k parametrized by
γ, we connect the above solution to the original solution without the conductivity eq. (2.7)
so that it corresponds to the vacuum in deep subhorizon.6 The integration constants are
obtained as

c1 = ie
π
2 (ξ−ξeff)γ−

Σ
2

Γ(1 + iξeff + Σ/2)
2Γ(Σ + 2)

[
W (γ)M ′Σ(γ)−W ′(γ)MΣ(γ) + Σ

2γW (γ)MΣ(γ)
]
,

(3.18)

c2 = −ie
π
2 (ξ−ξeff)γ−

Σ
2

Γ(1 + iξeff + Σ/2)
2Γ(Σ + 2)

[
W (γ)W ′Σ(γ)−W ′(γ)WΣ(γ) + Σ

2γW (γ)WΣ(γ)
]
,

(3.19)

where WΣ(z) ≡ W−iξeff ,(1+Σ)/2(−2iz), MΣ(z) ≡ M−iξeff ,(1+Σ)/2(−2iz), and X ′ ≡ ∂zX(z) for
X = WΣ and MΣ. One might wonder if this connection should be at around the fermion
scale Eψ ∼

√
eE, which is higher than 2ξH. In such a regime, however, one cannot apply

the expression of induced current (3.5) obtained by integrating out the fermions. In the
following, we set γ = 2ξ so that the electromagnetic fields start to be affected by the fermion
backreaction immediately after they leave the vacuum state. We will see that these two scales
are not so different practically.

Using the mode function (3.17), we write the power spectra as

P̃+(σ)
BB (z, θk) = H4

4π2 e
πξeffz4+Σ

∣∣∣c1WΣ + c2MΣ
∣∣∣2, (3.20)

P̃+(σ)
EE (z, θk) = H4

4π2 e
πξeffz4+Σ

∣∣∣∣c1W
′
Σ + c2M

′
Σ + Σ

2z (c1WΣ + c2MΣ)
∣∣∣∣2 , (3.21)

P̃+(σ)
BE (z, θk) = H4

4π2 e
πξeffz4+Σ

(
c1WΣ + c2MΣ

)(
c1W

′
Σ + c2M

′
Σ + Σ

2z (c1WΣ + c2MΣ)
)∗
,

(3.22)

and P̃+(σ)
EB = (P̃+(σ)

BE )∗. Note that these power spectra depend on θk through Σ and ξeff . The
physical energy densities of these perturbations are given by

ρB = 1
4

∫ 1

−1
d cos θ

∫ 2ξ

0

dz
z
P̃+(σ)
BB (z, θ), ρE = 1

4

∫ 1

−1
d cos θ

∫ 2ξ

0

dz
z
P̃+(σ)
EE (z, θ), (3.23)

5The minus sign of the friction term originates in the time variable x which is positive but decreases as
time goes on. If one changes the time variable from x into the cosmic time t, the friction term would have a
positive sign.

6Without such a prescription, the friction term even decreases the vacuum fluctuation which would not
be acceptable. Furthermore, this suppression depends on the initial time of inflation (see refs. [45, 46]). Our
prescription successfully avoids these problems.
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Figure 2. (Left panel) The self-consistent values of B̃0 (blue) and Ẽ0 (orange) in the H2 unit against
ξ obtained by numerically solving the self-consistency condition (3.7). Dashed lines denote the same
quantities without the current effect. (Right panel) The corresponding conductivity parameters ΣB

(blue), ΣB′ (blue dashed), ΣE (orange), and ΣE′ (orange dashed) defined by eqs. (3.11)–(3.14).

with an UV cutoff at −kτ = 2ξ, which contains all the relevant modes subject to the instability
and the backreaction from the fermion production.7

Now let us seek the self-consistent solution through the condition (3.7). We numerically
find the solution as follows. First, the background Ẽ0 and B̃0 are initialized by some random
values. The output Ẽ0 and B̃0 are then calculated through eqs. (3.7) and (3.11)–(3.23). If
the input and output values are different, the next input values are chosen between the
previous input and output values. This procedure is repeated until the output values coincide
with the input ones within 1% errors. The left panel of figure 2 illustrates the resultant
self-consistent background values, Ẽ0 and B̃0 while the right panel shows corresponding
conductivity parameters (3.11)–(3.14). We take e = 0.55 which roughly corresponds to the
coupling constant of the hyper U(1) gauge interaction in the SM at energy scale E ∼ 1014 GeV
computed by two-loop renormalization group evolution (see, e.g., ref. [48]). Unlike the SM,
however, we consider one species of Dirac fermions coupled only to the U(1) gauge field
for simplicity. One finds that the effect of the charged particles drastically suppresses the
electromagnetic amplitudes and turns their exponential dependence on ξ into a moderate
one. Consequently, the fermion scale Eψ ∼

√
eE becomes comparable to 2ξH. For example,√

eE ' 50H and 2ξH = 20H with ξ = 10. This result a posteriori justifies our practical
choice of the connection at γ = 2ξ. Let us briefly compare our result with the previous
studies. In refs. [37, 43], the authors estimates the maximal bound for the amplitude of the
electromagnetic fields based on the stationarity of the system. By comparing the left panel of
figure 6 in ref. [43], one can see that our self-consistent amplitude of electromagnetic fields
are within this bound.8 This is in contrast with ref. [46] where the amplitude of electric field
tends to slightly exceed the maximal bound as shown in the left panel of figure 1 in ref. [46].
In addition, our self-consistent amplitude of the magnetic field becomes comparable to that

7Precisely speaking, ρE/B with an UV cutoff at −kτ = 2ξ contains both mean part and perturbation
part. Here we assume that the contribution from the single mode of interest (i.e., the perturbation part) is
subdominant and approximate Ẽ0/B̃0 ∼

√
2ρE/B for any k mode. Although this approximation breaks down

when the mode becomes dominant, we do not expect substantial correction since our assumption holds for
most of the evolution of the modes. We discuss this issue more in the next section.

8Note that our value of the gauge coupling e = 0.55 is different from the one used in ref. [43]. This makes
the maximal bound for the magnitude X̃2/H4 larger by a factor 5 in our case according to the coupling
dependence in eq. (4.18) in ref. [43].
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Figure 3. (Left panel) H−4P̃+(σ)
EE (solid) and H−4P̃+(σ)

BB (dashed) at the angle of maximum am-
plitude, θk = 0. We adopt the consistent conductivity parameters as {ξ,ΣE ,Σ′E ,ΣB ,Σ′B} =
{3, 0.043, 0.0128, 0.0204, 0.0285} (blue), {6, 1.81, 0.571, 0.733, 1.19} (orange), {9, 5.017, 1.48, 2.57, 3.30}
(green), {12, 8.20, 2.43, 4.78, 5.26} (red) and {15, 11.6, 3.70, 7.90, 7.03} (purple). (Right panel) Their
angular dependence at the times of maximum amplitude. We normalize them by the values at θk = 0.
The plot scheme is the same as the left panel.

of the electric field when ξ gets large. Such a behavior was not observed in the equilibrium
estimation for the field amplitude in refs. [37, 43], which is based on the perturbed induced
current of eδJ = σBδB.

In figure 3, we present the electromagnetic power spectra, P̃+(σ)
EE (−kτ, θk) and

P̃+(σ)
BB (−kτ, θk), with the self-consistent conductivity parameters. One observes in the left

panel that the power spectra reach their peak values slightly earlier as ξ increases, contrary
to the case without the charged fermions where the peak scale is |kτ | ' ξ−1. This is mainly
caused by the effective friction from the induced current in eq. (3.15). Note that these spectra
still possess the properties (i)–(iv) introduced in section 2, which validates the discussions
based on them. Moreover, the right panel shows that the angular dependence tends to be
enhanced as ξ increases because Σ′E and Σ′B become larger. Although the angular depen-
dence of ξ = 15 is slightly weaker than that of ξ = 12, it gets stronger again for a larger ξ.
sThis result implies that under the influence of the background electromagnetic fields, new
perturbation fields are most likely produced in the direction perpendicular to the background
fields (cf. Ê0 · e±(k̂) ∝ sin θk = 0 for θk = 0). It is intuitively reasonable because the induced
current preventing the production of the perturbations flows parallel to the background fields.

4 Consistency checks of the approximations

In this section, for consistency checks of our treatment, we scrutiny four equations; (I)
∂τ (a2eδJ) ∝ a4, (II) Ẽ0 · B̃0 = −Ẽ0B̃0, (III) Ẽ0 · J̃0 = Ẽ0J̃0, and (IV) the stationarity of
the gauge field energy density ρ̇A = 0. The first two equations are assumed in deriving the
expression for δJ (3.9). The latter two are expected to hold when the mean field approximation
is valid. We also present the energy distribution between the electromagnetic fields and the
induced current which is transferred from the inflaton.

4.1 Perturbed expression for the induced current

Here we check the validity of the approximated expression for the Schwinger current (3.9).
Let us first investigate the equation (I), ∂τ (a2eδJ) ∝ a4. Assuming only that the background
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B̃0 and Ẽ0 are anti-parallel and static over the fermion time-scale tψ, one can obtain the
perturbed version of eq. (3.3) as

∂τ (a2eδJ)' e3

2π2

[
E2

0B0δE−B2
0E0δB

E2
0 +B2

0
coth

(
πB0
E0

)

+
(
B3

0δEz−E3
0δBz

E2
0 +B2

0
coth

(
πB0
E0

)
+(B0δEz+E0δBz)

πB0
E0

csch2
(
πB0
E0

))
ez

]
.

(4.1)
This equation reproduces eq. (3.9), if one additionally assumes that all E0, B0, δE, and δB
are proportional to a2 over the Hubble time, tem ∼ H−1, and hence ∂τ (a2eδJ) ∝ a4. However,
as we saw in figure 3, δE and δB experience a tachyonic growth, and thus their evolution is
not simply given by ∝ a2. Nevertheless, we below confirm that the approximation (3.9) is
justifiable by comparing with the exact solution of the differential equation (4.1).

It is more convenient to express eq. (3.9) and eq. (4.1) in the momentum space for the
comparison:

a2eδĴ
(app)
k · e−(k̂)

'
(
ΣE + ΣE′ sin2 θk

) ∂τ
τ
Â+(τ,k) +

(
ΣB + ΣB′ sin2 θk

) k
τ
Â+(τ,k), (4.2)

∂τ (a2eδĴ
(num)
k ) · e−(k̂)

' 3aH
{(

ΣE + ΣE′ sin2 θk

) ∂τ
τ
Â+(τ,k) +

(
ΣB + ΣB′ sin2 θk

) k
τ
Â+(τ,k)

}
. (4.3)

We explicitly distinguish them by the superscript (app) or (num). One can define the spectrum
for the physical induced current as

P̃J ≡ a−2PJ = k3

2π2a2 |J+(τ,k)|2, (4.4)

where the mode function J+(τ,k) is defined as

eδĴk · e−(k̂) ≡ â(+)
k J+(τ,k) + â

(+)†
−k J

∗
+(τ,k). (4.5)

Note that here we have neglected the contribution from A(σ)
− . In order to check the validity of

the approximate formula for the induced current eq. (4.2), we compare the spectra analytically
evaluated from eq. (4.2) and the one numerically evaluated from eq. (4.3) with the self-
consistent solution for the gauge field A(σ)

+ . From eq. (4.2), one can obtain

J (app)
+ (τ,k) = H2

√
2k
z
{

Σ∂z−
(
ΣB+ΣB′ sin2 θk

)}(
eπξeff/2zΣ/2

[
c1WΣ(z)+c2MΣ(z)

])
, (4.6)

which results in the analytical expression for the spectrum as

P̃(app)
J = H6

4π2 z
4
∣∣∣{Σ∂z −

(
ΣB + ΣB′ sin2 θk

)}(
eπξeff/2zΣ/2

[
c1WΣ(z) + c2MΣ(z)

])∣∣∣2 . (4.7)

On the other hand, one can numerically evaluate J (num)
+ (τ,k) from eq. (4.3) as

J (num)
+ (τ,k)

= 3H2
√

2k
z2
∫ 2ξ

z
dz′ 1

z′

{
Σ∂z′−

(
ΣB+ΣB′ sin2 θk

)}(
eπξeff/2z′Σ/2

[
c1WΣ(z′)+c2MΣ(z′)

])
(4.8)
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Figure 4. Physical current spectrum with approximated formula (4.7) (dashed line) and with
numerical evaluation of eq. (4.8) (dots) are shown. One can see that our approximate formula well
reproduces the numerical values for |kτ | & 1 where the gauge field grows. While they differ from one
another for |kτ | � 1, the induced current does not play an important role in the super-horizon regime
and it should not be a serious problem for our purpose.

and compute the spectrum P̃(num)
J . Here we take the upper limit of the integral to be 2ξ

where we connect the consistent solution to the vacuum one.
In figure 4, we compare P̃(app)

J and P̃(num)
J with varying ξ and θk. Independently of

ξ and θk, the approximated formula (4.7) and the numerical evaluation (4.8) show similar
behaviors. In particular, they agree well for |kτ | & 1, while O(1) discrepancies are seen for
|kτ | � 1. We expect that these discrepancies have little impact on finding the self-consistent
electromagnetic amplitudes in section 3.3. This is because the gauge field stop evolving after
the exponential growth, A(σ)

+ ' const. for |kτ | � 1, and then the induced current does not
affect its evolution. Moreover, since the physical spectra rapidly decay, the contributions from
the super-horizon modes (|kτ | � 1) to ρB and ρE are subdominant. On the other hand, the
effect of the induced current on the evolution of the gauge field is the most important during
its growing phase, 2ξ > |kτ | & 1, which determines the peak amplitudes of the electromagnetic
fields. Thus, figure 4 confirms the validity of our approximation in the growing regime and
justifies the use of the induced current formula (3.5).

Next, let us check the equation (II), the anti-parallel assumption Ẽ0 · B̃0 = −Ẽ0B̃0.
Our expressions for δJ , Eqs. (3.9) and (4.1), assume it, while we do not demand that the
background fields obtained in the mean field approximation satisfy Ê0 · B̂0 = −1. In the
left-panel of figure 5, we present the integrated E-B cross spectrum〈

Ẽ · B̃
〉

= 1
4

∫ 1

−1
d cos θ

∫ 2ξ

0

dz
z

[
P̃+(σ)
EB (z, θ) + P̃+(σ)

BE (z, θ)
]
, (4.9)

which is normalized by the mean field amplitude Ẽ0 =
√

2ρE and B̃0 =
√

2ρB. Since we
have identified the mean part as the summation of all the perturbation modes, we interpret
the integrated E-B cross spectrum (4.9) as the inner product of the mean electromagnetic
field Ẽ0 · B̃0. However, as seen in the left panel of figure 5, the self-consistent solution is
not completely anti-parallel for smaller ξ. This ξ dependence of the anti-parallelism of the
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background fields can be understood as follows. As discussed in eq. (2.15), only the modes
for |kτ | � 2ξ contribute to the anti-parallel configuration. As depicted in the left panel
of figure 3, the peak amplitudes of the power spectra of the field significantly grow as ξ
increases while the position of the peak is mostly unchanged. This means that, for large
ξ, the mean part is dominated by the modes with |kτ | ∼ 1� 2ξ whose phase rotation has
terminated. As a consequence, the anti-parallel assumption on the mean part holds. In
contrast, the contributions from |kτ | ∼ 2ξ cannot be neglected for smaller ξ and the mean
part deviates from the anti-parallel configuration. Nevertheless, the deviation is at most
about 10% and hence our calculation based on Ẽ0 · B̃0 = −Ẽ0B̃0 gives a reasonable estimate
even for a small ξ.

4.2 Consistency of the mean field approximation

We examine the validity of the mean field approximation by investigating the equations (III)
Ẽ0 · J̃0 = Ẽ0J̃0 and (IV) ρ̇A = 0 in order. Under the mean field approximation, we have
imposed the self-consistent condition (3.7) to the amplitudes B0 and E0. However, we do not
impose any condition between J0 and the summation of δJ , which should coincide with each
other if the approximation is valid. Instead of directly comparing |J0|2 with the integration of
the current spectrum P̃(app)

J in eq. (4.7), here we compare the inner product of the electric field
and the current, which is a physical quantity relevant to the energy transfer as discussed below.

Using eqs. (3.9) and (3.11), one can derive

eẼ0 · J̃0 = HΣE(Ẽ2
0 + B̃2

0). (4.10)

In the same way as eq. (4.9), we identify the following integration of the self-consistent solution
with eẼ0 · J̃0:

e
〈
Ẽ · J̃

〉
= 1

2H
∫ 1

−1
d cos θ(ΣE + ΣE′ sin2 θk)

∫ 2ξ

0

dz
z
P̃+(σ)
EE (z, θ)

− 1
4H

∫ 1

−1
d cos θ(ΣB + ΣB′ sin2 θk)

∫ 2ξ

0

dz
z

[
P̃+(σ)
EB (z, θ) + P̃+(σ)

BE (z, θ)
]
. (4.11)

In the right-panel of figure 5, we plot the ratio of these two different expressions for eẼ0 ·
J̃0, eqs. (4.10) and (4.11). Again, they agree well for a large ξ. Such behavior can be
understood as follows. The power spectra of the fields P̃(σ)

X show the stronger angular
dependence for larger ξ and the dominant contributions come from θk ' 0, as depicted
in figure 3. Then, the terms with ΣE′/B′ sin2 θk can be ignored in eq. (4.11), and the
right hand side reads H

(
ΣEẼ

2
0 + ΣBẼ0B̃0

)
= HΣE

(
Ẽ2

0 + B̃2
0

)
= eẼ0 · J̃0. We note that

the integration of P̃(app)
J in eq. (4.7) also approaches to H2

(
ΣEẼ

2
0 + 2ΣEΣBẼ0B̃0 + Σ2

BB̃
2
0

)
= H2Σ2

E

(
Ẽ2

0 + B̃2
0

)
/Ẽ2

0 = |J̃0|2 for larger ξ, and thus reproduces the mean current amplitude
as well. For a small ξ, on the other hand, the discrepancy between eqs. (4.10) and (4.11)
becomes non-negligible. Although up to 30% deviations are observed in the right panel of
figure 5, its effect on the dynamics of the entire system is limited. This is because the induced
current is small in the small ξ regime, as we will quantitatively see below.

Finally, let us check whether the obtained mean field is an equilibrium solution which
balances the energy transfer by studying the equation (IV), ρ̇A = 0. In our system, the growth
of perturbations sourced by the inflaton, their dilution due to the cosmic expansion, and the
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Figure 5. (Left panel) The degree of anti-parallelism is evaluated through the E-B cross correla-
tion (4.9) normalized by Ẽ0B̃0 = 2√ρEρB. The anti-parallel assumption on the mean field is valid
for a large ξ. (Right panel) The two different expressions for the mean value of Ẽ · J̃ , eqs. (4.10)
and (4.11), are compared. They agree with sufficient accuracy for a large ξ. However, for ξ = O(1),
our mean field expressions have O(10%) errors in the both panels.

backreaction from the Schwinger current are balanced in a complicated manner, and it is not
easy to directly check their relations. We hence confirm the consistency by focusing on the
energy transfer. The energy density of the gauge field is given by

ρA = 1
2a
−4
[
(∂τAi)2 + (∂jAi)2 − ∂iAj∂jAi

]
. (4.12)

Note that the CS coupling does not contribute to the energy density. Taking the time
derivative and the volume average, we obtain [43]

〈ρ̇A〉 = −2H〈Ẽ2 + B̃2〉 − 2ξH〈Ẽ · B̃〉 − e〈Ẽ · J̃〉, (4.13)

where we used the EoM for Ai. The first, second, and third terms on the right hand side
in eq. (4.13) denote the dilution of the electromagnetic fields, the energy injection from the
inflaton through the CS coupling, and the energy drain to the charged fermions, respectively.
When the total energy is conserved, these three terms are cancelled out.

The stationarity of the gauge field energy density, 〈ρ̇A〉 = 0, can be recast as

Rem +RJ = 1, Rem ≡
〈Ẽ2 + B̃2〉
ξ|〈Ẽ · B̃〉|

, RJ ≡
e
〈
Ẽ · J̃

〉
2ξH|〈Ẽ · B̃〉|

, (4.14)

where Rem and RJ indicate the ratio of the energy which the electromagnetic fields and the
fermion gain from the inflaton, respectively. In the left-panel of figure 6, we present them
evaluated with self-consistent solution. Since it is a solution to the perturbed EoM, our
self-consistent solution satisfies eq. (4.14) within a few % accuracy as expected (recall that
we allow 1% errors in our numerical procedure to find the consistency solution).

Next, we evaluate Rem and RJ with our static background Ẽ0 and B̃0. The stationarity
condition of the mean part are written as

R(0)
em +R

(0)
J = 1, R(0)

em ≡
Ẽ2

0 +B̃2
0

ξ
∣∣∣Ẽ0 ·B̃0

∣∣∣ ' Ẽ2
0 +B̃2

0
ξẼ0B̃0

, R
(0)
J ≡

eẼ0 · J̃0

2ξH
∣∣∣Ẽ0 ·B̃0

∣∣∣ ' ΣE(Ẽ2
0 +B̃2

0)
2ξẼ0B̃0

,

(4.15)
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Rem+RJ

Rem
(0) +RJ

(0)

5 10 15 20 25
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0.95

1.00

ξ

R
em

+R
J

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

ξ

R
X

RJ

Rem

RJ
(0)

Rem
(0)

Figure 6. (Left panel) The blue dot represents the accuracy of the stationarity condition for full
field, Rem +RJ = 1, given in eq. (4.14). Except for a few cases, the sub-percent level accuracy of the
stationarity condition is achieved as expected. The orange square represents that for the background
field, R(0)

em +R
(0)
J , which shows the violation of the stationarity condition in small ξ. (Right panel) The

energy distribution between the electromagnetic fields Rem (blue dot) and the charged fermions RJ
(green square). That of background field R(0)

em (orange diamond) and R(0)
J (red triangle) is also shown.

As ξ increases, more energy density transferred from the inflaton is injected to the charged fermions.

where we used |Ẽ0 · B̃0| ' Ẽ0B̃0 and eq. (4.10), namely the equations (II) and (III), which
are studied in figure 5. The accuracy of the stationarity condition, 〈ρ̇(0)

A 〉 = 0, is shown in
the left panel of figure 6. One can see that the sum of R(0)

em and R(0)
J becomes closer to unity

as ξ becomes larger, which again indicates that our mean field approximation works well
with a larger value of ξ. For a small ξ, however, R(0)

em +R
(0)
J deviates from unity by at most

about 10%. This error comes from the violations of the equations (II) and (III). In the
smallest ξ regime, the 10% overestimation in Ẽ0 · B̃0 dominates the error and the effect of
the 30% underestimation in Ẽ0 · J̃0 is invisible, because almost all energy is transferred to
the electromagnetic fields.

In the right panel of figure 6, we individually plot Rem, RJ , and their background
counterparts to present the distribution of the total energy injected from the inflaton. R(0)

J

receives both the errors from the violations of the equations (II) and (III), while R(0)
em does

only from the equation (II). However, since the former becomes subdominant R(0)
J � R

(0)
em for

ξ . 5, its deviation from RJ does not significantly worsen the stationarity condition for the
mean field. Interestingly enough, RJ overwhelms Rem for ξ & 10, and the charged fermions
gain a dominant part of the total energy injected by the inflaton. Such fermion domination is
also observed in ref. [43].

Since all of the four equations (I)–(IV) are validated, especially with a sufficiently large
value of ξ, we conclude that our treatment with the approximated expression for δJ and the
mean field approximation can be applied to the system. The equation (I), which approximates
the time dependence of the induced current, holds independently of ξ in the relevant regime
where the gauge field perturbation grows. The others (II)–(IV) exhibit O(10%) errors for
a small value of ξ. Although the violation of the equation (III), which estimates the mean
current, becomes the largest for a small ξ, its error does not significantly propagate to the
electromagnetic fields or the stationarity of the gauge field energy density. The assumption
of the anti-parallel configuration of the mean electromagnetic fields is also violated at most
about 10%. In order to give a more reliable prediction for smaller values of ξ, we may need to
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remove the anti-parallel assumption in all the calculations, which might further complexify
the problem.

5 Conclusion

In this paper, we studied a coupled system where the axionic inflaton generates the elec-
tromagnetic fields via the CS coupling, and simultaneously the charged Dirac fermions are
produced as well as accelerated by the electromagnetic fields. This model is well motivated
as an inflationary model and is naturally linked to an interesting phenomenology such as
baryogenesis and magnetogenesis. All the gauge symmetries in SM have associated charged
particles and realistic studies on the related phenomenology need to include their effects.
Hence, it is crucially important to take into account the charged particles in the analysis.
However, except for a few recent attempts [37, 43–46], most of the previous works neglected
the backreaction from the charged particles, and hence this complicated system has not been
investigated thoroughly.

We developed a procedure to obtain an equilibrium solution for the electromagnetic
fields under the effects of the charged particles and the inflaton with a constant velocity
in a self-consistent manner. We pointed out that there is a scale separation between the
electromagnetic fields and the fermions produced by the Schwinger effect, which enables
us to integrate out the fermions. Then, the induced current is described as a function of
the electromagnetic fields, but it makes the EoM highly non-linear. We introduced the two
approximations, constant physical electromagnetic fields and the mean field approximation,
to find a linearized EoM for the perturbed gauge field, which has an analytic solution. By
numerically solving the self-consistency equations, we obtained the electromagnetic spectra
and the conductivity parameters and found that the current effect drastically suppressed the
electromagnetic amplitudes.

We also carefully examined the validity of our approximations. For larger ξ ≡ φ̇/(2fH),
our treatment was validated with sufficient accuracy. When ξ = O(1), the approximated
equations are subjected to O(10%) errors. In this small ξ regime, however, the energy transfer
to the induced current is subdominant and the uncertainty arising by the fermions does not
significantly propagate to the estimate of the electromagnetic fields. The main source of the
error originates in the anti-parallel assumption of the mean electromagnetic fields and hence
developing a generalized formalism without this assumption would be a fascinating future
work. It is also interesting to compare our treatment with existing literatures refs. [37, 43]
and refs. [45, 46]. The former study also tried to find an equilibrium configuration of the
gauge field but assuming that the induced current for the perturbed mode only has the
magnetic conductivity. The latter studies introduced the spacial gradient expansion of the
electromagnetic fields to treat the dynamics but assuming that the induced current only has the
electric conductivity. As commented in footnote 6, the prescription of the vacuum fluctuation
is also different. In contrast, our approach focuses on finding an equilibrium solution and
involves both the electric and magnetic conductivities for the perturbed equation of motion.
The comparison between these approaches would be beneficial for a better understanding of
the system.

One can extend our procedure in multiple directions. First, we expect that the energy
transfer from the inflaton to the gauge-fermion sector should be most efficient at the end
of inflation where ξ reaches its maximum value. However, the slow-roll approximation and
hence our ξ = const. assumption are violated there, and the stationarity condition for the
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gauge field is also expected to be broken. One needs to restore the inflaton from the external
energy source into a dynamical field and simultaneously solve it. Second, the θk dependence
of the electromagnetic spectra may imply that the mean field constantly changes its direction,
which is not incorporated in our procedure. The stochastic formalism [49–52] is known to be
capable of tracking the time evolution of mean fields, to which perturbations are continually
added, and may be useful to accommodate the rotational behavior. Finally, we considered
only one species of Dirac fermions charged under the U(1) gauge symmetry for simplicity.
The SM contains more U(1) charged particles as well as non-Abelian gauge sectors, which
may also be coupled to the axionic inflaton. Adding these ingredients to our procedure would
be interesting. We leave them for future work.
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A Thermalization of the fermions

As discussed in ref. [43], one should pay careful attention to the scattering of the fermions
after the Schwinger production during inflation. If the produced particles get thermalized due
to the scattering, the property of the plasma is just characterized by the temperature T and
chiral chemical potential µ5. This results in a expression for the current as J̃ = σẼ +µ5B̃ for
Ẽ, B̃ � T 2 where the thermal electric conductivity is σ ∼ T/α, which is different from the
one (3.3) we used. To verify our expression of the induced current (3.3), here we qualitatively
discuss that scattering might not be frequent enough to prevent the acceleration by following
the discussion in ref. [43] with our self-consistent electromagnetic fields.

Practically, it is difficult to follow the dynamical process of thermalization. Instead,
let us adopt an extreme assumption that the produced fermions were thermalized within
one Hubble time 1/H, and see whether our estimation could be modified. The would-be
temperature under this assumption is given as

Twb ∼
(

30eẼJ̃
π2g∗H

)1/4

∼ 0.1×
(
eB̃
) 1

4

(
eẼ

H

) 1
2

, (A.1)

where we used eq. (3.5) and g∗ ' 102. The first nontrivial check is whether the fermions can
remain thermalized, once they somehow get thermalized. By comparing the typical scattering
rate in the thermal plasma, α2Twb, and the Hubble parameter H, we find that the fermions
remain thermalized for

1� 0.1α2
(
eB̃

H2

) 1
4
(
eẼ

H2

) 1
2

−→ Ẽ

H2 � 106 ×
(0.55

e

) 19
3
. (A.2)

Here we used Ẽ ∼ B̃, which holds for the parameters of our interest as shown in figure 2.
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Another question is how the fermions would get thermalized; in other words, what is the
bottleneck process for the fermions to be thermalized. If the scatterings are negligible, the
typical momentum of fermions after 1/H is eẼ/H owing to the acceleration by the electric
field, which is much larger than the would-be temperature Twb. This efficient acceleration is
implicitly assumed in the derivation of the Schwinger current given in eq. (3.3), and hence we
need to clarify the regime of validity. The interaction rate of such high-energy particles is
suppressed by the Landau-Pomeranchuk-Migdal effect as ΓLPM ∼ α2Twb

√
Twb/p for p� Twb

with p being a momentum [53–57]. Here we quote the result in the presence of non-Abelian
gauge interactions, having in mind a realistic situation based on the SM, where almost all
fermions except for the right-handed leptons are charged under non-Abelian gauge fields.9 If
this process is efficient ΓLPM � H, a typical momentum after acceleration would be eẼ/ΓLPM
instead of eẼ/H. Inserting p ∼ eẼ/ΓLPM back into the inequality ΓLPM(p)� H, we obtain
the following self-consistency condition for thermalization [43]

1� 10−3 α4
(
eB̃

H2

) 3
4
(
eẼ

H2

) 1
2

−→ Ẽ

H2 � 5× 107 ×
(0.55

e

) 37
5
. (A.3)

In the parameters of our interest (see e.g., figure 2), neither of these conditions, (A.3)
nor (A.2), is satisfied. Thus, the acceleration is much more efficient than scatterings (A.3).
Furthermore, even if the produced fermions were thermalized somehow, scatterings could not
maintain thermal equilibrium (A.2). Based on these estimations, we adopt eq. (3.3), which is
derived by neglecting scatterings, as a reasonable approximation for the induced current.

B Lorentz boost

As we only know the expression of the Schwinger current for anti-parallel electromagnetic
fields, let us consider the Lorentz boost to make general electromagnetic fields anti-parallel.
Note that hereafter we basically focus on the linear response in δE/E0 ∼ δB/B0 ∼ ε on the
anti-parallel background E0 and B0.

Suppose the constant and homogeneous (physical) electromagnetic fields E = E0 + δE
and B = B0 + δB on the anti-parallel background E0 and B0. Without loss of generality, E
and B can be assumed in the xz-plane as E = (Ex, 0, Ez)T and B = (Bx, 0, Bz)T (note that
the background E0 and B0 are not necessarily in the xz-plane). We can further assume that
E and B are almost anti-parallel along the z-direction as Ez > 0 and Bz < 0, and also the
x-axis can be chosen so that Ex > 0 and Bx > 0. They can be expressed with angles φE and
φB as

E =

Ex0
Ez

 =

E sinφE
0

E cosφE

 , B =

Bx0
Bz

 =

 B sinφB
0

−B cosφB

 . (B.1)

The configuration is schematically illustrated in figure 7. Note that the angles φE and φB
can be expected as small as O(ε) because one could take φE = φB = 0 without δE and δB,
which is justified later.

9In non-Abelian gauge field theories, the LPM suppressed rate for a high-energy particle with energy E to
emit a gauge field with energy ω is ΓLPM ∼ α2T

√
T/ω. On the other hand, the same rate in Abelian gauge

field theories is ΓU(1)
LPM ∼ α2T

√
ωT/E2. This difference originates from the fact that the non-Abelian gauge

fields are charged under themselves. One can see that the LPM suppressed rate in Abelian gauge field theories
is smaller than that in non-Abelian gauge field theories (because of E > ω).
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x

y

z

E = E0 + δE

B = B0 + δB

E0

δE

δB

ϕE ∼ (ϵ)

ϕB ∼ (ϵ)

θE

θB

B0 ∝ − E0

x̃

ỹ

z̃

Ẽz = E + (ϵ2)

B̃z = − B + (ϵ2)

J̃

β

Figure 7. The schematic image of the configuration of the electromagnetic fields and the Schwinger
current. Electromagnetic fields in the xz-plane can be parallelized by a Lorentz boost in the y-direction.
Up to linear order in ε ∼ δE/E0 ∼ δB/B0, the amplitudes of the electromagnetic fields do not change.
The Schwinger current is also found to be along the z-axis both in the xµ and x̃µ coordinates with the
same strength to the linear order. Note that the z-direction is defined to be Ê0 in the main body. In
this definition, the current direction is found as eq. (B.18).

Regarding the spacetime, we can fix the scale factor as, e.g., a = 1 in the conformal flat
metric ds2 = a2(τ)(dτ2 − dx2) for a while as the dynamics of the Schwinger current is much
faster than the time scale of the universe’s expansion. Then we consider the Lorentz boost in
y-direction: 

τ̃ = γ(τ − βy),
x̃ = x,

ỹ = γ(y − βτ),
z̃ = z,

⇔


τ = γ(τ̃ + βỹ),
x = x̃,

y = γ(ỹ + βτ̃),
z = z̃,

(B.2)

where γ = 1/
√

1− β2. The electromagnetic fields transform as
Ẽx = γ(Ex + βBz),
Ẽy = Ey,

Ẽz = γ(Ez − βBx),


B̃x = γ(Bx − βEz),
B̃y = By,

B̃z = γ(Bz + βEx),

⇔


Ex = γ(Ẽx − βB̃z),
Ey = Ẽy,

Ez = γ(Ẽz + βB̃x),


Bx = γ(B̃x + βB̃z),
By = B̃y,

Bz = γ(B̃z − βẼx),

(B.3)

which can be checked as the transformation of the field strength tensor

Fµν =


0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0

 . (B.4)
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We then seek the Lorentz boost with which the transformed electromagnetic fields become
anti-parallel in the z-direction as Ẽ = (0, 0, Ẽz)T and B̃ = (0, 0, B̃z)T .

The values of Ẽz and B̃z themselves are easily obtained, making use of the Lorentz
invariance of FµνFµν = −2(E2 −B2) and εµνρσFµνFρσ = −8E ·B, as

Ẽ2
z = E2 −B2 +

√
(E2 −B2)2 + 4E2B2 cos2 φEB

2 ,

B̃2
z = 2E2B2 cos2 φEB

E2 −B2 +
√

(E2 −B2)2 + 4E2B2 cos2 φEB
,

(B.5)

where φEB = π − φE − φB is the angle between E and B. However, as one can expect
φE ∼ φB ∼ O(ε), cosφEB can be approximated by unity to the linear order because
cosφEB = 1 +O

(
(π − φEB)2) = 1 +O(ε2). One then finds that Ẽz and

∣∣∣B̃z∣∣∣ are equivalent
to the original lengths E and B to the linear order:

Ẽz ' E ' E0 + δE cos θE , B̃z ' −B ' −B0 − δB cos θB. (B.6)

Here we also show the expansion of the original lengths E and B with use of the angles θE
and θB between E0 and δE and between B0 and δB. Note that θE and θB are not necessarily
small in contrast to φE and φB.

In the x̃µ coordinate, the electromagnetic fields are anti-parallel in the z̃-direction
with the amplitudes E and B, and therefore the evolution of the Schwinger current in this
coordinate is expected as [43] (see also eq. (3.3))

−∂τ̃eJ̃µ =


e3BE

2π2 coth
(
πB

E

)
, µ = z̃,

0 otherwise.
(B.7)

Its inverse boost reads

−(γ∂τ + γβ∂y)eJµ =


e3BE

2π2 coth
(
πB

E

)
, µ = z,

0 otherwise.
(B.8)

We then suppose the expansion of the current as Jµ = Jµ0 + δJµ with the background current
eJ0i = −a2eJ i0 = e3B0E0i

6π2a3H coth
(
πB0
E0

)
. Noting that the boost parameter β is also expected to

be O(ε) and Jµ0 is spatially homogeneous by definition, one finds that the current equation
reduces to

−∂τeJµ '


e3BE

2π2 coth
(
πB

E

)
, µ = z,

0, otherwise,
(B.9)

to the linear order. Restoring the cosmic expansion as −J i → −a4J i = a2Ji (see eq. (3.1)),
and assuming the physically constant electromagnetic fields as E,B ∝ a2, this current equation
can be solved as

a2eJµ '


e3BE

6π2aH
coth

(
πB

E

)
, µ = z,

0, otherwise.
(B.10)
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The Schwinger current thus flows in the z-direction even in the original coordinate to the
linear order.

We have to then specify the z-direction in the EB-plane, i.e., the angles φE and φB.
They are obtained by the conditions Ẽx = B̃x = 0. Recalling β ∼ O(ε), one finds{

0 = Ẽx = γ(Ex + βBz) ' E0φE − βB0,

0 = B̃x = γ(Bx − βEz) ' B0φB − βE0,
(B.11)

to the leading order. Therefore the boost parameter β is given by

β = E0
B0
φE = B0

E0
φB. (B.12)

In other words, two angles φE and φB are determined as

φE = B2
0

E2
0 +B2

0
(π − φEB), φB = E2

0
E2

0 +B2
0

(π − φEB), (B.13)

once φEB, the angle between E and B, is fixed via π − φEB ' sinφEB = |E ×B|/EB.
For the convenience in the Ai’s EoM, let us redefine the z-direction to the E0-direction as

E0 = (0, 0, E0) and B0 = (0, 0,−B0), and then find the current direction Ĵ in this coordinate.
As Ĵ is in the EB-plane, it can be expressed as

Ĵ = aÊ + bB̂, (B.14)

with some coefficients a and b. Here we assume a > 0 and b < 0 because Ĵ is almost parallel
to Ê. The angles φE and φB (B.13) between Ĵ and Ê and between −Ĵ and B̂ are related to
the coefficients a and b via

φE ' sinφE =
∣∣∣Ĵ × Ê

∣∣∣ = −b
∣∣∣B̂ × Ê

∣∣∣ = −b sinφEB ' −b(π − φEB),

φB ' sinφB =
∣∣∣Ĵ × B̂

∣∣∣ = a
∣∣∣Ê × B̂

∣∣∣ = a sinφEB ' a(π − φEB).
(B.15)

Comparing it with eq. (B.13), one finds

a = E2
0

E2
0 +B2

0
, b = − B2

0
E2

0 +B2
0
. (B.16)

Therefore, making use of

Ê '
(

1− δEz
E0

)
ez + δE

E0
, B̂ ' −

(
1 + δBz

B0

)
ez + δB

B0
, (B.17)

the current direction is revealed as

Ĵ =
[
1− E0δEz −B0δBz

E2
0 +B2

0

]
ez + E0δE −B0δB

E2
0 +B2

0
. (B.18)

C Derivation of the perturbed EoM for the gauge field

Substituting eq. (3.9) into the perturbed version of eq. (3.2), we have

∂2
τ δAi−∂2

j δAi+
2ξ
τ
εijl∂jδAl

= e3

6π2aH

[(
B3

0δEz−E3
0δBz

E2
0 +B2

0
coth

(
πB0
E0

)
+(B0δEz+E0δBz)

πB0
E0

csch2
(
πB0
E0

))
ez

+E2
0B0δE−B2

0E0δB

E2
0 +B2

0
coth

(
πB0
E0

)]
.

(C.1)
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Considering δE = −∂τδA and δB = ∇× δA, this is a linear equation with respect to δA.
Thus, to find the EoM in Fourier space, we make the following replacements:

δAi(τ,x)→
∑
λ=±

e
(λ)
i (k̂)Aλ(τ,k),

δEi(τ,x)→ −
∑
λ=±

e
(λ)
i (k̂)∂τAλ(τ,k),

δBi(τ,x)→
∑
λ=±

e
(λ)
i (k̂)λkAλ(τ,k).

(C.2)

We obtain

∑
λ=±

[
∂2
τ +k2 +2λk ξ

τ

]
e(λ)Aλ(τ,k)

= e3B0
6π2a2H2

(
B2

0
E2

0 +B2
0

coth
(
πB0
E0

)
+ πB0

E0
csch2

(
πB0
E0

))(
−sinθk√

2

)∑
λ=±

∂τ
τ
Aλ(τ,k)

ez

+ e3E0
6π2a2H2

(
E2

0
E2

0 +B2
0

coth
(
πB0
E0

)
− πB0

E0
csch2

(
πB0
E0

))(
−sinθk√

2

)∑
λ=±

λ
k

τ
Aλ(τ,k)

ez

+ e3B0
6π2a2H2

(
E2

0
E2

0 +B2
0

coth
(
πB0
E0

))∑
λ=±

∂τ
τ
Aλ(τ,k)e(λ)(k̂)

+ e3E0
6π2a2H2

(
B2

0
E2

0 +B2
0

coth
(
πB0
E0

))∑
λ=±

λ
k

τ
Aλ(τ,k)e(λ)(k̂).

(C.3)
Note that we take Ê0 · e±(k̂) = ez · e±(k̂) = − sin θ/

√
2 as discussed in the footnote 4. To

extract each polarization mode, we multiply this equation by e∓i and use e+ ·e+ = e− ·e− = 0
and e+ · e− = 1. Then the above equation is split into

[
∂2
τ + k2 + 2k ξ

τ

]
A+

= e3B0
6π2a2H2

(
E2

0
E2

0 +B2
0

coth
(
πB0
E0

))
∂τ
τ
A+

+ e3E0
6π2a2H2

(
B2

0
E2

0 +B2
0

coth
(
πB0
E0

))
k

τ
A+

+ e3B0
12π2a2H2

(
B2

0
E2

0 +B2
0

coth
(
πB0
E0

)
+ πB0

E0
csch2

(
πB0
E0

))
sin2 θk

∑
λ=±

∂τ
τ
Aλ


+ e3E0

12π2a2H2

(
E2

0
E2

0 +B2
0

coth
(
πB0
E0

)
− πB0

E0
csch2

(
πB0
E0

))
sin2 θk

∑
λ=±

λ
k

τ
Aλ

,

(C.4)
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and[
∂2
τ + k2 − 2k ξ

τ

]
A−

= e3B0
6π2a2H2

(
E2

0
E2

0 +B2
0

coth
(
πB0
E0

))
∂τ
τ
A−

− e3E0
6π2a2H2

(
B2

0
E2

0 +B2
0

coth
(
πB0
E0

))
k

τ
A−

+ e3B0
12π2a2H2

(
B2

0
E2

0 +B2
0

coth
(
πB0
E0

)
+ πB0

E0
csch2

(
πB0
E0

))
sin2 θk

∑
λ=±

∂τ
τ
Aλ


+ e3E0

12π2a2H2

(
E2

0
E2

0 +B2
0

coth
(
πB0
E0

)
− πB0

E0
csch2

(
πB0
E0

))
sin2 θk

∑
λ=±

λ
k

τ
Aλ

.

(C.5)

On the right hand side, both A+ and A− appear, because of the non-linearity brought by the
induced current. As we saw in section 2, only A+ is amplified by the tachyonic instability
for a positive ξ, and we expect the hierarchy |A+| � |A−| remains even in the present case
with the induced current. Thus we drop the contributions from A− on the right hand side in
eq. (C.4) as sub-leading effects. Then eq. (C.4) reads eq. (3.10) straightforwardly. On the
other hand, we cannot ignore the terms with A− on the right hand side of eq. (C.5), because
they may be comparable to the left hand side terms. Eq. (C.5) is rewritten as[

∂2
τ −

ΣE + ΣE′ sin2 θk

τ
∂τ + k2 − k

τ

(
2ξ − ΣB − ΣB′ sin2 θk

)]
A−

= sin2 θk

(
ΣE′

∂τ
τ

+ ΣB′
k

τ

)
A+. (C.6)

This equation implies that A− is sourced by A+. When we quantized A±(τ,k) in eq. (2.4), Â−
carries only the creation/annihilation operators for the minus mode, â(−)

k and â(−)†
−k . However,

to take into account the source effect from A+, we generalize it so that A− contains the
creation/annihilation operators for the plus mode,

Â− = â
(−)
k A

(int)
− + â

(−)†
−k A

(int)∗
− + â

(+)
k A

(src)
− + â

(+)†
−k A

(src)∗
− , (C.7)

where the mode functions A(int)
− and A(src)

− denote the intrinsic (homogeneous) solution and
the sourced (inhomogeneous) solution, respectively. We know A(int)

− is negligibly small and
hence focus on A(src)

− . Then one obtains
[
∂2
τ −

ΣE + ΣE′ sin2 θk

τ
∂τ + k2 − k

τ

(
2ξ − (ΣB + ΣB′ sin2 θk)

)]
A(σ)
− (τ,k)

= sin2 θk

(
ΣE′

∂τ
τ

+ ΣB′
k

τ

)
A(σ)

+ (τ,k), (C.8)

where A(σ)
− denotes A(src)

− , and A(σ)
+ is the solution of eq. (3.10).
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