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1 Introduction

The paradigm of cosmic inflation [1–7], together with the Λ cold dark matter (ΛCDM) model,
provides a precise description of the Universe on cosmic scales [8–11]. This model, in which
the Universe expands from a hot and dense state following inflation, successfully predicts
both the primordial elemental abundances via big bang nucleosynthesis (BBN) [12, 13] as
well as the cosmic microwave background radiation (CMB). Furthermore, measurements of
the temperature anisotropies of the CMB reveal a red-tilted spectrum of adiabatic and highly
Gaussian density fluctuations in excellent agreement with the predictions of standard slow
roll inflation [11].

The large (10−104 Mpc) scales measured in the CMB and large-scale structure directly
probe (and constrain) the dynamics of inflation around 50 − 60 e-folds before its end [14].
The later stages of inflation are only weakly constrained by (the nonobservation of) spectral
distortions in the CMB [15], as well as the absence of high-energy γ rays from ultracompact
minihalos [16]. Moreover, the abundances of light elements are insensitive to the state of
the Universe prior to BBN and neutrino decoupling (before redshift z ∼ 1010) [12]. In
fact, successful BBN requires only that the Universe was in local thermal equilibrium and
expanding in a radiation dominated state by a temperature of around T ∼ 4.1MeV [17–19].

– 1 –



J
C
A
P
1
0
(
2
0
2
1
)
0
8
0

Gravitational waves (GW) offer a unique means to study inhomogeneities on smaller
scales and thereby constrain both the later stages of inflation [20] and the evolution of the Uni-
verse before BBN [21–26]. Aside from direct production mechanisms, density perturbations
act as a secondary source of stochastic GW backgrounds [27–34]. Future experiments [35–42]
will probe these “induced” GWs at a variety of frequencies [21–23, 43–74], providing valuable
information about scales that exit the horizon during inflation long after the modes that
eventually seed the CMB anisotropies. These modes reenter the horizon before BBN and
subsequently induce gravitational waves at second order in cosmological perturbation theory.
Enticingly, the pulsar timing array experiment NANOGrav recently presented evidence for
a common process [75] which, though currently lacking Bayesian evidence for the requisite
quadrupolar correlations, may well be due to a stochastic GW background [76–84].

The expected level of GWs induced from a red-tilted spectrum of curvature perturba-
tions extrapolated to small scales, with amplitude ∆2

R(k?) ≈ 10−10 at k? = 0.05h Mpc−1

required by the CMB anisotropies, is unobservably tiny [32, 33]. However, there is no a priori
reason to expect that such an extrapolation is appropriate over such a large range of scales.
In particular, induced GWs are expected to be significant in scenarios where primordial black
holes (PBHs) form via the gravitational collapse of small-scale curvature perturbations [85–
89]. GWs therefore provide a powerful probe not only of the initial conditions and expansion
history of the Universe but also of the abundance of PBHs and their potential to constitute
a sizable fraction of the dark matter [90–92]. For recent reviews, see refs. [93–96].

While the running of the spectral index typically suppresses power on very small scales
in canonical models of inflation (see, e.g. [97]), a number of scenarios can enhance the cur-
vature power spectrum on small scales. Examples of modifications to the minimal slow roll
scenario include multifield inflation [98, 99], inflaton couplings leading to particle produc-
tion [47, 51, 100–106], a plateau in the inflaton potential that causes a period of ultra slow
roll [107–110], and a brief downward step in the potential [111]. In these scenarios the curva-
ture perturbation is often non-Gaussian on these scales, impacting not only PBH formation
(which is sensitive to the tail of the probability distribution of density perturbations) but
also the induced GW signal.

In this work we revisit the problem of GW backgrounds induced by non-Gaussian
curvature perturbations [50, 51, 60, 66, 74, 86, 88, 110]. We focus on local-type non-
Gaussianity [60, 66, 74, 86, 88, 110] and show that the induced GW spectrum is in general
sensitive to all contributions to the primordial trispectrum. In particular, in addition to
the disconnected part of the curvature perturbation’s 4-point correlation function (arising
solely via the non-Gaussian modification to the curvature power spectrum itself), the con-
nected component is a nontrivial and important contribution to the induced GW signal, often
unaccounted for in the literature.

This paper is organized as follows. In section 2 we briefly review the calculation of the
dimensionless power spectrum Pλ of GWs induced by a generic curvature perturbation R,
leaving additional details to appendix A. We proceed to present the complete contribution
of the (connected and disconnected parts of the) 4-point correlation function of R to Pλ. We
then specialize to the case of local non-Gaussianity. Appendix B outlines the derivation in
more detail, presenting a diagrammatic interpretation of individual terms. We present results
for a variety of primordial curvature power spectra in section 3 and conclude in section 4.
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2 Gravitational waves induced by scalar perturbations

We work with a perturbed FLRW spacetime in the conformal Newtonian gauge,

ds2 = a(τ)2
(
− [1 + 2Φ] dτ2 +

[
(1− 2Φ)δij + 1

2hij
]

dxidxj
)
, (2.1)

neglecting vector perturbations and first-order tensor perturbations. That is, we consider
only tensors sourced at second order in perturbation theory and ignore those at leading
order, e.g., a primordial background from inflation. We set c = ~ = kB = 1, define the
reduced Planck mass mPl = 1/

√
8πGN , and use primes to denote derivatives with respect

to conformal time τ . Repeated Latin indices denote a contraction with the Kronecker delta
regardless of placement. We assume a fixed equation of state w = P/ρ, with P and ρ the
background pressure and energy density, so the scale factor evolves according to

a(τ) = a0

(
τ

τ0

)α
, (2.2)

where α = 2/(1 + 3w). The conformal-time Hubble parameter is thus

H(τ) ≡ a′(τ)
a(τ) = α

τ
. (2.3)

We expand the GWs in Fourier modes as

hij(τ,x) =
∑

λ=+,×

∫ d3k

(2π)3/2 e
ik·xελij(k)hλ(τ,k), (2.4)

where the polarization tensors are

ε+ij(k) = 1√
2

(εi(k)εj(k)− εi(k)εj(k)) (2.5a)

ε×ij(k) = 1√
2

(εi(k)εj(k) + εi(k)εj(k)) (2.5b)

and εi(k) and εi(k) form an orthonormal basis transverse to k. Note that ελij(k) are traceless
and transverse to k by construction. The power spectrum of GWs is then defined as

〈hλ1(τ,k1)hλ2(τ,k2)〉 = δ3(k1 + k2)δλ1λ2Pλ1(τ, k1). (2.6)

We also define the dimensionless GW power spectrum,

〈hλ1(τ,k1)hλ2(τ,k2)〉 = δ3(k1 + k2)δλ1λ2 2π2

k3
1

∆2
λ1(τ, k1). (2.7)

The spatially averaged energy density of gravitational waves on subhorizon scales is

ρGW(τ) =
∫

d ln k ρGW(τ, k) = m2
Pl

16a(τ)2

〈
∂khij∂khij

〉
, (2.8)

where the overbar denotes a time average (i.e., over oscillations). The fractional energy
density in GWs per logarithmic wavenumber is

ΩGW(τ, k) ≡ ρGW(τ, k)
ρtot(τ) = 1

48

(
k

a(τ)H(τ)

)2 ∑
λ=+,×

∆2
λ(τ, k). (2.9)
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The spectrum that would be observed today (assuming emission after reheating) is obtained
via the transfer function

ΩGW,0(k)h2 = Ωrad,0h
2
(
g?,0
g?,e

)1/3

ΩGW,e(k), (2.10)

which for comoving momentum k would be observed at the present-day frequency

f = k/2πae√
HemPl

(
Ωrad,0H

2
0m

2
Pl

)1/4
(
g?,0
g?,e

)1/12

. (2.11)

Here g? is the number of relativistic degrees of freedom in energy density, Ωrad,0 the present-
day abundance of radiation, and H the Hubble parameter; subscripts e and 0 denote the
time of emission and the present day, respectively. Note that Ωrad,0h

2 ≈ 4.2 × 10−5 with
h = H0/100 kms−1/Mpc.

2.1 Induced gravitational wave solution

The induced gravitational waves evolve according to

h′′λ(τ,k) + 2Hh′λ(τ,k) + k2hλ(τ,k) = 4Sλ(τ,k), (2.12)

where the source Sλ comprises the terms of the (transverse, traceless part of the) Einstein
equation that are second order in scalar perturbations. To make contact with primordial
physics, it is conventional to express the gravitational potential in terms of the primordial
curvature perturbation R and a transfer function Φ(kτ),

Φ(τ,k) = 3 + 3w
5 + 3wΦ(kτ)R(k). (2.13)

The transfer function Φ(kτ) encodes the linear evolution of the Newtonian potential after
horizon reentry. In these terms, the source is [32, 33]

Sλ(τ,k) =
∫ d3q

(2π)3/2Qλ(k,q)f(|k− q|, q, τ)R(q)R(k− q), (2.14)

where f(|k− q|, q, τ) is given by

f(p, q, τ) = 3(1 + w)
(5 + 3w)2

[
2(5 + 3w)Φ(pτ)Φ(qτ) + τ2 (1 + 3w)2 Φ′(pτ)Φ′(qτ)

+ 2τ (1 + 3w)
(
Φ(pτ)Φ′(qτ) + Φ′(pτ)Φ(qτ)

) ]
.

(2.15)

Note that f(p, q, τ) is symmetric under exchange of q and p. The projection factors are

Qλ(k,q) ≡ ελij(k)qiqj . (2.16)

Taking k in the ẑ direction and writing

q = q [sin θ cosφ, sin θ sinφ, cos θ] , (2.17)

– 4 –
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the projection factors evaluate to

Qλ(k,q) = q2
√

2
sin2(θ)×

{
cos(2φ) λ = +
sin(2φ) λ = ×.

(2.18)

We note that the cos(2φ) and sin(2φ) terms are absent in some of the intermediate steps in
ref. [33].

The induced GWs are the particular solution of eq. (2.12),

hλ(τ,k) = 4
a(τ)

∫ τ

τ0
dτ Gk(τ, τ)a(τ)Sλ(τ ,k), (2.19)

where the Green function Gk(τ, τ) obeys the equation of motion

∂2
τGk(τ, τ) +

[
k2 − a′′(τ)

a(τ)

]
Gk(τ, τ) = δ(τ − τ). (2.20)

Hence, the power spectrum of the induced GWs is given by

〈hλ1
k1
hλ2

k2
〉 = 16

∫ d3q1
(2π)3/2

d3q2
(2π)3/2 〈R(q1)R(k1 − q1)R(q2)R(k2 − q2)〉Qλ1(k1,q1)Qλ2(k2,q2)

× I(|k1 − q1|, q1, τ1)I(|k2 − q2|, q2, τ2), (2.21)

having defined

I(p, q, τ) =
∫ τ

τ0
dτ Gk(τ, τ)a(τ)

a(τ)f(p, q, τ). (2.22)

By treating the scalar perturbations to linear order, the time dependence of the induced GW
spectrum is decoupled from the primordial curvature power spectrum. For a fixed equation
of state, the integrals I(p, q, τ) can be computed analytically [53].

If we impose statistical homogeneity and isotropy on the curvature perturbation R and
assume 〈R〉 = 0, then its 4-point function splits into disconnected and connected components:

〈R(k1)R(k2)R(k3)R(k4)〉 = 〈R(k1)R(k2)R(k3)R(k4)〉d
+ 〈R(k1)R(k2)R(k3)R(k4)〉c (2.23)

〈R(k1)R(k2)R(k3)R(k4)〉d = 〈R(k1)R(k2)〉〈R(k3)R(k4)〉+ 〈R(k2)R(k3)〉〈R(k4)R(k1)〉
+ 〈R(k1)R(k3)〉〈R(k2)R(k4)〉 (2.24)

〈R(k1)R(k2)R(k3)R(k4)〉c = δ3(k1 + k2 + k3 + k4)T (k1,k2,k3,k4), (2.25)

where
〈R(k1)R(k2)〉 = δ3(k1 + k2)PR(k1), (2.26)

defines the power spectrum of the curvature perturbation and T (k1,k2,k3,k4) stands for
the connected trispectrum. We similarly decompose the induced GW power spectrum into
its parts sourced by the disconnected and connected trispectrum:1

Pλ(k) = Pλ(k)|d + Pλ(k)|c . (2.27)
1Note that nonlinear terms at higher order (in Φ) in the source term, eq. (2.14), are neglected here.

Provided FNL > O(1) (see eq. (2.30) below), the contribution from primordial non-Gaussianity dominates.
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The disconnected component represents that arising from the curvature power spectrum,
including its contribution from non-Gaussianity (the exact form of which we have yet to
specify). This term takes the form

Pλ(k)|d = 32
∫ d3q

(2π)3Qλ(k,q)2I(|k− q|, q, τ)2PR(q)PR(|k− q|). (2.28)

In the case that R is a Gaussian field, eq. (2.28) reproduces the standard result [32, 33, 53].
The connected component is

Pλ(k)|c = 16
∫ d3q1

(2π)3/2
d3q2

(2π)3/2Qλ(k,q1)Qλ(k,q2)I(|k− q1|, q1, τ)I(|k− q2|, q2, τ)

× T (q1,k− q1,−q2,q2 − k).
(2.29)

We stress that the connected trispectrum contribution to the induced GWs power spectrum,
eq. (2.29), does not vanish in general. As we demonstrate explicitly below, the connected
trispectrum generally has nontrivial dependence on the azimuthal angles of q1 and q2. Were
this not the case, the azimuthal dependence would arise solely via eq. (2.18), and therefore
the integrals over φ1 and φ2 would each vanish.2 Finally, extracting the observable GW
signal requires taking the time average of the right-hand side; see appendix A for details.

2.2 Local-type non-Gaussian curvature as a source of GWs

We now specialize to the case of local-type non-Gaussianity,

R(x) = Rg(x) + FNL
(
Rg(x)2 − 〈Rg(x)2〉

)
, (2.30)

where the Gaussian field Rg is completely specified by its power spectrum, defined by

〈Rg(k1)Rg(k2)〉 = δ3(k1 + k2)Pg(k1). (2.31)

The one-loop power spectrum of R is

PR(k) = Pg(k) + 2F 2
NL

∫ d3q

(2π)3Pg(q)Pg(|k− q|). (2.32)

Thus, there are three unique, disconnected contributions to the induced GW spectrum: the
standard Gaussian term,

Pλ(k)Gaussian = 25
∫ d3q

(2π)3 I(|k− q|, q, τ)2Qλ(k,q)2Pg(q)Pg(|k− q|), (2.33)

an O(F 2
NL) “hybrid” term,

Pλ(k)hybrid =27F 2
NL

∫ d3q1
(2π)3

d3q2
(2π)3 I(|k−q1|,q1,τ)2Qλ(k,q1)2Pg(|k−q1|)Pg(q2)Pg(|q1−q2|),

(2.34)
2In refs. [60, 86, 110], the contribution of the connected part of the trispectrum is neglected. Refs. [60, 86]

claim that the contribution from the connected terms vanishes due to the integrals over the azimuthal angles,
regardless of the form of the trispectrum.
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and an O(F 4
NL) “reducible” term,

Pλ(k)reducible = 27F 4
NL

∫ d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3 I(|k− q1|, q1, τ)2Qλ(k,q1)2

× Pg(q2)Pg(q3)Pg(|q1 − q2|)Pg(|k− q1 − q3|).
(2.35)

The connected contributions comprise an O(F 2
NL) “C” term,

Pλ(k)C = 28F 2
NL

∫ d3q1
(2π)3

d3q2
(2π)3 I(|k− q1|, q1, τ)I(|k− q2|, q2, τ)Qλ(k,q1)Qλ(k,q2)

× Pg(q2)Pg(|k− q2|)Pg(|q1 − q2|),
(2.36)

an O(F 2
NL) “Z” term,

Pλ(k)Z = 28F 2
NL

∫ d3q1
(2π)3

d3q2
(2π)3 I(|k− q1|, q1, τ)I(|k− q2|, q2, τ)Qλ(k,q1)Qλ(k,q2)

× Pg(q1)Pg(q2)Pg(|k− (q1 + q2)|),
(2.37)

an O(F 4
NL) “planar” term,

Pλ(k)planar = 29F 4
NL

∫ d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3 I(|k− q1|, q1, τ)I(|k− q2|, q2, τ)Qλ(k,q1)Qλ(k,q2)

× Pg(q3)Pg(|q1 − q3|)Pg(|q2 − q3|)Pg(|k− q3|), (2.38)

and an O(F 4
NL) “nonplanar” term,

Pλ(k)nonplanar=28F 4
NL

∫ d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3 I(|k−q1|,q1,τ)I(|k−q2|,q2,τ)Qλ(k,q1)Qλ(k,q2)

×Pg(q3)Pg(|q1−q3|)Pg(|q2−q3|)Pg(|k−(q1+q2)+q3|). (2.39)

ref. [74] refers to Pλ(k)Z as having a “walnut” topology; in appendix B we provide a complete
prescription for assigning Feynman-type diagrams to the above integrals (from which we
derive the labels Z and C). The “walnut” integral of ref. [88] appears to be our Pλ(k)C.
Furthermore, Pλ(k)C does not appear in ref. [74], while Pλ(k)Z does not appear in ref. [88].
In appendix C we recast these integrals into a form suitable for numerical integration.

3 Results

To study the relative importance of the various non-Gaussian contributions to the induced
GW spectrum, we now consider various primordial (Gaussian) curvature power spectra and
present numerical results for all terms. In order to clearly illustrate the effects of non-
Gaussianity, we typically fix the amplitude AR and vary FNL. Note, however, that when
considering the production of PBHs, non-Gaussianity has a significant impact on their abun-
dance [112–114]. In addition, we display results for a range of parameters to study the
contributions at each order in ARF 2

NL to the full GW spectrum. In reality, for some of the
most extreme values we consider, the perturbativity of the underlying theory may break
down (when ARF 2

NL & 1) or higher-order terms in the expansion of the curvature perturba-
tion (beyond the quadratic ansatz in eq. (2.30)) may be important. We retain these cases
for illustrative purposes and to compare to existing literature, postponing the consideration
of higher-order corrections to future work.

– 7 –
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3.1 Monochromatic spectrum

As a useful benchmark case, we first consider the spectrum of gravitational waves induced
by a monochromatic spectrum of density fluctuations,

∆2
g(k) = ARδ(ln k̃), (3.1)

defining k̃ = k/k?. The Gaussian result is [53]

ΩGW(k)Gaussian = 3A2
R

1024 k̃
2Θ(2− k̃)

(
k̃2 − 4

)2 (
3k̃2 − 2

)2
(3.2)

×
(
π2
(
3k̃2 − 2

)2
Θ
(
2
√

3− 3k̃
)

+
[
4 +

(
3k̃2 − 2

)
ln
∣∣∣∣ 4
3k̃2 − 1

∣∣∣∣]2
)
.

Though the non-Gaussian terms must still be computed numerically, integrating over the
Dirac delta functions substantially reduces the dimensionality of the required integrals. Note
that for the nonplanar term, solving for the zeros of the Dirac delta functions requires solving
a quartic polynomial for one of the integration variables si or ti (defined in appendix C). In
lieu of this we numerically integrate over one of the four Dirac delta functions, approximated
as a narrow lognormal function (eq. (3.4) below). We set σ = 1/100, which is more than
sufficiently narrow to serve as a good approximation.

We begin by considering each non-Gaussian contribution individually. Figure 1 dis-
plays the non-Gaussian contributions to the induced GW spectrum, dividing the O(F 2

NL) and
O(F 4

NL) terms by A3
RF

2
NL and A4

RF
4
NL, respectively. The connected terms clearly contribute

as significantly as the disconnected ones, and they peak at differing wavenumbers. In particu-
lar, the C and planar terms are substantially larger in the infrared and also contribute compa-
rably to the peaks at k & k?. In contrast, the Z and nonplanar terms are smaller in magnitude.
The C, Z, and nonplanar terms are (for at least some k) negative; however, as apparent in the
right panels of figure 1, the summed contributions at each order in FNL are positive definite.

By comparing the peak heights of the O(F 2
NL) and O(F 4

NL) terms in the left panels of
figure 1, we can estimate at what value of ARF 2

NL the two contributions are comparable.
For instance, aside from the spike in the C term, the ratio of the peaks of the O(F 2

NL) and
O(F 4

NL) contributions is roughly 1/2. In the common range AR ∼ 10−2 − 10−3 considered
for significant PBH production, for FNL ∼ 5− 20 the O(F 4

NL) terms contribute significantly.
In the infrared (IR) limit, the ratios of the Gaussian and O(F 2

NL) contributions is roughly
0.43, while that for the O(F 2

NL) and O(F 4
NL) ones is about 1.7.

We investigate the relative contributions of the O(F 2
NL) and O(F 4

NL) terms in more
detail in figure 2. We fix AR = 10−3 and vary FNL geometrically. For FNL = 5 the Gaussian
term dominates, but the non-Gaussian contributions produce “knees” near k ∼ 2k? and 3k?
where the Gaussian contribution vanishes. At FNL = 10 and 20, the structure of the peak(s)
is broadened by the O(F 2

NL) terms. Finally, at FNL = 40 the O(F 2
NL) and O(F 4

NL) terms
contribute comparably and dominate over the Gaussian one, resulting in a more complex
peak. Note that much of this structure is smoother in more realistic scenarios with broader
scalar power spectrum, as we investigate below.

As pointed out by ref. [58], the infrared scaling of the induced GW spectrum includes
a logarithmic running on top of the typical pure power law behavior. Though we verify that
the spectral index of the disconnected non-Gaussian contributions may be approximated as
3+a ln(bk) for some order-unity a and b (as found in ref. [66]), of the connected terms this form
only holds for the subdominant Z and nonplanar ones. The dominant non-Gaussian terms, the
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Figure 1. Unscaled (i.e., AR = 1 and FNL = 1) non-Gaussian contributions for a monochromatic
source, eq. (3.1). The dashed lines indicate each contribution at O(F 2

NL) (top panels) and at O(F 4
NL)

(bottom panels) with colors denoted in the legend. Solid black lines depict the sum of the individual
contributions appearing in each panel. The left and right panels display the results on a linear and a
log vertical scale, respectively. Because some individual contributions are negative at some k, dashed
and dotted lines indicate where the sign is positive and negative, respectively.

C and planar, scale with k2+a ln(bk) like the Gaussian term [58].3 As such, the spectral index
of hypothetical GW signals could likely not be used to distinguish one dominated by Gaus-
sian vs. non-Gaussian contributions. Furthermore, studies that neglect the connected terms
significantly underestimate the non-Gaussian contributions to the GW spectrum in the IR.

To make contact with potential observations, figure 3 depicts the full, present-day GW
signal alongside the sensitivity curves of various experiments [115].4 To get a sense of the
sizes of PBHs that could possibly be produced in such scenarios, the top axis of figure 3
depicts the mass MPBH of PBHs produced by the collapse of overdensities at horizon reentry
on scales k? = 2πf? [48],

MPBH
M�

= γ

0.2

(
g?

10.75

)−1/6 ( f

2.9× 10−9 Hz

)−2
, (3.3)

taking γ = 0.2 and g? = 106.75 for frequencies in and above the LISA band. We consider
cases where k? corresponds to a frequency of 10−2 Hz in the LISA band and 30 Hz in the

3The infrared behavior of each contribution can be verified analytically by explicitly integrating over the
Dirac delta functions and expanding in the limit k/k? � 1, a procedure we summarize in section D.

4For simplicity, we compare to the power-law-integrated sensitivity curves provided by ref. [115].
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green, and dotted red respectively. The total spectrum is depicted in thin black.
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Figure 3. Present-day induced GW spectrum for a monochromatic source with various FNL, plotted
against the sensitivity curves of various gravitational wave experiments [115, 116].
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LIGO band.5 One can observe how the signal shape changes with FNL, with a distinctive
three-peak structure arising at large FNL.

3.2 Lognormal spectrum

We now explore how the features of the GW spectrum induced by an idealized, monochro-
matic source are modulated when generalizing to a broader, more realistic spectrum. Con-
sider a spectrum with a Gaussian bump in ln(k), as in, e.g., ref. [88],

∆2
g(k) = AR√

2πσ2
exp

(
− ln2(k/k?)

2σ2

)
, (3.4)

normalized so that
∫

d ln k∆2
g(k) = AR. In figure 4 we first study the effect of increasing σ on

each of the individual non-Gaussian contributions in turn. As one might expect, the various
features in each contribution become less pronounced, shrinking in amplitude and broadening
in shape. In addition, most contributions exhibit a k3+a ln(bk) scaling in the infrared. Only
for the Gaussian, C, and planar terms does an intermediate regime of k2+a ln(bk) behavior
become partially evident for σ = 1/40, but each transitions to k3+a ln(bk) for k/k? . 10−2.

We investigate the relative contributions of the O(F 2
NL) and O(F 4

NL) terms in more
detail in figure 5, taking σ = 1/10. We again fix AR = 10−3 and vary FNL. The peak
structure is smoothed compared to that for the monochromatic spectrum, figure 2. However,
substantial non-Gaussianity does lead to a broad, nearly flat peak that distinguishes it from
the narrower feature evident in the spectrum for a purely Gaussian curvature perturbation.

3.3 Gaussian-shaped spectrum

We next consider the Gaussian-bump spectrum used in ref. [86],

∆2
g(k) =

(
k

k?

)3 AR√
2π(σ/k?)2 exp

(
−(k − k?)2

2σ2

)
, (3.5)

again normalized so that
∫

d ln k∆2
g(k) = AR. In figure 6 we show the total gravitational wave

power spectrum for various values of the non-Gaussianity parameter, FNL. We compare re-
sults including and excluding the connected terms, choosing σ = k?/30, AR = 10−3, and f? =
k?/2π = 3 × 10−3 Hz to match the choices of ref. [86]. Even when neglecting the connected
terms, we do not reproduce the particular peak structure observed in ref. [86], and when
including all contributions we observe a more pronounced second peak around 2f?. Though
the peak amplitude near f? is largely unchanged, neglecting the connected term significantly
underestimates the power at lower k (as discussed in the monochromatic case above).

3.4 Power law spectrum with an exponential cutoff

Another common spectral shape is a power law that is exponentially cut off near some k?,

∆2
g(k) = AR(k/k?)αe−α(k/k?−1). (3.6)

5Note that, for LIGO-band signals, if the primordial curvature spectrum were associated with PBH pro-
duction, these PBHs (being lighter than ∼ 10−18M�) would have evaporated via Hawking radiation by
today [117, 118]. In this work, however, we are agnostic as to the role the enhanced curvature spectrum plays
in the production of PBHs.
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Figure 4. Unscaled (i.e., AR = 1 and FNL = 1) non-Gaussian contributions for a lognormal source,
eq. (3.4). Solid lines depict results for σ spanning 1/40 through 1/5 as indicated in the legend. The
monochromatic result is overlaid in thin, dashed black.

This parameterization peaks at k? with amplitude AR for any α. For example, ref. [111]
found that, in contrast to the standard ultra slow roll scenario, an inflationary potential with
a small step could generate a curvature spectrum with α = 4 and a peak amplitude as large
as AR ≈ 10−2. Eq. (3.6) provides a good approximation to the result from ref. [111], aside
from the oscillations in k.

We display the individual results for each non-Gaussian term in figure 7. Like the
monochromatic and lognormal sources, the connected and disconnected contributions peak
at differing k/k?, but their sum (at each order in FNL) does not exhibit as prominent a
multi-peak structure. The results are also not highly sensitive to the value of α.

We again depict the contributions of the O(F 2
NL) and O(F 4

NL) terms for various FNL
in figure 8 for α = 4. In contrast to sources that decay more quickly in the infrared, the
shapes of the contributions to different orders in FNL are similar, each exhibiting a relatively
broad peak and an infrared scaling approaching k3 with a moderate running. From the
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dashed green, and dotted red respectively. The total spectrum is depicted in thin black.
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Figure 6. Gravitational wave spectra generated by a Gaussian-bump spectrum, eq. (3.5), with
σ = k?/30, AR = 10−3, and k?/2π = 3× 10−3 Hz. The left and right panels exclude and include the
connected contributions, respectively.

left panel of figure 8 we may deduce that the O(F 2
NL) contributions are comparable to the

Gaussian one when ARF 2
NL ≈ 0.3, while the right panel indicates that the O(F 2

NL) and
O(F 4

NL) contributions match when ARF 2
NL ≈ 3. However, the signal is cut off at larger k/k?

depending on whether (and which of) the non-Gaussian terms dominate.
Finally, we present results for the benchmark scenario of ref. [111] (for the Gaussian

part, including the effects of additional local-Gaussianity for illustrative purposes) in figure 9,
with a peak frequency of k?/2π = 3 nHz and amplitude AR = 10−2 (and g? = 10.75).

3.5 Broken power law spectrum

We next study a broken power law spectrum, as considered in ref. [74], with parameterization

∆2
g(k) = AR

(k/k?)−α + (k/k?)β
, (3.7)
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appear in dashed blue, dot-dashed green, and dotted red respectively. The total spectrum is depicted
in thin black.

scaling with kα in the IR and k−β in the ultraviolet (UV). All contributions to the GW power
exhibit a spectral index of 3 + a ln(bk) in the infrared as in the lognormal case in section 3.2.
In the ultraviolet the spectral index approaches −2β for 0 < β < 4 and −4 − β for β > 4.
These scalings agree with ref. [74], which provided estimates of the IR and UV behavior for
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Figure 9. Present-day induced GW spectrum for a power law (α = 4) source with an exponential
cutoff, setting AR = 10−2. The shaded regions indicate the sensitivity curves for the pulsar timing
experiments NANOGrav and the Square Kilometer Array (SKA) [115, 116].

the hybrid and Z contributions. Aside from decaying as a power law in the UV rather than
exponentially, the qualitative features of the induced GW spectrum for this case are similar
to that for the exponentially cut off power law.

4 Conclusions

In this work we have carefully computed the effect of local non-Gaussianity on the spectrum
of gravitational waves induced by scalar fluctuations. At lowest order in fluctuations, the
induced gravitational wave spectrum is sourced by the trispectrum, or 4-point function of
curvature fluctuations. We have shown that, contrary to some previous studies, the connected
part of the trispectrum makes important contributions to the total spectrum that can neither
be entirely neglected nor approximated by a multiple of the disconnected contributions. Our
results demonstrate that studies of the induced GW spectrum from non-Gaussian curvature
perturbations must carefully consider (and compute) all such contributions. For the power
spectrum enhancements that are commonly considered in PBH scenarios (with AR ∼ 10−3),
even modest values of FNL ∼ O(1) to O(10) significantly impact the induced GW spectrum.

A number of possible extensions merit attention. We have considered only the standard
local-type non-Gaussianity, while more generally other bispectrum shapes may be relevant
in detailed constructions, such as ref. [111]. Furthermore, connected contributions must also
be considered for higher-order non-Gaussianity, such as that considered in ref. [66]. We leave
these considerations for future work.
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A Cosmological perturbation theory

In this appendix we elaborate on the dynamics of cosmological perturbations and the grav-
itational wave spectrum induced at second order by scalar perturbations. Recall that the
background Einstein equations set

H2 = a2

3m2
Pl
ρ (A.1a)

H′ +H2 = a2

6m2
Pl

(
ρ− 3P

)
. (A.1b)

We define the perturbations to the stress-energy tensor as

δT 0
0 = −δρ (A.2a)

δT 0
i =

(
ρ+ P

)
∂iδu (A.2b)

δT ij = δijδP, (A.2c)

neglecting vector and tensor perturbations and scalar anisotropic stress. We can solve the
first-order Einstein equations for δρ, δP , and δu as

δρ = −2m2
Pl

a2
(
3H

(
Φ′ +HΦ

)
− ∂i∂iΦ

)
(A.3a)

δP = 6m2
Pl

a2
(
Φ′′ + 3HΦ′

)
− 6PΦ (A.3b)

δu = − 2m2
Pl

a2
(
ρ+ P

) (Φ′ +HΦ
)
. (A.3c)

The terms in the space-space components of the Einstein tensor that are second order
in the Newtonian potential are

a2δ(2)G j
i =4Φ∂i∂jΦ+2∂iΦ∂jΦ+δ ji

(
20
(
H2+H′

)
Φ2+8HΦΦ′−4Φ∂k∂kΦ−Φ′2−3∂kΦ∂kΦ

)
.

(A.4)
GWs are also sourced by second-order perturbations to the stress-energy tensor, which, using
eq. (A.3), may be expressed in terms of metric perturbations as

δ(2)T j
i = 4m4

Pl

a4
(
ρ+ P

)∂i (Φ′ +HΦ
)
∂j
(
Φ′ +HΦ

)
. (A.5)
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Dropping terms proportional to δij , setting P = wρ, and substituting eq. (A.1),

Sij = 4Φ∂i∂jΦ + 2(1 + 3w)
3(1 + w) ∂iΦ∂jΦ−

4
3(1 + w)H2

[
∂iΦ′∂jΦ′ +H∂iΦ∂jΦ′ +H∂iΦ′∂jΦ

]
.

(A.6)
After using eq. (2.13) to express the Newtonian potential in terms of the comoving

curvature perturbation R(k) and the transfer function Φ(kτ), taking a Fourier transform,
and projecting onto (negative) ελij(k), we find

Sλ(τ,k) ≡ −ελlm(k)Slm(k) (A.7)

=
∫ d3q

(2π)3/2Qλ(k,q)f(|k− q|, q, τ)R(q)R(k− q), (A.8)

with
f(p, q, τ) ≡ 3(1 + w)

(5 + 3w)2

[
2(5 + 3w)Φ(pτ)Φ(qτ) + 4

H2 Φ′(pτ)Φ′(qτ)

+ 4
H
(
Φ(pτ)Φ′(qτ) + Φ′(pτ)Φ(qτ)

) ]
.

(A.9)

Substituting H = α/τ (via eq. (2.2)) yields eq. (2.15). The projection factors Qλ defined in
eq. (2.16) obey the symmetries

Qλ(k,q) = Qλ(k,q + γk) (A.10a)
Qλ(k,q) = Qλ(−k,q) = Qλ(k,−q) = Qλ(−k,−q). (A.10b)

We next require the solution to the equation of motion of the transfer function, Φ(kτ).
In the absence of isocurvature perturbations, the Newtonian potential evolves according to

Φ′′(τ,k) + 3(1 + w)HΦ′(τ,k) + wk2Φ(τ,k) = 0, (A.11)

after setting δP = wδρ. Using eq. (2.2), eq. (A.11) leads to

0 = d2Φ
dy2 + 6(1 + w)

1 + 3w
1
y

dΦ
dy + Φ, (A.12)

where y ≡
√
wkτ . For w 6= 0, the solutions are given in terms of the spherical Bessel functions

of the first and second kind, jν and yν :

Φ(kτ) = C1jγ−1(y) + C2yγ−1(y)
yγ−1 , (A.13)

where γ = 3(1 + w)/(1 + 3w). Imposing the superhorizon initial conditions Φ(x → 0) = 1
and ∂xΦ(x→ 0) = 0 sets C1 = 1 and C2 = 0. In radiation domination, γ = 2 and

Φ(y) = sin y − y cos y
y3 (A.14)

In matter domination, the solution to eq. (A.11) for the transfer function is instead merely
Φ(kτ) = 1.

The Green function for the tensor perturbations (i.e., the solution to eq. (2.20)) is
constructed via

Gk(τ, τ) = v1(kτ)v2(kτ)− v1(kτ)v2(kτ)
v′1(kτ)v2(kτ)− v1(kτ)v′2(kτ) , (A.15)
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where v1 and v2 are the homogeneous solutions to the equation of motion for v(kτ) =
a(τ)hλ(τ,k),

d2v

dx2 +
(

1− α(α− 1)
x2

)
v = 0. (A.16)

The solutions are

v1(x) = xjα−1(x) (A.17)
v2(x) = xyα−1(x), (A.18)

leading to
Gk(τ, τ) = kττ [jα−1(kτ)yα−1(kτ)− jα−1(kτ)yα−1(kτ)] . (A.19)

In radiation domination where w = 1/3 and so α = 1, the Green function is

Gk(τ, τ) = sin k(τ − τ)
k

. (A.20)

In, e.g., radiation domination, eq. (2.22) can be computed analytically in terms of
cosine and sine integrals via repeated integration by parts [53]. Defining Ĩ(v, u, x) ≡
k2I(vk, uk, x/k), the quantity required to compute the observable gravitational wave spec-
trum is

Ĩ(v1, u1, x→∞)Ĩ(v2, u2, x→∞) = 1
2x2 ĨA(u1, v1)ĨA(u2, v2)

[
ĨB(u1, v1)ĨB(u2, v2) (A.21)

+ π2ĨC(u1, v1)ĨC(u2, v2)
]
,

where

ĨA(u, v) = 3(u2 + v2 − 3)
4u3v3 (A.22a)

ĨB(u, v) = −4uv + (u2 + v2 − 3) ln
∣∣∣∣∣3− (u+ v)2

3− (u− v)2

∣∣∣∣∣ (A.22b)

ĨC(u, v) =
(
u2 + v2 − 3

)
Θ(v + u−

√
3). (A.22c)

B Diagrammatic rules for the gravitational wave spectrum

In this appendix, we detail the computation of the contributions to the primordial trispectrum
that induce gravitational waves. While a direct computation is straightforward, if tedious,
we also present a diagrammatic representation of the non-Gaussian contributions. In order
to make contact with existing literature, we present explicit Feynman-type rules with which
one can represent each of the integrals contributing to the induced GW spectrum.

A complication in this approach is that the transfer functions relate the (nonlinear) cur-
vature perturbation amplitudes to the Newtonian potential. The momenta flowing through
the transfer functions must be tracked, and as we demonstrate below this leads to differences
in diagrams that are otherwise topologically identical. We denote transfer functions with
dashed lines; 3-momenta flow through these in the direction indicated by the arrow. The
rules are given in table 1. They function like regular Feynman rules: one draws all allowed
diagrams and integrates over all loop momenta, momentum is conserved at each vertex, and
the overall momentum of a diagram is zero. Note that, even when performing the compu-
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(i)
k

Qλf

q− k

q

q

λ

1

4
∫ τ

τ0
dτ a(τ)

a(τ)Gk(τ, τ)Qλ(k,q)f(|k− q|, q, τ)

(ii) Qλf
q

1

1

(iii)
q1

Qλf

q1 + q2

q

q2

1

FNL

(iv) Qλf
q

1

Pg(q)

Table 1. Rules for the diagrammatic representation of Gaussian and local FNL-type non-Gaussian
contributions to the induced GW spectrum. Wavy lines are gravitational waves, solid lines are (Gaus-
sian) scalar power spectra, and dashed lines represent the transfer function of the Newtonian potential.
Diagrams that include vertices in rule (iii) where the solid lines are connected into a loop vanish by
virtue of the definition of R in eq. (2.30).

tations algebraically, a diagrammatic representation that accounts for the transfer functions
facilitates determining the multiplicity of each term (while keeping in mind the symmetries
of the transfer function and eq. (A.10)).

The contribution from the purely Gaussian part of the curvature perturbation is shown
in figure 10. The contributions due to the non-Gaussianity of the curvature perturbation are
shown in figure 11 for those at O(F 2

NL) and in figure 12 for those at O(F 4
NL). Contributions

at higher order in FNL require expanding the stress-energy tensor itself to higher order in
fluctuations and are suppressed by additional powers of the amplitude of the curvature spec-
trum. We have omitted vanishing diagrams in which the solid lines in rule (iii) are connected;
these simply cancel (see eq. (2.30)).

Compared to the diagrams in ref. [88], we can identify the hybrid diagram in figure 11
and the disconnected, planar, and nonplanar ones in figure 12 by replacing our dashed lines
with solid lines. However, the so-called “walnut” diagram of ref. [88] could be either of the
remaining diagrams in figure 11. No rules are provided in ref. [88] for converting the diagrams
to equations. However, our expression for the C diagram matches the expression for the “wal-
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k

Qλf

q− k

q− k

q− k

q

q

q

k′

q q

λ λ′

1

Figure 10. The Gaussian diagram, contributing at O(F 0
NL) to the GW power spectrum.

k

Qλf

q1 − k

q1 − k

q1 − k

q

q

q2 − q1

q2

k′

q1 q1

λ λ′

1

k

Qλf

q1

q1 + q2 − k

q− k
q1

q2 − k

q

q

q2

k′

q1 − k q2

λ λ′

1

k

Qλf

q1 − k

q1 − q2

q− k
q2 − k

q2 − k

q

q

q2

k′

q1 q2

λ λ′

1

k

Qλf

q1 − k

q − k

q2 − k

q

q

k

k′

q1 q2

λ λ′

q1 − k

q2 − k

1

Figure 11. Hybrid (top left), Z (top right), and C (bottom left) diagrams, contributing at O(F 2
NL)

to the GW power spectrum. The bottom right diagram vanishes due to the integration over the
azimuthal angles of the internal momenta.

nut” diagram in the supplemental material of ref. [88]. (Furthermore, sans transfer functions,
the propagator topology of the Z term more closely relates to the standard sunset diagram.)
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k

Qλf

q1 − k q1 − k

q

q

q2 − q1

q2

q1 + q3 − k

q3

k′

q1 q1

λ λ′

1

k

Qλf

q1 − k

q − k
q3 − k

q2 − k

q

q

q3

k′

q1 q2

λ λ′

q1 − q3

q2 − q3

1

k

Qλfq2 − q3 q1 − q3

q1 − k

q− k
q1 − k+ q2 − q3

q2 − k

q

q

q3

k′

q1 q2

λ λ′

1

Figure 12. The reducible (top left), planar (top right), and nonplanar (bottom) diagrams, contribut-
ing at O(F 4

NL) to the GW power spectrum.

C Recasting the integrals

In this appendix we recast the integrals into a numerically favorable form. Specifically, we
present the polarization-summed, dimensionless gravitational wave power spectrum

∆2
h(k) ≡ k3

2π2

∑
λ

Pλ(k). (C.1)

First define the variables

u = |k− q|
k

(C.2)

v = q

k
. (C.3)

The Jacobian of this transformation is −ku/v, so the integration transforms to∫
d3q = k3

∫ ∞
0

dv
∫ 1+v

|1−v|
du vu

∫ 2π

0
dφ. (C.4)

In terms of u and v,

sin2 θ = 4v2 − (1 + v2 − u2)2

4v2 . (C.5)

Next define

s = u− v (C.6)
t = u+ v − 1. (C.7)
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The Jacobian for this transformation is 1/2, so∫ ∞
0

dv
∫ 1+v

|1−v|
du = 1

2

∫ ∞
0

dt
∫ 1

−1
ds. (C.8)

The integration domain over s and t is rectangular, a requirement of most multidimensional
numerical quadrature routines. Though these shall be our integration variables, we retain u
and v in expressions for notational convenience.

Eq. (2.22) takes the form

Ĩ(v, u, x) ≡ k2I(q, |k− q|, x/k) =
∫ x

x0
dx̃ kGk(x/k, x̃/k)a(x̃/k)

a(x/k)f(vk, uk, x̃/k). (C.9)

For further notational convenience, we define

J̃(v, u, x) ≡ v2 sin2 θĨ(v, u, x) = 4v2 − [1 + v2 − u2]2

4 Ĩ(v, u, x), (C.10)

where θ is the polar angle of q. Namely, J̃(v, u, x) is equal to
√

2Qλ(k,q)I(q, |k− q|, x/k)
divided by sin 2φ or cos 2φ for the plus and cross polarizations, respectively.

C.1 Disconnected contributions

With the above definitions, the Gaussian contribution eq. (2.33) to the (dimensionless) GW
power spectrum (in terms of the dimensionless Gaussian curvature power spectrum ∆2

g(k)) is

∆2
h(τ, k)Gaussian = 4

∫ ∞
0

dt
∫ 1

−1
ds uvJ̃(v, u, kτ)2 ∆g(vk)

v3
∆g(uk)
u3 . (C.11)

Turning to the hybrid term, define

u1 = |k− q1|
k

(C.12)

v1 = q1
k

(C.13)

u2 = |q1 − q2|
q1

(C.14)

v2 = q2
q1
. (C.15)

Then eq. (2.34) yields

∆2
h(τ, k)hybrid = 4F 2

NL

∫ ∞
0

dt1
∫ 1

−1
ds1

∫ ∞
0

dt2
∫ 1

−1
ds2 u1v

4
1u2v2

× J̃(v1, u1, kτ)2 ∆2
g(u1k)
u3

1

∆2
g(v2v1k)
(v2v1)3

∆2
g(u2v1k)
(u2v1)3 .

(C.16)

Further defining

v3 = q3
|k− q1|

(C.17)

u3 = |(k− q1)− q3|
|k− q1|

. (C.18)
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the reducible term, eq. (2.35), contributes as

∆2
h(τ, k)reducible = F 4

NL

∫ 1

−1
ds1

∫ ∞
0

dt1
∫ 1

−1
ds2

∫ ∞
0

dt2
∫ 1

−1
ds3

∫ ∞
0

dt3 u4
1v

4
1u2v2u3v3

× J̃(v1, u1, kτ)2 ∆2
g(v2v1k)
(v2v1)3

∆2
g(u2v1k)
(u2v1)3

∆2
g(v3u1k)
(v3u1)3

∆2
g(u3u1k)
(u3u1)3 .

(C.19)

C.2 Connected diagrams

For the connected diagrams we define

ui = |k− qi|
k

(C.20)

vi = qi
k

(C.21)

for all i. We require the dot products between various qi,

qi · qj
k2 = cos(φi − φj)

4

√
ti(ti + 2)(1− s2

i )tj(tj + 2)(1− s2
j )

+ 1
4 [1− si(ti + 1)] [1− sj(tj + 1)] ,

(C.22)

as well as between k and qi:

k · qi
k2 = 1

2 [1− si(ti + 1)] . (C.23)

Because the integrands only depend on the differences between azimuthal angles, a
suitable coordinate transformation renders one of the azimuthal integrals trivial. For the C
and Z terms, eqs. (2.36), (2.37), we integrate over ϕ = φ1 − φ2, leading to

∆2
h(τ, k)c,F 2

NL
= 4F 2

NL
π

2∏
i=1

[∫ 1

−1
dsi

∫ ∞
0

dti uiviJ̃(ui, vi, kτ)
] ∫ 2π

0
dϕ cos 2ϕ

×
[

∆2
g(v2k)
v3

2

∆2
g(u2k)
u3

2

∆2
g(wak)
w3
a

+
∆2
g(v1k)
v3

1

∆2
g(v2k)
v3

2

∆2
g(wbk)
w3
b

]
,

(C.24)

where

w2
a = v2

1 + v2
2 − 2q1 · q2

k2 (C.25)

w2
b = 1 + v2

1 + v2
2 − 2k · q1

k2 − 2k · q2
k2 + 2q1 · q2

k2 . (C.26)

Finally, for the planar and nonplanar terms, eqs. (2.38), (2.39), we integrate over ϕ12 ≡
φ1 − φ2 and ϕ23 ≡ φ2 − φ3. We obtain

∆2
h(τ, k)c,F 4

NL
= F 4

NL
2π2

3∏
i=1

[∫ 1

−1
dsi

∫ ∞
0

dti uivi
] 2∏
j=1

[
J̃(uj , vj , kτ)

] ∫ 2π

0
dϕ12dϕ23 cos 2ϕ12

×
(

∆2
g(v3k)
v3

3

∆2
g(w13k)
w3

13

∆2
g(w23k)
w3

23

[
2

∆2
g(u3k)
u3

3
+

∆2
g(w123k)
w3

123

])
, (C.27)
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with the definitions

w2
i3 = v2

i + v2
3 −

2
k2 qi · q3 (C.28)

w2
123 = 1 + v2

1 + v2
2 + v2

3 − 2k · q1
k2 − 2k · q2

k2 + 2k · q3
k2

− 2q3 · q1
k2 − 2q3 · q2

k2 + 2q1 · q2
k2 . (C.29)

We implement the integrals numerically with vegas+ [119], performing each for at least
200 external momenta k and with a sufficiently large number of evaluations to achieve a rel-
ative precision of 10−3. For the higher dimensional integrals (the reducible and all connected
terms), we find using a relatively short MCMC sample (implemented with emcee [123]) as a
preconditioner to be an efficient means of generating an optimal vegas map (see the discussion
in ref. [119]).

D Monochromatic spectrum: infrared limit

We now sketch a derivation of the IR scaling of the induced GW spectrum for the monochro-
matic case, considering the C term [eq. (2.36)] as an example. Starting from eq. (C.24),
changing integration variables from ϕ to c ≡ cosϕ, and substituting eq. (3.1),

∆2
h(k, τ)C
F 2

NLA3
R

= 4
π

2∏
i=1

[∫ 1

−1
dsi

∫ ∞
0

dti uiviJ̃(ui, vi, kτ)
]

2
∫ 1

−1
dc 2c2 − 1√

1− c2

× δ(v1k̃ − 1)
v3

1

δ(u1k̃ − 1)
u3

1

δ(wak̃ − 1)
w3
a

.

(D.1)

Recall that k̃ = k/k?. Integrating the Dirac delta functions over s1, t1, and c sets

s1 = 0 (D.2a)
t1 = 2/k̃ − 1 (D.2b)

c = −1 + u2
2 + v2

2
4v1v2 sin θ1 sin θ2

, (D.2c)

and introduces a Jacobian factor of 2wa/k̃3v1v2 sin θ1 sin θ2. Here θi is the azimuthal angle of
qi, for which sin2 θi = ti(ti+2)(1−s2

i )/4v2
i . Note that eq. (D.2) sets v1 sin θ1 =

√
1− k̃2/4/k̃.

The leading-order, IR behavior of the product of the (late-time, oscillation-averaged) transfer
functions, eq. (A.21), resides in the ĨAĨB factors. After substituting eq. (C.10) for J̃ and
evaluating ĨA(u1, v1)ĨB(u1, v1) at u1 = v1 = 1/k̃,

∆2
h(k, τ)C
F 2

NLA3
R
≈ 12k̃4

2π(kτ)2 ln
( 4

3k̃2

)
Θ(2− k̃)

×
∫ 1

−1
ds2

∫ ∞
0

dt2
2(2c2 − 1)Θ(1− |c|)√

1− c2
ĨA(u2, v2)ĨB(u2, v2)u2v

2
2 sin θ2,

(D.3)

where c is implicitly set by eq. (D.2c).
The k̃-dependence of the remaining integral over s2 and t2 arises solely from c’s own

k̃-dependence, affecting both the integrand and the bounds of integration via the Heaviside

– 24 –



J
C
A
P
1
0
(
2
0
2
1
)
0
8
0

function Θ(1− |c|). Inspecting the form of c in eq. (D.2c) (in terms of s2 and t2) shows that
this Heaviside factor cuts off the integrals at t2 ∼ 4/k̃. Furthermore, the integrand grows with
t2, so the integral is dominated by this upper limit. The integrand depends weakly on s2 and
one can show that regardless of s2’s value, to leading order in k̃ and 1/t2 the t2-dependence
of the integrand is ∼ t2 ln t2. As a result, the integral itself contributes a factor ∼ k̃−2 ln k̃
and so, to leading order in k̃,

ΩGW,0 ∼ k̃2 ln2 k̃. (D.4)
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