This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
paper The following article is Open access

Parisi-Sourlas-like dimensional reduction of quantum gravity in the presence of observers

, and

Published 18 May 2021 © 2021 The Author(s)
, , Citation Dmitriy Podolskiy et al JCAP05(2021)048 DOI 10.1088/1475-7516/2021/05/048

1475-7516/2021/05/048

Abstract

We show that in the presence of disorder induced by random networks of observers measuring covariant quantities (such as scalar curvature) (3+1)-dimensional quantum gravity exhibits an effective dimensional reduction at large spatio-temporal scales, which is analogous to the Parisi-Sourlas phenomenon observed for quantum field theories in random external fields. After averaging over disorder associated with observer networks, statistical properties of the latter determine both the value of gravitational constant and the effective cosmological constant in the model. Focusing on the dynamics of infrared degrees of freedom we find that the upper critical dimension of the effective theory is lifted from Dcr = 1+1 to Dcr = 3+1 dimensions.

Export citation and abstract BibTeX RIS

Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.