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Abstract. We consider black holes which form from an initially spherically symmetric super-
Hubble perturbation of a cosmological background filled by a perfect fluid p = wp with
w € (0,1]. Previous work has shown that when w = 1/3 (radiation), there is a critical
threshold for black hole formation (d.), which, to a very good approximation, only depends
upon the curvature of the compaction function around its peak value. We find that this
generalizes to all w 2 1/3; for smaller ws the knowledge of the full shape of the compaction
function is necessary. We provide analytic approximations for §. which are accurate for
w € [1/3,1].
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1 Introduction

Primordial Black Holes (PBHs), first theorized in [1-5], could have formed in the very early
Universe from the gravitational collapse of cosmological perturbations. Several estimates of
the PBHs abundance suggest that they may make up a significant fraction, if not all, of the
Dark Matter (DM) today [6].

PBH formation is studied by considering the evolution of initially super-Hubble pertur-
bations. The simplest ones are spherically symmetric, and are characterized by the way in
which their “compaction function” (roughly the“gravitational potential”) varies with scale r.
The compaction function generically has a maximum on some scale r = r,,,. A PBH forms if,
on this scale, the compaction function exceeds a certain critical threshold .. The predicted
statistical abundances of PBHs typically depend strongly on the value of this threshold. For
example, in the case of PBH formation during a radiation-dominated epoch, the abundance
is exponentially sensitive to d. (e.g. [7-9]).

Early estimates of d. (e.g. [10] and [11]) were based on simplified analytically solvable
models under certain rather restrictive assumptions. These were used to motivate the ex-
istence of a “universal” threshold that was supposed to apply for any equation of state.
However, numerical studies have shown that, even for a fixed equation of state, d. is not



universal [12-20]. The main reason is that J. depends on the details of the initial perturba-
tion [19], i.e., on the scale dependence or “shape” of the compaction function. Nevertheless,
it was shown in [21] that during a radiation-dominated epoch (equation of state p = wp
with w = 1/3), to a very good approximation, there exists a universal (shape independent)
threshold value for the volume-averaged compaction function. Since the volume average is
dominated by scales near the maximum of the compaction function, in [21] we showed that it
is sufficient to parameterize the profile dependence of §. by the curvature of the compaction
function at its maximum. Using this insight, we found an analytic approximation to the
shape dependence of d. which matches that found in simulations to within a few percent.

This raises the question of whether or not this universality is generic. There are at
least two directions to explore: non-spherical perturbations, and equations of state for the
background that differ from radiation.

The critical threshold required to form a black hole from an a-spherical configuration
is generally larger than for the spherical case [22]. The reason is very simple: in a-spherical
configurations the emission of gravitational waves and/or matter lost by centrifugal forces
will fight against gravitational collapse. Thus, exceeding a spherically symmetric threshold
can be seen as a necessary condition for PBH formation. For radiation, recent work [23] seems
to confirm the existence of a universal threshold related to the volume-averaged compaction
function even when the initial curvature perturbations are a-spherical.

PBHs might also be formed in a variety of other scenarios (see e.g. [24]) where the
collapsing fluid equation of state is not that of radiation and perturbations are not necessarily
generated during inflation. Thus, in this work we revisit the problem of spherically symmetric
black hole formation in a perfect fluid with p = wp and w € (0, 1], with the aim of seeing if
the w = 1/3 analytical results for the threshold [21] can be generalized. Note that we only
consider the case in which the available time for PBH formation is infinite. To incorporate
these results in the cosmological context, one must also require PBH formation in finite time,
and this may make the threshold time-dependent. This is particularly true in the limiting
case of dust (w — 0), where all over-dense perturbations will eventually collapse, although
the time to collapse will depend on the value of the compaction function and its shape. On
the other hand, the time for PBH formation is known to decrease as w increases, and for
w 2 1/3 the time dependence of the threshold is very weak [7].

Our paper is organised as follows: sections 2 and 3 describe the initial conditions and
the numerical technique we use to simulate BH formation. Convergence tests are described
in an appendix. Section 4 provides heuristic arguments for the range of w over which univer-
sality might hold, and the appropriate variables in which this universality is most obviously
manifest. Section 5 provides an analytic formula for the dependence of the critical threshold
for BH formation on w and the profile shape. Sections 6 and 7 demonstrate its accuracy
using a variety of profile shapes. Section 8 compares our results with previous work for the
few special cases where this is possible, and a final section summarizes our findings.

2 Initial conditions for black hole formation

We use the Misner-Sharp equations [25] to simulate the gravitational collapse of cosmo-
logical perturbations in spherical symmetry within a Friedman-Robertsnon-Walker (FRW)
background. We consider a perfect fluid, p = wp, with energy momentum tensor TH’ =
p(w + Duru” + wpgh” and the following metric:

ds®> = —A(r,t)%dt* + B(r,t)%dr® + R(r, t)%dQ?, (2.1)



where d2? = df? + sin?(6)d¢? is the line element of a 2-sphere and R(r,t) is the areal radius.
The components of the four velocity u* (which are equal to the unit normal vector orthogonal
to the hyperspace at cosmic time t u# = nt), are given by u! = 1/A and u’ = 0 for i = r, 0, ¢.

The Misner-Sharp equations, written in a form that is convenient for numerical simula-
tions (and with Gy = 1), are [20]:

M = —4x AwpUR? ,
M' = 4npR*R/,

where () and (") represent time and radial derivatives respectively. Here U is the radial com-
ponent of the four-velocity associated to the Eulerian frame and M is the Misner-Sharp mass
(which includes contributions from the kinetic energy and gravitational potential energies)
introduced as:

M(r,t) = /OR 47 R%p (%f) dr, (2.3)

which is related to I'; U and R though the constraint:

2M
I'=4/1 2 —. 24
Jivr- = (2.4)

The boundary conditions to this system of differential equations are R(r = 0,t) = 0,
leading to U(r = 0,t) = 0 and M(r = 0,t) = 0. Moreover, by spherical symmetry and
to ensure regularity of the metric (2.1) at » = 0, we have D,p(r = 0,t) = 0. Finally, in
this work we shall only consider type I collapses where D,.R > 0, as type II are in some
sense always over-threshold [26]. Because we have a finite grid of size 7, the condition of an
asymptotically FRW is imposed by fixing p/(r = r¢,t) = 0.

The lapse function A(r,t) can be solved analytically. Imposing A(rf,t) = 1, to match
with the asymptotic FRW spacetime, we have

A(r,t) = <[f(l;(,tt))> - , (2.5)

where py(t) = po(to/t)? is the energy density of the FRW background and py = 3HZ /8.
In addition, to set up the initial conditions for Black Hole (BH) formation, the met-

ric (2.1) at superhorizon scales can be approximated, at leading order in gradient expansion,
by [17]:

ds? = —dt® + a2(t dr’ 2402 2.6
§° = + a“(t) 7“2+T . (2.6)

1—K(r)
The cosmological perturbation is encoded in the initial curvature K(r). At leading order in
gradient expansion and at super-horizon scales, the product K (r)r? is proportional to the
compaction function

2[M(r,t) — My(r,t)]

elr) = R(r,t) !

(2.7)



which represents a measure of the mass excess inside a given volume parameterized by r [17],
via the relation

C(r) = f(w)K(r)r?, (2.8)
where 301 )
+ w

We use 7y, to denote the scale on which C(r) is a maximum. The value C(ry,) on this scale
is used as a criterion for PBH formation [15, 17]. The maximum possible value of C(ry,) is
de,max = f(w). This is why f(w) appears explicitly in the expression above.

Specifying the initial conditions corresponds to choosing a particular curvature profile
K(r), after which the compaction function C(r) evolves non-linearly. Whenever C(ry) >
dc(w, profile), the gravitational compression wins against pressure gradients and the expan-
sion of the background universe. This leads inexorably to the formation of a black hole after
the first apparent horizon is formed. Typically, this happens whenever the maximum of the
compaction function is of order unity (for a more formal discussion see [27], but recall that,
in any case, this value cannot exceed 0¢max = f(w).)

In what follows, we will refer to d.(w,profile) as the threshold. We are particularly
interested in quantifying the dependence on w and checking if the dependence on profile
shape can be included simply, as it is for w = 1/3.

3 Numerical technique

In order to numerically solve the system (2.2), we have used the publicly available code
based on pseudo-spectral methods [20]. The time integration of the differential equations
is performed with a fourth-order explicit Runge-Kutta method, while the Chebyshev col-
location method is used to discretise the grid and evaluate the spatial derivatives [28]. In
this method, the spatial domain is discretised in a Chebyshev grid, whose nodes are given
at xp = cos(km/Nepep), where k = 0,1,..., Nepep and Nepep is the number of points on the
grid. To compute the spatial derivatives at the Chebyshev points we use the Chebyshev
differentiation matrix D. See [20] for details.

Pressure gradients increase with increasing w implying the necessity of also increasing
the numerical accuracy. Therefore, for w > 1/3, we have improved the technique developed
in [20] by using a composite Chebyshev grid: we split the full domain in several Chebyshev
grids that differ in terms of the necessary density of points to reach the desired accuracy.
More technically, our domain is divided into M subdomains given by ; = [r,r;41] with
[=0,1..., M. Since the Chebyshev nodes are defined in [—1, 1], we also perform a mapping
between the spectral and the physical domain for each Chebyshev grid. In particular, we use
a linear mapping for each subdomain defined as:

- r1 + 7 Tl — 1
Tpy = +2 + +2 Th, (3.1)

where 1, ; are the new Chebyshev points re-scaled to the subdomain €);. In the same way,
the Chebyshev differentiation matrix is re-scaled using the chain rule:

Di=—>D,. (3.2)



Each subdomain is independently evolved in time with the Runge-Kutta 4 methods. The
spatial derivative in each subdomain is computed by the associated Chebyshev differentiation
matrix D~1.

In order to evolve across different €2;s we need to impose boundary conditions. For this,
we have followed the approach of [29]. At the boundaries between subdomains, the time
derivative of each field is computed. Then, the incoming fields derivative is replaced by the
time derivatives of the outgoing fields from the neighboring domain. Following an analysis
of the characteristics like the one performed in [29], we have checked that all the fields are
incoming except for the density field, which is directed outwards. Appendix A describes
convergence tests which give us confidence in our numerical simulations.

4 Analytical threshold: heuristic arguments

As explained in [21], to a very good approximation, the threshold for the w = 1/3 case
only depends upon the curvature of the compaction function at its maximum, under the
assumption of a central over-dense peak in the density distribution. Here we give a slightly
different heuristic argument for why this is so and also draw some conclusions about the
cases w # 1/3.

4.1 Shape approximation

Following [11], we first crudely model a sharply peaked initial density distribution as a ho-
mogeneous core (a closed universe) surrounded by a thin under-dense shell between it and
the external expanding universe.

The speed of propagation in a closed FRW universe is equation-of-state dependent:

_ Vw
V=T 3w (4.1)

This speed has a maximum at w = 1/3, from which it falls relatively steeply for w < 1/3
and less steeply for w > 1/3. For radiation (w = 1/3), only a very small portion around
the maximum of the gravitational potential (which is typically at the border of the core)
will contribute to the collapse. All other surrounding fluid-elements will manage to escape
the gravitational attraction. However, if the equation of state differs from w = 1/3, a larger
portion of the fluid will participate in the collapse. Hence, as w becomes increasingly different
from 1/3, we may expect the threshold to depend more and more on the full shape of the
compaction function. Moreover, this dependence will be asymmetric: we expect a stronger
dependence for w < 1/3 than w > 1/3. This is indeed what we are going to show numerically.

If the escape velocity were the only ingredient, the point of maximal velocity would
also correspond to the maximal threshold, as reported in [11]. This, however, does not make
sense [30]: the approximation of [11] misses the fact that if the density is inhomogeneous,
then this generates gradient pressures that are larger if w is large. These resist the collapse,
so we might expect the threshold to increase with w. However, even this is not the full story.
Pressure gradients are also a form of gravitational energy so, while they initially work against
the collapse, once the collapse is triggered, they mostly favor it. The net result is a smaller
formation time for a larger w, as can be seen in figure 1.

To summarize: our heuristic arguments suggest that the methodology of [21] for finding
a universal threshold might also be useful for w > 1/3 but it is likely to fail for w < 1/3.
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Figure 1. Dependence on w of the time for a perturbation to collapse and form an apparent horizon.
For this example the initial perturbation (at t = t¢) is given by eq. (5.2) with ¢ = 1 and § = 6.+ 1072,

4.2 Use of average compaction function

At super-horizon scales, the perturbations at threshold are very well approximated by their
Newtonian counterpart. Because the space and time dependence of the perturbation decou-
ples, one has that

V20 = 87p, (4.2)

where p(r) = (aH)2% l():’t), ® is the Newtonian potential and V? is the Euclidean Laplacian.
Eq (4.2) is solved by

T dr T -
O(r) = 87r/ 2/ dyy*p . (4.3)
o T% Jo

In this limit the compaction function is

C(r) = % /OT dyy*p, (4.4)

and thus

8t [T C(x)
D(r)=— —dx . 4.5
=5 [ = (45)
Now suppose only the potential difference around 7, is important for the gravitational col-
lapse. Then we can consider the difference ®(ry,) — ®(ro) where ro = (1 — «). Assuming
this region is weakly dependent upon the profile chosen, once the equation of state is fixed,
we can approximate o ~ a(w) < 1. Then,
&t [Tm Ve

D(rpy) — O(ro) = — 22C(x)

—d
3Va rm(l—a) 3 v

where V,, is the volume in the shell of internal radius r,,(1 — «) and external radius r,,. Since
a < 1, we have

D (rp,) ~ 048%@—1— O(a?) . (4.6)

This shows that if the gravitational collapse only depends on the potential difference around
the maximum of the compaction function, then the threshold will mainly depend on the



volume averaged compaction function, and not on the other details of its profile. Because of
this, one could equivalently study the dual problem of a top-hat compaction function with
height equal to the average of the original compaction function. This is precisely what we
did in [21].1

5 Analytic formula for the threshold

In this section, we suppose that the equation of state of the fluid is such that it allows us to
expand the compaction function around its maximum (r = r,,). Then, as in [21], to a very
good approximation the threshold only depends on

r2 C"(rm)
4C(rm)

q=— : (5.1)
which is a dimensionless measure of the curvature of C(r) at its maximum.

To proceed, we define a “basis” (or fiducial set of curvature profiles) such that, by varying
q, this set covers the whole range of interesting thresholds and shapes with ¢ € (0, c0) while
also being regular at r = 0 and having p'(r = 0,¢) = 0. In [21], this basis was given in
terms of the exponential functions used previously by [19]. However, because the boundary
conditions at the origin are violated for ¢ < 0.5, we instead consider the basis

C(rm) 1+1/q
f(w)r2, 14 % ( . >2(q+1)

Ky(r) = (5.2)

Tm

This fiducial set satisfies the appropriate boundary and regularity conditions for any ¢ > 0.
We then define

Co(r) = f(w)r?Ky(r) . (5.3)

The critical compaction function, averaged within a spherical shell extending from radius
[1 — a(w)] rm to ry, is defined to be

Ce(w roezi3 " r)ridr
Celw, profile) = i Vo (w)] /rm[la(w)] Celryrdr (5:4)

where V]a(w)] = a(w) [3 + (a(w) — 3)a(w)] and C.(r) = C(r)’c(rm)zac.

Inserting eq. (5.2) in eq. (5.4) yields
Ce(w, basis) = 6.(w, q) (g, w) [—Fl(q) + (1 — )3 2Ry (q, a)] , (5.5)
with
B 3(1+q)

9@w) = o T Bra@—3) (5.6)
Fl(q)ZQFI 1,1— 5 2 — > —q|, (57)

2(1+q)’ 2(1+4q)’

Tn [21] we showed that setting a = 1 works well. Here we show that allowing o < 1 leads to a better
approximation.



and

5 5
Fy(q,w) =oF [1,1— 2 — ,—q(1 — )20 | 5.8

b(q,w) = 211 20+ q) 21 1 q) q( ) (5.8)

where o F} is the hypergeometric function.
Notice that if

Ce(w, profile) ~ C.(w), (5.9)
i.e. if the dependence of the averaged critical compaction function on profile shape is weak
enough to be ignored, then one can simply rearrange eq. (5.5) to obtain an analytic expression
for the critical threshold value:

o (w) 1

" _C
D) = g w) R a) + (1 )% 2iF5(g. )]

(5.10)

Once a(w) has been specified, eq. (5.10) represents our generalization of [21] to w > 1/3.

In [21], where w = 1/3, o was a constant set equal to 1 and hence C. equaled the volume
average within the sphere of radius r,,. Here, we allow a to depend on w but we still assume
its dependence on ¢ to be negligible. As we shall see, this assumption is good enough only
for w 2 1/3, as we suggested in the previous section. In particular, we shall find that even
for the case w = 1/3, the optimal « is smaller than 1. In this sense, the current analysis not
only generalizes the work of [21] to w # 1/3, it also enhances the precision of the w = 1/3
case.

5.1 The appropriate volume over which to average

We determine a(w) as follows: consider a family of profiles parameterized only by C(ry,)
and ¢, such as those given by eq. (5.2). We evolve each profile using the code described in
section 3, and hence determine the threshold (59[ (w,q). We then perform the volume integral
for various « to find the corresponding C.(w, a, q). The left panel of figure (2) illustrates:
the top and bottom panels show results for different w; the different curves in each panel
show how C.(w, o, q) varies with a as ¢ is increased in steps of &~ 1, when the profile shape is
given by eq. (5.2). The top left panel shows that C.(w, o, q) can vary by tens of percent with
g when w = 0.1. However, the bottom left panel shows that this variation is much smaller
when w = 0.5; at a =~ 0.5, C.(w, o, q) varies by less than 5% for the entire range of ¢ we have
considered. This is consistent with the heuristics of the previous section, which argued that
details of the profile shape should matter much more at small w.

Since the dependence on ¢ is weak, we have parametrized the remaining dependence
on w (comparison of the top and bottom panels shows that C. tends to be larger for larger
w) as follows: to minimize the error associated with using g-independent o and C. values
in eq. (5.10), we first chose the value of a(w) corresponding to the point where the flux of
Ce(w, , q) (e.g., in the bottom left panel) is densest. Once a(w) is given, the g-independent
Cc(w) is chosen to minimize the difference between its value and the numerical ¢-dependent
ones. The red circle at o ~ 0.5 in the bottom left panel of figure (2) shows the result of this
double minimization for w = 0.5. The red circle in the top left panel is at o = 1. We discuss
the significance of this difference shortly.

The symbols in the right hand panels of figure (2) show a(w) and C.(w) resulting
from following this procedure for the basis profiles (eq. 5.2). They show that C. decreases
monotonically with w; the limit C.(w — 0) = 0 reflects the fact that J.(w — 0) = 0. Instead,
« increases as w decreases reaching its maximal value, unity, for w < 0.2. Larger values



Figure 2. Left: dependence of C on the volume within which it is averaged, for two choices of w (top
and bottom panels) and a variety of basis shapes (curves show different ¢’s) for each w. Red circle in
each panel shows the pair (a,C), egs. (5.11) and (5.12) respectively, which return the best estimates
of §. when inserted in our universal threshold formula (eq. 5.10). Right: symbols in top and bottom
panels show C(w) and a(w) for profiles given by eq. (5.2); curves show eqs. (5.11) and (5.12). Vertical
dashed line is at w = 1/3.

of a indicate that the threshold is sensitive to the whole profile shape rather than just ¢
(which describes the profile shape at &« — 0). Thus, the increase of a as w decreases, and
the fact that & — 1 for w < 1/3, are in qualitative agreement with the discussion of the
previous section.

The trends shown in the right hand panels are well described by

Ce(w) = a + bArctan(cw?) (5.11)
a(w) = e+ f Arctan(gw"), (5.12)

with a = —0.140381, b = 0.79538, ¢ = 1.23593, d = 0.357491, e = 2.00804, f = —1.10936,
g = 10.2801 and h = 1.113. Inserting egs. (5.11) and (5.12) in eq. (5.10) yields an analytic
expression for 6.(¢,w). To connect with [21], note that when w = 1/3 we have a ~ 0.6
and C. ~ 0.4. This value of C. is similar to that obtained by [21] who explicitly set v = 1.
Eq. (5.11) is then our generalization of the [21] analysis to w > 1/3.

Having established that our methodology works for profiles of the form eq. (5.2), the
next section tests its accuracy and generality. However, before moving on, we note that there
is a technical issue with the basis eq. (5.2). As ¢ — 0, Cp(r) becomes nearly constant over an
ever wider range of scales. Because our simulation uses only a finite number of grid points,
the non-zero constant compaction function at the grid “infinity” — i.e. on the scale of the
box — results in a fictitious conical singularity which violates the boundary condition of a
flat FRW. For our simulations, this occurs when g < 0.1. In addition, for ¢ > 1, K}, becomes
close to a tophat, and C, becomes sharply peaked at r,,. This results in pressure gradients
which are difficult to simulate accurately. For this reason, egs. (5.11) and (5.12) have really
only been calibrated using simulations over the range ¢ € [0.1,30]. Of course, this restriction
on the range of ¢ is not physical: in principle smaller ¢ can be simulated simply by using
more grid points. Rather than paying the larger computational price of longer run times as
one moves to more and more grid points, in the next sections we check that extrapolating
our results to ¢ < 0.1 agrees with simulations of other profiles which have low ¢ but for which
the fictitious singularity at low g does not arise. We also consider the ¢ — oo limit in more
detail later.



6 Choice of profile shape

Here we test the approximation that both o and C, only depend on w. To do so we consider
three other families of curvature profiles:

_com) (0[],
K1 = f(w)r%ne ( ), (61)
C(rm) r A\ % 1 (ﬁ)l%
KQ_f(’UJ)T‘%L <’l“m (& < >, (62)
C(rm) 15, g(n(q), kp,r)
Ks = Tz, 1 gtn().hy. 1)’ (63)
where
9(n(q), kp,r) = A>T g1(n(q), kp,7) + g2(n(q), A, kp, ), with
91(n(q)

q); kp, ) = [kpr {Esn(=ikpr) + Egpn(ikyr)} + i{—=Eapn(ikpr) + Eapn(=ikpr)}]
92(n(q), A, kp, 1) = [=Akyr { Egn (—ilkpr) + By (iAkpr)} — i {=Eayn(ilkyr) + Egpn(—ikpr)}] ,

and Ep(z) = [ e ™ dt/t". K, and K; are the centrally and non-centrally peaked families

of exponential profiles discussed in [19], while the oscillating profiles K3 are more physically

related to models of inflation [31]. There, A is a UV cut-off of the power spectrum and k,

the Fourier mode related to its highest peak. For n > 0, one may remove the cut-off in K3

(A — 00). In this case, only the term g1 (n(q), kp, r) would contribute to the curvature profile.
In the next section we also consider profiles of the form

Ky=

C(rm) 12, Cre(r) . 1+1/q 1+1/g
_m h — ‘
f(w)rgn r2 CLC rm)7 wit CLC(T) - N ( , )2(q1+1) Y - 1 ( . )2(q2+1)
q1 \ "m,1 g2 \ "m,2

(6.4)
These K, are a linear combination of two of our basis Kj, profiles (eq. 5.2), each having
different ¢ and r,,. Our main interest in this family is that the resulting ¢ < 0.1 is well-
behaved without having to use extremely large grids.

Figure 3 compares a few of these curvature profiles and their associated compaction
functions for a variety of parameter choices. This makes the point that our analysis considers
a wide variety of profile shapes. Then, following the procedure outlined in the previous
section, we ran simulations with these other profile shapes, and so obtained the family-
dependent as and C.s. Finally, we checked if the averaged compaction functions depend
mainly on the curvature of K around r,, (i.e. on q) or if the full shape between 0 and r,
matters.

Figure 4 shows the results. As we expected, universality — results which do not depend
on the choice of K, provided ¢ is fixed — is most closely achieved when w = 1/3. For
w < 1/3, a and C, depend strongly on the family of profiles chosen and « quickly saturates
to 1. This is because for small pressure gradients (small w) local structure in the initial
profile shape matters more. Therefore, the shape around the peak of C is no longer the only
relevant quantity. However, notice that for w > 1/3, the dependence of o and C. on choice of
parametrization of the initial curvature profile is weak enough to be neglected, as we discuss
further below.
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Figure 3. Illustrative K (r) with the peak normalized to 1 (left) and corresponding C(r) (right) profiles
associated with egs. (6.1)—(6.3) with parameters chosen to all have ¢ = 1.22 at r,, and normalized to
§ =0.5.

Figure 4. Same as figure 2 except that green circles are obtained from simulations in which the
initial profiles were described by eq. (6.1), orange circles are for eq. (6.2) with A = 1, cyan circles
show results for eq. (6.2) with A = 2 and violet circles are for eq. (6.4). Solid curves show egs. (5.11)
and (5.12) which provide an excellent description of our basis set (eq. 5.2) based simulations.

To quantify the dependence of §. on choice of K for a given w and ¢, we define

dc(basis|q, w) — d.(other family|q, w)

A, = 100 5 (basislg ) ; (6.5)

this is the percent difference between d. returned by the simulations for the fiducial, basis
profile and one from another family (having the same ¢ and w). Figure 5 shows A, when
the other family is given by eq. (6.2), for a variety of choices of A. For w < 1/3, A, clearly
depends strongly on both A and q. However, as w increases, A, decreases and is much less
dependent on either A or ¢, with differences down at the one percent level when w = 1. This
also happens if we replace profiles of the eq. (6.2) family with those of eq. (6.1) or eq. (6.3).
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Figure 5. Relative difference (A, of eq. (6.5)) between the numerically simulated values §2¥ for the
basis eq. (5.2) and for eq. (6.2) with A = 0.5 (upside down triangles), A = 1 (solid dots), A = 2
(squares), A =5 (leftward pointing triangles) and A = 10 (diamonds) for a range of values of w and q.

7 Numerical versus analytical thresholds for w > 1/3

We are now ready to test if our methodology for obtaining an analytic fitting formula for the
threshold works, albeit only for w > 1/3. To do so, we define

]55 yy

N Y
de

A =100 (7.1)

where N and A stand for the threshold obtained from the numerical simulation and the
corresponding analytic approximation to it given by eq. (5.10).

The top left panel of figure 6 shows that A of eq. (7.1) is typically less than 6 — the
numerical and analytical thresholds agree at better than the 6% level — over the entire range
of w and ¢ we have tested. The other panels show the agreement is similarly good for the
other families of profiles: eqgs. (6.1)—(6.3). Our results for radiation (w = 1/3), which make
use of the basis eq. (5.2), turn out to be slightly more accurate than those of our earlier
work [21] where the exponential basis, eq. (6.1), was used.

We noted previously that numerical stability and speed make it difficult to estimate
dc in simulations with ¢ < 0.1 or ¢ 2 30, due to a conical singularity and large pressure
gradients respectively. However, it turns out that the ¢ — 0 and ¢ — oo limits are both
amenable to further analysis as we now discuss. In addition to pedagogy, understanding the
full range of ¢ is important because, in some models of PBH abundances (e.g. [9]), larger ¢
contribute at later times, so the full range of ¢ matters for PBH abundances.

7.1 The sharply peaked limit: ¢ — oo

It is easy to show analytically that the compaction function cannot exceed f(w) [19]. More-
over, numerical simulations of w = 1/3 show that this limit is saturated when the compaction
function is sharply peaked [19]. Sharply peaked implies ¢ — oo: for such profiles the pressure
gradients fighting the collapse are maximal and thus the compaction function should be too.
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Figure 6. Relative difference A of eq. (7.1) between the analytic values 64 (5.10) and the numerically
simulated 6% for a range of w and q. Top left panel shows results for the fiducial family of profiles
eq. 5.2 (circles) and profiles described by eq. (6.4) (diamonds); top right is when the profile is given
by (6.1); bottom left is for eq. (6.2) with A = 0.5 (upside-down triangles), A = 1 (solid dots), A = 2
(triangles pointing left), A = 5 (squares) and A = 10 (diamonds); bottom right is for eq. (6.3) with
n € [0.5,15] for A — oo (solid points) and for A # oo and n < 0 (stars).

This saturation should persist to larger values of w because larger values of w also imply
larger pressures which fight the collapse. Therefore, for w > 1/3 the compaction function of
a peaked profile must also saturate the bound. The left hand panel of figure 7 shows that,
indeed, for w > 1/3 6. — f(w) when ¢ — oo (the case for w = 1/3 was already reported
in [19]). Therefore, it is interesting to ask how well our eq. (5.10) does if we continue to use
it even for ¢ > 30. The right hand panel of figure 7 shows that setting ¢ — oo in eq. (5.10)
returns J. that is within 5% of f(w) for all w > 1/3. This strongly suggests that one can use
it for all ¢ > 0.1.

7.2 The ¢ < 1 limit

We now consider ¢ < 0.1, for which C, becomes approximately constant over a wide range of
scales, making it difficult to simulate the ¢ — 0 limit. The top left panel of figure 8 shows
why this limit is better studied by simulating the evolution of profiles given by K, rather
than Kj,. The two curves show profiles that both have ¢ = 0.015; however, C4 is obviously
smaller at r > ry,. In particular, C4 satisfies the condition of a flat FRW universe at the
boundary much better than does Cy,.

We have used the K, profiles to study 0. as ¢ — 0. The bottom left panel of figure 8
shows that, for all w > 1/3, 0. has approximately converged to its ¢ — 0 value even when
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simulations §Y (symbols connected by solid lines) approaches . max = f(w) of eq. (2.9) (dashed) as
q increases. Right: comparison of the maximum threshold 6. max = f(w) and our eq. (5.10) when
q — oo. Inset shows the percent difference between the two.
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Figure 8. The ¢ — 0 limit. Top left: comparison of compaction functions associated with two
profiles having ¢ = 0.015: C4 has (ru,.1,7m.2,q1,42,7) = (150,800,0.0005, 0.3, —0.8) in eq. (6.4) and
Cp has (rm,q) = (37.27,0.015) in eq. (5.2). Although they are similar at r < r,,, C4 is much smaller at
r > 1y, SO it is easier to simulate accurately. Bottom left: convergence of the threshold é.(q, w) for
profiles of the form eq. (6.4) to its ¢ = 0 value, for different w (as labeled). Bottom right: numerical
threshold for the case ¢ — 0 (symbols and black line) and the result of setting ¢ — 0 in the fitting
formula of eq. (7.3) (red line). Top right: percent difference between the ¢ — 0 limit of our analytical
threshold eq. (5.10) and the threshold obtained from simulations of C4 as ¢ — 0.

g ~ 0.015. The symbols in the right hand panel show that d. in the ¢ — 0 limit is a strong
function of w. The red curve shows that this dependence is well described by the ¢ — 0
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limit of our eq. (5.10), even though eq. (5.10) was only calibrated over the range ¢ € [0.1, 30].
Finally, the top right panel shows that the difference between the ¢ — 0 limit of our eq. (5.10)
and the ¢ — 0 threshold in our simulations of C4 profiles is typically smaller than about 6
percent.

In summary: we have shown that, as was true for equations of state having w = 1/3 [21],

i) the critical threshold for PBH formation depends mainly on the shape of the compaction
function around its peak;

ii) the average of the compaction function over an appropriately chosen volume is a nearly
universal quantity which only depends on w;

iii) the critical threshold saturates to the maximum of the compaction function in the limit
q — 003

iv) for small values of ¢, d.(q, w) rapidly converges to a ¢ independent function,

for all w € [1/3,1].

7.3 Combining the two limits to build a fully analytic approach

One of the steps in our methodology was the assumption that the dependence of the averaged
critical compaction function on profile shape is weak enough to be ignored (eq. 5.9). With this
in mind, we have explored what happens if, instead of performing a numerical minimization
to determine a(w) and C.(w), we use either the ¢ — oo or the ¢ = 0 limiting values as the
basis for our method. The ¢ — 0 limit has constant C, so Cc(w,q — 0) = 6.(w,q — 0). The
g — oo limit has K (rather than C) — constant for » < r,,. Since this limit has 6. — f(w),

it has
- ;1—[1—o¢(w)]5.

Ce(w,q — 00) = f(w)5 Vio(w)) (7.2)

Le., in these two limits C. is not an arbitrary function of w.

With this in mind, we start by using the fact that the simulated values of d.(w,q — 0)
directly determine C.(w). We have found that the dependence on w (cf. the bottom right
panel of figure 8) is well approximated by

Co(w) = i+ j Arctan(pw'), with (i, 5, p, 1) = (0.262285,0.251647, 1.82834, 0.984928).
(7.3)
Figure 9 shows that this expression for C. and that given by eq. (5.11) agree to better
than 7 percent. Next, by requiring this C.(w) to match eq. (7.2) we determine a(w), which
we have found is well described by

a(w) = m+t Arctan(rw®), with (m,t,r,s) = (25261.6, —16081.8,363647,2.09818).

(7.4)
We can now insert eqgs. (7.3) and (7.4) (instead of egs. (5.11) and (5.12)) in eq. (5.10) to
produce an analytic estimate of the critical threshold d.(w,q). Figure 10 shows the percent
difference between these new estimates and the simulated thresholds for a variety of w, ¢ and
choice of profile family. Notice that the differences here are not much worse than in figure 6,
suggesting than if we had an analytic understanding of d.(w,q — 0) then our methodology
for determining d0.(w, q) for any ¢ > 0 would be fully analytic.
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Figure 9. Percent difference between two estimates of C.(w): eq. (7.3) (which equals &.(w,q — 0)
shown in the bottom right panel of figure 8) and eq. (5.11).
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Figure 10. Same as figure 6, but now the analytic values 6 come from using the new fits for C. and
a(w) (egs. (7.3) and (7.4) instead of egs. (5.11) and (5.12)) in eq. (5.10).

8 Comparison to previous estimates

In view of the importance of the ¢ — 0 limit, we now compare our results to earlier at-
tempts that were calibrated to small values of g. One is due to [4], who used a Jeans length

approximation to argue that
OCarr = W . (8.1)

The other is due to [11], who improved on [4] by considering the collapse of a homogeneous
overdense sphere surrounded by a thin underdense shell. [11] argued that, under certain
assumptions on the form of the relativistic Jeans instability,

duyk = f(w) sin? (mv(w)) , (8.2)
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Figure 11. Dependence of threshold d. on w when the initial profile is given by eq. (5.2) with ¢ = 30,
g=1,¢=0.1and ¢ =0.015 (¢ = 0 would be a homogeneous sphere). Blue and green curves show the
maximal and minimal bounds on §, from [11]. Solid lines with dots and error bars show the results
of our simulations. Magenta line shows the approximation of Carr (our eq. (8.1)); black curve labeled
HYK is from [11] (our eq. (8.2)). Neither predicts g dependence of é., but dgyk explicitly aims to
describe the ¢ < 1 limit. The other curves show our approximation (eq. 5.10) in which . depends
both on w and ¢q. The dotted curves use eqgs. (7.3) and (7.4) in eq. (5.10) whereas the dashed curves
use egs. (5.11) and (5.12) in eq. (5.10).

where f(w) and v(w) are given by egs. (2.9) and (4.1). To account for uncertainty in how to
formulate the relativistic Jeans criteria, [11] also provided upper and lower bounds on 4. for
each w. These are given by their egs. (4.36) and (4.37).

Neither eq. (8.1) nor (8.2) admit dependence on the profile shape, which we showed
are present. Nevertheless, it is interesting to see how well they perform. The solid lines in
figure 11 show these approximations; symbols with error bars show d.(w) from numerical
simulations of profiles having ¢ = 0.015, ¢ = 0.1, ¢ = 1 and ¢ = 30. The dashed and dotted
curves, which provide a significantly better description of the simulations, show the result of
inserting eqgs. (5.11) and (5.12), or egs. (7.3) and (7.4), in our eq. (5.10). In both cases, our
eq. (5.10), like the simulations, exceeds even the upper bound claimed by [11] at ever lower
w as q increases.

The discrepancy between our simulations and eq. (8.2) at small w — which is as large
as 50% for ¢ = 0.1 — deserves further comment, as this is the limit that was believed to be
optimal for the approximations on which eq. (8.2) is based. This discrepancy is even larger
than the one noticed earlier because [11] only compared their formula with simulations of a
Gaussian curvature profile (i.e., eq. (6.1) with ¢ = 1). Indeed, for w < 0.15 the solid black
curve does provide a reasonable description of our ¢ = 1 simulations (even though the profile
is given by eq. 5.2 rather than eq. (6.1), so it is not exactly Gaussian in shape). However,
the top-hat profile, which is the one used in the analytic calculations of [11], is much better
approximated by ¢ < 1. For ¢ = 0.1, their formula does not describe the simulations partic-
ularly well, and the discrepancy at w < 1/3 is even worse when ¢ = 0.015. This disagreement
suggests that the apparent agreement shown in figure3 of [11] is just a result of numerical
coincidences: it is not physical. Therefore, analytic understanding of J. in the ¢ — 0 limit
remains an open and — our analysis suggests — extremely interesting and impactful problem.
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9 Conclusions

We performed numerical simulations of black hole formation from spherically symmetric
super-Hubble perturbations in a cosmological background that is a perfect fluid having equa-
tion of state p = wp with w € (0,1]. The simulations use pseudospectral methods [20], and
generalize our previous study of the case w = 1/3 [21] to other w with similar reliability
and accuracy (figures 12-15 and appendix A). The simulations show that, for a black hole to
form, the compaction function C (eq. 2.7) must exceed a critical threshold d.. This d. depends
on w and on the ‘shape’ — the radial profile — of the perturbation (figures 2 and 11).

We argued that, for w > 1/3, pressure gradients are strong and erase small scale details
of perturbations, so a simple parametrization in terms of suitably chosen averaged quantities
should be sufficient to predict d. quite accurately (section 4). We then argued that w deter-
mines the scale over which one should average C and that, given w, the shape-dependence
of 6. can be parametrized using only a single additional parameter, ¢ of eq. (5.1), which is a
dimensionless measure of the curvature of C on the scale where dC/dr = 0. We demonstrated
the accuracy of this proposal using a wide variety of parametrizations of possible profile
shapes (eq. 5.2, egs. (6.1)—(6.3) and figure 3). Our ‘universal’ formula, d.(q, w) of eq. (5.10),
is always within ~ 6% of the simulated values to which is has been calibrated: w > 1/3
(figures 5-8 and 10).

We also showed that the expressions for . provided by [11], which are supposed to
apply in the limits of small ¢ and w, are not as accurate as our eq. (5.10) (figure 11). A full
analytic understanding of the ¢ — 0 limit, if it exists, remains a very interesting problem
that would make our semi-analytic work fully analytic (cf. section 7.3). Nevertheless, even
without this understanding, our d.(q,w) of eq. (5.10) is sufficiently accurate that it vastly
simplifies estimates of PBH abundances when the equation of state has w > 1/3. Indeed, our
semi-analytical formula for the PBH threshold formation, removes the need to numerically
simulate the evolution of every single profile shape that is statistically likely.

The fact that this spherically symmetric case has worked out so easily, at least for
w > 1/3, suggests that a number of other problems may also be tractable. For exam-
ple, PBH formation from non-spherical perturbations [23, 32], the effects of rotation on the
gravitational collapse [33-35] or even PBH formation in modified gravity models [36] are
all interesting directions for future work which our analysis enables. Finally, how to make
progress when w < 1/3 is another open question.

A Convergence tests of the numerical simulations

To check the reliability of our simulations, we have performed a similar test to the one
described in ref. [20]. The initial conditions of our simulations rely on the gradient expan-
sion approximation. While the evolution equations are kept un-altered, this approximation
slightly violates the Hamiltonian constraint which is the derivative of the mass definition
eq. (2.3) i.e. M’ = 47 R'R?p.

Defining then

U — Mrllum — (/ief num/Rnum 1

) A1)
M, AT ppamR2,, (
the numerical square norm
M| /R, 2
U [|y= ‘ 1, A2
1 = ¢Z T (42)
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Figure 12. Evolution of the Hamiltonian constraint (eq

. (A.2)) using our fiducial profile choice,

eq. (5.2), for different values of ¢ (top to bottom) and w (as labeled) when § = J.(w,q) + 1072 is
supercritical. The same qualitative behavior is obtained for subcritical ¢ (i.e. 6 < d.(w, ¢q)).
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Figure 13. Same as figure 12 but using eq. (6.1) for the profile shape.

where k labels each point of the grid xj, should be much smaller than 1 for a self-consistent
evolution.

Figure 2 of ref. [20] shows that this is indeed the case for a number of profile choices
when w = 1/3. Figures 12-15 of this appendix show that this remains true for all w of
interest in this paper, and for all the profile shapes and families we have tested. Roughly
speaking, for ¢ > 1 convergence is more difficult as w increases, but our simulations always
have || ¥ ||2< 1072
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Figure 14. Same as figure 12 but using eq. (6.2) with A = 1 for the profile shape.
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Figure 15. Same as figure 12 but using eq. (6.3) for the profile shape. Note that the range of ¢ here
is smaller than for previous figures of this appendix.

In passing, we also note that the fiducial profiles eq. 5.2, give more stable numerical
evolutions than the basis used in our previous work [21]. This is an extra justification that
the choice of basis used in this paper is optimal for the reliability of our semi-analytical
formulae for the threshold d.(w, q).
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