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Abstract. We have measured the flux of cosmic muons in the Laboratori Nazionali del Gran
Sasso at 3800 m w.e. to be (3.432 ± 0.003) · 10−4 m−2s−1 based on ten years of Borexino
data acquired between May 2007 and May 2017. A seasonal modulation with a period of
(366.3±0.6) d and a relative amplitude of (1.36±0.04)% is observed. The phase is measured
to be (181.7 ± 0.4) d, corresponding to a maximum at the 1st of July. Using data inferred
from global atmospheric models, we show the muon flux to be positively correlated with the
atmospheric temperature and measure the effective temperature coefficient αT = 0.90±0.02.
The origin of cosmic muons from pion and kaon decays in the atmosphere allows to interpret
the effective temperature coefficient as an indirect measurement of the atmospheric kaon-to-
pion production ratio rK/π = 0.11+0.11

−0.07 for primary energies above 18 TeV. We find evidence
for a long-term modulation of the muon flux with a period of ∼ 3000 d and a maximum in
June 2012 that is not present in the atmospheric temperature data. A possible correlation
between this modulation and the solar activity is investigated. The cosmogenic neutron
production rate is found to show a seasonal modulation in phase with the cosmic muon flux
but with an increased amplitude of (2.6± 0.4)%.
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1 Introduction

Cosmic muons are produced mainly in the decays of kaons and pions that originate from the
interaction of primary cosmic rays with nuclei in the upper atmosphere [1]. For detectors
situated deep underground, the flux of cosmic muons is strongly reduced. Only muons sur-
passing a certain threshold energy Ethr contribute, while lower energy muons are absorbed
in the rock overburden. At great depths, the residual high energy muons must have been
produced by parent mesons that decay in flight without any inelastic interactions and with-
out elastic interactions of large momentum transfer before the decay. As a consequence, the
density and temperature variations of the upper atmosphere that alter the mean free path of
the decaying mesons introduce, in first approximation, a seasonal modulation of the under-
ground muon flux, which has been investigated for many decades [2]. Several experiments
located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy such as MACRO [3],
LVD [4, 5], Borexino [6], and GERDA [7] and at other experimental sites, e.g. IceCube [8],
MINOS [9], Double Chooz [10], or Daya Bay [11], have studied this phenomenon. Compared
to the previously published investigation based on four years of Borexino data acquired be-
tween 2007 and 2011 [6], the present analysis of ten years of data from 2007 to 2017 achieves
a significantly better precision on the muon flux, on the modulation parameters, and on the
effective temperature coefficient. In addition, we expand the former analysis by measuring
the atmospheric kaon-to-pion production ratio, observe a long-term modulation of the cosmic
muon flux, investigate a possible correlation between this modulation and the solar activity,
and measure the seasonal modulation of the cosmogenic neutron production rate.

– 1 –
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Borexino is an organic liquid scintillator detector situated at the LNGS, covered by a
limestone overburden of 3800 m w.e. [12]. It is designed for the spectroscopy of low energy
solar neutrinos that are detected via elastic scattering off electrons. Based on the data
acquired after the start of data taking in May 2007, Borexino accomplished measurements of
the solar 7Be [13–16], 8B [17, 18], pep [15, 19], and pp neutrino fluxes [15, 20]. The complete
spectroscopy of neutrinos from the pp-chain performed with Borexino is now available in [21].
In addition, a limit on the flux of solar neutrinos produced in the CNO cycle [15, 19] and
a spectroscopic measurement of antineutrinos produced in radioactive decays within the
Earth, the so-called geo-neutrinos [22–24], were performed. Investigating the background
to the neutrino analyses, Borexino further performed detailed studies of high energy cosmic
muons as well as of cosmogenic neutrons and radioactive isotopes from muon spallation on
the detector materials [25].

The Borexino detector geometry allows to identify muons passing through a spherical
volume with a cross section of 146 m2. The detection efficiency is virtually independent of the
muon’s incident angle, resulting in minimum systematics when measuring the muon flux and
its variations. Detailed air temperature data are provided by weather forecasting centers [26]
for the location of the laboratory and can be used to investigate the correlation between
the flux of high energy cosmic muons and the atmospheric temperature to determine the
atmospheric temperature coefficient.

In this article, we present an analysis of the cosmic muon flux as measured by Borexino
based on ten years of data. In section 2, we briefly introduce the Borexino detector. In
section 3, we report on the measured flux of cosmic muons and its seasonal modulation. In
section 4, we introduce a model describing the expected relation between the flux of cosmic
muons and the atmospheric temperature. In section 5, we present the modulation of the
atmospheric temperature. In section 6, we analyze the correlation between the flux of cosmic
muons and the atmospheric temperature. In section 7, we use the inferred effective tem-
perature coefficient to measure the kaon-to-pion production ratio in the upper atmosphere.
In section 8, we further analyze both the cosmic muon flux and the effective atmospheric
temperature using a Lomb-Scargle periodogram. In section 9, we report the evidence for a
long-term modulation and investigate its possible correlation with the solar cycle. In sec-
tion 10, we report on the seasonal modulation of the cosmogenic neutron production rate in
Borexino. In section 11, we summarize our results and conclude.

2 The Borexino detector

A schematic drawing of the Borexino detector [12] is shown in figure 1. In the present
analysis, we consider muons passing through the Inner Detector (ID). It consists of a cen-
tral organic scintillator target of 278 t composed of the solvent PC (1,2,4-trimethylbenzene)
doped with the wavelength shifter PPO (2,5-diphenyloxazole) at a concentration of 1.5 g/l.
The scintillator mixture is contained in a spherical and transparent nylon Inner Vessel (IV)
with a diameter of 8.5 m and a thickness of 125µm. To shield this central target from exter-
nal γ-ray backgrounds and to absorb emanating radon, the IV is surrounded by two layers of
buffer liquid in which the light quencher DMP (dimethylphthalate) is added to the scintilla-
tor solvent. A Stainless Steel Sphere (SSS) of 13.7 m diameter holding 2212 inward-facing 8”
E.T.L. 9351 photomultiplier tubes (PMTs) that detect the scintillation light caused by par-
ticle interactions in the central region completes the ID. The ID is embedded in a steel dome
of 18 m diameter and 16.9 m height that is filled with 2.1 kt of ultra-pure water. Through

– 2 –
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Figure 1. Schematic drawing of the Borexino detector.

the instrumentation of the outer surface of the SSS and the floor of the water tank with
208 PMTs, this Outer Detector (OD) provides an extremely efficient detection and tracking
of cosmic muons via the Cherenkov light that is emitted during their passage through the
water [27].

3 Seasonal modulation of the cosmic muon flux

The upper atmosphere is affected by seasonal temperature variations that alter the mean free
path of the muon-producing mesons at the relevant production heights. These fluctuations
are expected to be mirrored in a seasonal modulation of the underground muon flux since
the high energies necessary for muons to pass through the rock overburden require that the
parent mesons decay in flight without any former virtual interaction.

The present analysis is based on ten years of Borexino data acquired between the 16th

of May 2007 and the 15th of May 2017. Besides cosmic muons, the CERN Neutrino to Gran
Sasso (CNGS) beam [28] that was operational between 2008 and 2012 introduced muon events
in the Borexino detector [29]. These events have been carefully removed from the data sample
via a comparison of the event time at Borexino and the beam extraction times as in [27]. To
prevent statistical instabilities in the data sample, only data acquired on 3218 days for which
a minimum detector livetime of eight hours was provided are considered. Besides a phase in

– 3 –
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2010 and 2011 during which the liquid scintillator target underwent further purification, no
prolonged downtime of the detector is present in the data set.

Borexino features three different methods for muon identification, two of which rely on
the detection of the Cherenkov light generated in the OD. The Muon Trigger Flag (MTF) is
set if a trigger is issued in the OD when the detected Cherenkov light surpasses a threshold
value. The Muon Clustering Flag algorithm (MCF) searches for clusters in the OD PMT
hit pattern. Further, muons can be identified via their pulse shape in the ID (IDF). The
mean detection efficiencies have been measured to be 0.9925(2), 0.9928(2), and 0.9890(1),
respectively, and were found to remain stable. For details on the muon identification methods
and the calculation of the efficiencies, we refer to [27].

In the present analysis, we define muons as events that are identified by the MCF. To
account for small fluctuations of the muon identification efficiency, we estimate this efficiency
for each bin and correct the measured muon rate. We discard events that do not trigger the
ID to select tracks penetrating both the ID and OD volumes. Thus, the relevant detector
cross section is 146 m2 as given by the radius of the SSS, independent of the incident angle
of the muon. The resulting effective exposure of the data set is ∼ 4.2 · 105 m2 · d, in which
∼ 1.2 · 107 muons were detected.

Most of the muons arriving at the Borexino detector are produced in decays of kaons and
pions in the upper atmosphere. In the stratosphere, temperature modulations mainly occur
on the scale of seasons, while short-term weather phenomena usually only affect the tem-
perature of the troposphere, with the exception of stratospheric warmings that may lead to
extreme temperature increases in the polar stratosphere during winter [30]. Since the higher
temperature in summer lowers the average density of the atmosphere, the probability that
the muon-producing mesons decay in flight before their first virtual interaction is increased
due to their longer mean free paths. Only muons produced in these decays obtain enough
energy to penetrate the rock coverage and reach the Borexino detector. As a consequence,
the cosmic muon flux as measured by Borexino is expected to follow the modulation of the
atmospheric temperature.

At first order, the muon flux Iµ(t) may be described by a simple sinusoidal behavior as

Iµ(t) = I0
µ + δIµ cos

(
2π

T
(t− t0)

)
(3.1)

with I0
µ the mean muon flux, δIµ the modulation amplitude, T the period, and t0 the phase.

Short- or long-term effects are expected to perturb the ideal seasonal modulation. Moreover,
temperature and flux maxima and minima will occur at different dates in successive years.

The cosmic muon flux measured with Borexino is shown in figure 2 together with a fit
according to eq. (3.1). For better visibility, the measured average muon flux per day is shown
in weekly bins while the presented results are inferred applying a fit to the muon flux in a
daily binning. The lower panel shows the residuals (Data− Fit)/σ. We measure an average
muon rate R0

µ = (4329.1 ± 1.3) d−1 in the Borexino ID after correcting for the efficiency,
which corresponds to a mean muon flux I0

µ = (3.432±0.001) ·10−4 m−2s−1 in the LNGS. The
amplitude of the clearly discernible modulation is δIµ = (58.9±1.9) d−1 = (1.36±0.04)% and
we measure a period T = (366.3±0.6) d and a phase t0 = (174.8±3.8) d. This corresponds to
a first flux maximum on the 25th of June 2007. The statistical uncertainties of the parameters
are given and the reduced χ2 of the fit is χ2/NDF = 3921/3214. Here, we consider only the
leading seasonal modulation of the muon flux and subleading long- or short-term effects are

– 4 –
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Figure 2. Cosmic muon flux measured by Borexino as a function of time. The red line depicts a
sinusoidal fit to the data. The lower panel shows the residuals (Data− Fit)/σ. The data are shown
in weekly bins.

not accounted for in the fit function. The presence of a secondary long-term modulation that
may be guessed in the residuals is investigated in sections 8 and 9.

To further analyze the phase of the seasonal modulation, we project the data to one
year and fit again accordingly to eq. (3.1). The period is fixed to one year as shown in
figure 3. While we obtain unchanged results on the mean muon flux and the amplitude of the
modulation, the phase of the strictly seasonal modulation is found to be t0 = (181.7± 0.4) d,
corresponding to a maximum on the 1st of July. We consider this as our final estimate of the
phase of the seasonal modulation. Especially in winter and spring, clear deviations from the
sinusoidal assumption of the fit may be observed that can be attributed to a more turbulent
environment of the upper atmosphere due to, e.g., stratospheric warmings [30]. Thus, the
reduced χ2 of the fit is χ2/NDF = 13702/362. To check the result, we selected a sample of
muons as identified by the MTF and performed the same analysis steps. Consistent results
were obtained and we conclude that no systematic effects based on the muon definition are
introduced.

The flux of cosmic muons and the seasonal modulation have formerly been investigated
by several experiments located at the LNGS, namely by MACRO [3], LVD [4, 5], GERDA [7],
and Borexino [6]. The results are summarized and compared to the present analysis in table 1.
The LNGS consist of three experimental halls labelled A, B, and C. Borexino reports a higher
rate with respect to MACRO and LVD but a lower rate with respect to GERDA. Since the
measurements were performed at the LNGS during different time epochs, the mean muon
flux may be affected by variations of the mean temperature or by a long-term modulation
of the cosmic muon flux. Further, unlike Borexino, the acceptance of the other experiments

– 5 –
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Figure 3. Cosmic muon flux measured by Borexino in ten years folded to one year in a daily binning.
The red line depicts a sinusoidal fit to the data with the period fixed to one year.

Experiment Borexino Borexino I GERDA MACRO LVD I LVD II

(This Work) [6] [7] [31] [4] [5]

Location Hall C Hall C Hall A Hall B Hall A Hall A

Time 2007–2017 2007–2011 2010–2013 1991–1997 2001–2008 1992–2016

Rate

[10−4m−2s−1] 3.432 ± 0.001 3.41 ± 0.01 3.47 ± 0.07 3.22 ± 0.08 3.31 ± 0.03 3.3332 ± 0.0005

Amplitude

[10−6m−2s−1] 4.7 ± 0.2 4.4 ± 0.2 4.72 ± 0.33 — 5.0 ± 0.2 5.2 ± 0.3

Amplitude

(%) 1.36 ± 0.04 1.29 ± 0.07 1.36 ± 0.07 — 1.51 ± 0.03 1.56 ± 0.01

Period

[d] 366.3 ± 0.6 366 ± 3 — — 367 ± 15 365.1 ± 0.2

Phase

[d] 181.7 ± 0.4 179 ± 3 191 ± 4 — 185 ± 15 187 ± 3

Table 1. Results of the cosmic muon flux modulation from Borexino compared to further measure-
ments carried out at the LNGS. The values of the phase of the seasonal modulation were inferred via
sinusoidal fits with the period fixed to one year by all experiments.

carried out at the LNGS contains a dependence on the incident angle of the muons that must
be carefully modelled. The seasonal modulation is found by all experiments and the phases
agree well with that determined in the present work. Only GERDA reports a later maximum
of the cosmic muon flux but their analysis is based on three years of data only.

– 6 –
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4 Atmospheric model and effective atmospheric temperature

Since the mesons, and consequently also the muons from their decays, are produced at
various heights in the atmosphere, it is extremely difficult to determine the point in its
temperature distribution where an individual muon was produced. In order to investigate
the correlation between fluctuations of the atmospheric temperature and the cosmic muon
flux observed underground, the atmosphere is modelled as an isothermal meson-producing
entity with an effective temperature Teff [2]. Teff is defined as the temperature of an isothermal
atmosphere that produces the same meson intensities as the actual atmosphere. Properly
chosen weighting factors must be assigned to the corresponding depth levels accounting for
the physics that determine the meson and muon production.

A common parametrization is given by [9, 32]

Teff =

∫∞
0 dX T (X)απ(X) +

∫∞
0 dX T (X)αK(X)∫∞

0 dX απ(X) +
∫∞

0 dX αK(X)

'
∑N

n=0 ∆Xn T (Xn)(W π
n +WK

n )∑N
n=0 ∆Xn (W π

n +WK
n )

,

(4.1)

where the approximation considers that the temperature is measured at discrete levels Xn.
The temperature coefficients απ(X) and αK(X) relate the atmospheric temperature to the
muon flux considering pion and kaon contributions, respectively. These coefficients are trans-
lated into the weights W π

n and WK
n via numerical integration over the atmospheric levels ∆Xn

to allow the approximation. The weights are defined in appendix A.

Figure 4 shows the ten year average temperature at different pressure levels using data
for the closest point to the LNGS as provided by the European Center for Medium-range
Weather Forecasts (ECMWF) [26] and the assigned weights to the respective altitude levels.
Higher layers of the atmosphere are assigned higher weights since muons possessing sufficient
energy to penetrate the rock coverage of the LNGS are mainly produced at these altitudes.
On the contrary, muons produced at lower altitudes are usually less energetic and the majority
will not have the threshold energy Ethr to reach the detector.

A so-called effective temperature coefficient may be defined as

αT =
Teff

I0
µ

∫ ∞
0

dXW (X), (4.2)

where W (X) = W π(X)+WK(X). Thus, fluctuations of the cosmic muon flux may be related
to fluctuations of the effective temperature via

∆Iµ
I0
µ

= αT
∆Teff

Teff
(4.3)

and αT quantifies the correlation between these two observables as discussed in section 6.

5 Seasonal modulation of the effective atmospheric temperature

To verify the correlation between the observed modulation of the cosmic muon flux and fluc-
tuations of the atmospheric temperature, we analyze atmospheric temperature data provided
by the ECMWF [26] for the time period corresponding to the muon flux measurement. This

– 7 –
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Figure 4. The ten year average temperature [26] at the location of the LNGS is shown by the red line
and the normalized weighting factors Wπ

n +WK
n by the black line, as functions of the pressure levels.

The right vertical axis shows the altitude corresponding to the pressure level on the left vertical axis.

data is generated by interpolating several atmospheric observables based on different types
of observations (surface measurements, satellite data, or upper air sounding) and a global
atmospheric model. For this analysis, we use the temperature for the location at 42.75◦N
and 13.5◦E, which is the closest grid point to the LNGS available. The model provides atmo-
spheric temperature data at 37 discrete pressure levels in the range from [0–1000] hPa four
times per day at 00.00 h, 06.00 h, 12.00 h, and 18.00 h. Based on these data, we calculated Teff

for each of the temperature sets based on eq. (4.1). The effective atmospheric temperature
Teff of the respective day was computed as the average of the four values calculated during
the day, their variance was used to estimate the uncertainty.

Figure 5 shows the mean effective atmospheric temperature in a weekly binning. Analo-
gously to the cosmic muon flux, the modulation parameters were inferred by a fit to the data in
a daily binning. A fit similar to eq. (3.1) returns an average effective atmospheric temperature
T 0

eff = (220.893± 0.005) K, a modulation amplitude δTeff = (3.43± 0.01) K = (1.56± 0.01)%,
a period τ = (365.69 ± 0.04) d, and a phase t0 = (180.8 ± 0.2) d. While period and phase
of the temperature modulation clearly show the leading seasonal behavior of the effective
atmospheric temperature and agree well with the results of the muon flux discussed in sec-
tion 3, the slightly higher modulation amplitude indicates that not all mesons relevant for
the production of muons penetrating the LNGS rock coverage are affected by the density
variations of the atmosphere. With a χ2/NDF = 118460/3649, a sinusoidal is only a very
poor reproduction of the fine-grained temperature data. Similar to the flux of cosmic muons
(see section 3), short-term variations of the effective atmospheric temperature and, especially,

– 8 –



J
C
A
P
0
2
(
2
0
1
9
)
0
4
6

Time
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

T
em

pe
ra

tu
re

 [K
]

212

214

216

218

220

222

224

226

228

230 ECMWF Data

Seasonal Modulation Fit

Figure 5. Effective atmospheric temperature computed accordingly to eq. (4.1). The curve shows a
sinusoidal fit of the data.

additional secondary maxima in winter and spring are observed. These maxima may be as-
cribed to stratospheric warmings [30]. Sudden Stratospheric Warmings (SSW) sometimes
even feature amplitudes comparable to the leading seasonal modulation [33], as visible e.g.
in winter 2016/2017.

6 Correlation between muon flux and temperature

As expected, the modulation parameters inferred for the cosmic muon flux in section 3
and the effective atmospheric temperature in section 5 point towards a correlation of the
two observables. Figure 6 shows the measured muon flux in Borexino and the effective
atmospheric temperature scaled to percent deviations from their means I0

µ and T 0
eff for ten

years in a daily binning. I0
µ and T 0

eff were determined via sinusoidal fits to the respective data
sets. Besides the consistency of the leading seasonal modulations of both observables, we find
short-term variations of the temperature to be promptly mirrored in the underground muon
flux. Exemplarily, the short-term and non-seasonal temperature increase around January
2016 generates a secondary maximum of the muon flux.

To quantify the correlation of the two observables, we plot ∆Iµ/I
0
µ versus ∆Teff/T

0
eff

for each day as shown in figure 7. Indeed, we find a positive correlation coefficient (R-
value) of 0.55.

Based on eq. (4.3), we determine the effective temperature coefficient by performing a
linear regression using a numerical minimization method and accounting for error bars on
both axes. We obtain αT = 0.90± 0.02stat. in agreement with the former Borexino result of
αT = 0.93± 0.04stat. [6] but with the statistical uncertainties reduced by a factor ∼ 2.
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Figure 6. Daily percent deviations of the cosmic muon flux and the effective atmospheric temperature
from the mean in ten years of data. The insert shows a zoom for two years from May 2014 to May 2016.

In order to analyze systematic uncertainties, we performed the following checks: (1) We
repeated the analysis selecting muons with our alternative muon identification method MTF.
An effective temperature coefficient αT(MTF) = 0.92 ± 0.02stat. is measured in agreement
with the above result. (2) We allowed for an offset in eq. (4.3) and fit the data. The fit
provides an intercept α0 = −0.02 ± 0.03 consistent with zero, meaning that no obvious
offsets or non-linearities are observed. (3) We performed the analysis for a two-year moving
subset. We find the result to be stable and consistent with the full data set without any
fluctuations above the statistical expectations. We conclude that any systematic uncertainty
must be small compared to the statistical uncertainty obtained from the fit.

In table 2, the result of this analysis is compared to several further measurements
performed at the LNGS. The results agree well within their uncertainties. The GERDA
experiment [7] reported two values of αT using two different sets of temperature data. The
theoretical expectation of αT at the location of the LNGS considering muon production from
both kaons and pions was formerly calculated in [6] to be 0.92± 0.02 assuming 〈Ethr cos θ〉 =
1.833 TeV based on [32]. With the threshold energy 〈Ethr cos θ〉 = (1.34±0.18) TeV estimated
in this paper (see section 7), the expectation is αT = 0.893±0.015. Hence, our measurement
is still in agreement with both estimations.

7 Atmospheric kaon-to-pion production ratio

Since kaons and pions are affected differently by atmospheric temperature variations due
to their distinct properties like mass, lifetime, or attenuation length, the strength of the
correlation between the cosmic muon flux underground and the atmospheric temperature
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Experiment Time period αT

Borexino (This work) 2007–2017 0.90± 0.02

Borexino Phase I [6] 2007–2011 0.93± 0.04

GERDA [7] 2010–2013 0.96± 0.05

0.91± 0.05

MACRO [31] 1991–1997 0.91± 0.07

LVD [5] 1992–2016 0.93± 0.02

Table 2. Comparison of measurements of the effective temperature coefficient at the LNGS.

depends on the production ratio of kaons and pions in the atmosphere. In the following, we
infer an indirect measurement of the atmospheric kaon-to-pion production ratio based on the
measurement of the effective temperature coefficient reported in section 6.

For a properly weighted temperature distribution, the effective temperature coefficient
αT is theoretically predicted to be [2]

αT =
T

I0
µ

∂Iµ
∂T

(7.1)

with T being the temperature. The differential muon spectrum at the surface may be
parametrized as [1]

dIµ
dEµ

' A× E−(γ+1)
µ

(
1

1 + 1.1Eµ cos θ/επ
+

0.38 · rK/π

1 + 1.1Eµ cos θ/εK

)
(7.2)
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with rK/π the atmospheric kaon-to-pion ratio, θ the zenith angle, γ = 1.78 ± 0.05 [34] the
muon spectral index, and επ = (114 ± 3) GeV and εK = (851 ± 14) GeV [9] the critical pion
and kaon energies, respectively. The critical meson energy separates the decay from the
interaction regime: mesons with an energy below this energy are more likely to decay, while
mesons with a higher energy most probably interact in the atmosphere before decaying.

As shown in [2], eq. (7.1) may be transformed into

αT = −Ethr

I0
µ

∂Iµ
∂Ethr

− γ (7.3)

with the threshold energy Ethr. The muon intensity underground may be approximated for
the muon surface spectrum described by eq. (7.2) as [2, 3]

Iµ ' B × E−γthr

[
1

γ + (γ + 1) 1.1〈Ethr cos θ〉/επ
+

0.38 · rK/π

γ + (γ + 1) 1.1〈Ethr cos θ〉/εK

]
. (7.4)

With this approximation, the predicted αT may be calculated as

αT =
1

Dπ

1/εK +AK(Dπ/DK)2/επ
1/εK +AK(Dπ/DK)/επ

, (7.5)

with

Dπ,K ≡
γ

γ + 1

επ,K
1.1〈Ethr cos θ〉

+ 1 (7.6)

and AK = 0.38×rK/π describing the kaon contribution to the cosmic muon flux [9]. Ethr cos(θ)
is the product of the threshold energy for a muon arriving from a zenith angle θ at the detector
and the cosine of this angle. The mean value of this product allows to properly parametrize
and compare the depths of various underground sites taking into account that the threshold
energy is direction-dependent due to the shape of the respective rock overburden.

Figure 8 shows the weighted mean of αT for measurements performed at the LNGS
together with measurements at other underground laboratories from Barrett [2], IceCube [8],
MINOS [9], Double Chooz [10], Daya Bay [11], and AMANDA [35]. The experimental
results are plotted as a function of 〈Ethr cos θ〉, which is the parameter on which αT explicitly
depends (eq. (7.5)–(7.6)). The insert shows the LNGS based measurements from MACRO [3],
LVD [5], GERDA [7], and the two Borexino measurements from 2012 [6] and from this work.
For the LNGS, a value of 〈Ethr cos θ〉 = (1.34 ± 0.18) TeV has been calculated based on a
Monte Carlo simulation (see below). The red line shows the expected αT as a function of
〈Ethr cos θ〉 considering muon production using the literature value of the atmospheric kaon-
to-pion ratio of rK/π = 0.149± 0.06 [36], the dashed and dotted lines illustrate the extreme
cases of pure pion or pure kaon production, respectively. The green line indicates the result
of a fit to the measurements according to eq. (7.5) with rK/π as a free parameter. We obtain
rK/π = 0.08± 0.02stat. at a χ2/NDF = 5/9. However, note that systematic uncertainties like
the exact value of 〈Ethr cos θ〉 for the respective experimental sites are not fully determined
and this result is only indicative. Also, the measured values of αT depend on the assumed
kaon-to-pion ratio since this quantity is included in the computation of Teff . We do not take
into account this inter-value dependency here.

The value of rK/π can also be inferred indirectly from the combination of a theoretical
calculation of αT with the measurement from Borexino. In this case, no further experimental
data has to be included. We performed a Monte Carlo simulation to calculate the expected

– 12 –



J
C
A
P
0
2
(
2
0
1
9
)
0
4
6

 [TeV]〉 θ cos
thr

 E〈
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Tα

0

0.2

0.4

0.6

0.8

1

1.2

1.4

LNGS Weighted Mean

Ice Cube MINOS

Double Chooz ND

Double Chooz FD

Daya Bay EH1

Daya Bay EH2

Daya Bay EH3

Barrett

AMANDA

Tα

π)Tα(

K
)Tα(

 0.02± = 0.08 πK/Fit: r

Tα

π)Tα(

K
)Tα(

 0.02± = 0.08 πK/Fit: r

0.85

0.9

0.95

1

Borexino

Borexino
LVD

GERDA I

GERDA II

MACRO

(This Work)

(2012)
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curves indicate the expected αT for different assumptions of rK/π, with the green curve showing a fit
of the measurements according to eq. (7.5). The insert shows the result of the present work compared
to measurements from other LNGS-based experiments.

value of 〈αT〉 at the location of the LNGS depending on rK/π. For muons with an energy
Eµ � επ, which is true for the muons arriving at the LNGS, the zenith angle distribution is
best described by sec θ for θ < 70◦ instead of the usual cos2 θ [37]. We generated a toy Monte
Carlo set of muons by randomly drawing a zenith angle from this distribution and an energy
from the distribution given by eq. (7.2) for the respective θ. Moreover, a random azimuth
angle φ was selected and the rock coverage D(θ, φ) for muons arriving from this direction was
calculated based on an altitude profile of the Gran Sasso mountains obtained from the Google
Maps Elevation API [38] and the density of the Gran Sasso rock of ρ = (2.71±0.05) g/cm3 [39].
We converted this into a direction dependent threshold energy Ethr(θ, φ) for surface muons to
reach the LNGS using the energy loss formula given in [37] with fixed parameters. For rK/π

values increasing from 0 to 0.3 in steps of 0.01, we calculate the corresponding mean value of
the effective temperature coefficient 〈αT〉 for samples of 10000 muons with Eµ > Ethr(θ, φ).

To check our results, we performed the same calculations using the depth and zenith
angle distributions of muons arriving at the LNGS predicted by the MUSUN (MUon Sim-
ulations UNderground) [40] simulation code for this location. We obtain a close agreement
between the two simulations with a mean difference 〈∆αT〉 = 3.6 · 10−4. Additionally, we
compared the zenith angle distribution predicted by our simulation with the measured dis-
tribution and found them to be in good agreement.

To estimate the systematic uncertainty of 〈αT〉, we varied the input parameters of the
simulation. We considered contributions from a 5% uncertainty of the altitude profile, the
uncertainty of the measured rock density of the Gran Sasso rock of 0.05 g/cm3, the uncertainty

– 13 –



J
C
A
P
0
2
(
2
0
1
9
)
0
4
6

πK/
Atmospheric Kaon to Pion Ratio r

0 0.05 0.1 0.15 0.2 0.25 0.3

Tα

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

TαExperimental 

TαTheoretical 
 Fit2χCombined 

-0.07
+0.11 = 0.11πK/Best Fit Value: r

Figure 9. Measured value of αT in blue and theoretical prediction in red as functions of rK/π. The

black region indicates the 1σ contour of the intersection region of rK/π = 0.11+0.11
−0.07 around the best

fit value marked by the yellow star.

of the measurement of the muon spectral index of 0.05 [34], the uncertainties of the critical
meson energies ∆επ = 3 GeV and ∆εK = 14 GeV, and a 10% uncertainty of the drawn zenith
angle. For the combined systematic uncertainty of 〈αT〉, we found ∼ 0.015. However, the
strength of several of the contributions coming from the above factors depends on rK/π. In
particular, the larger uncertainty of εK compared to επ leads to an increasing uncertainty of
〈αT〉 with rising rK/π. This simulation was used as well to calculate 〈Ethr cos θ〉 = (1.34 ±
0.18) TeV for the location of the LNGS. Also this value agrees with the result of 〈Ethr cos θ〉 =
(1.30± 0.16) TeV we obtained using the MUSIC/MUSUN simulation inputs.

Figure 9 shows the experimental and theoretical values of αT as functions of rK/π. The
experimental value of αT has a weak dependence on rK/π since it enters into the calculation
of the effective temperature Teff . To investigate this dependence, we calculated the daily Teff

for the same range of rK/π values as above and redetermined αT for each set of Teff values
via the correlation to the measured muon flux as in section 6. The resulting dependence is
very weak and strongly overpowered by the statistical uncertainties of the measurements.
Finally, to determine the kaon-to-pion production ratio, we estimate the intersection of the
two allowed αT bands to obtain a value of rK/π = 0.11+0.11

−0.07. The allowed region in rK/π

and αT has been determined by adding the χ2 profiles of the Borexino measurement and the
theoretical prediction.

Former indirect measurements of the kaon-to-pion ratio were presented by the MI-
NOS [9] and IceCube [8] experiments using a similar approach. Direct measurements have
been carried out at accelerators, e.g. by STAR for Au+Au collisions at RHIC [41], by NA49
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Figure 10. Comparison of several measurements of the kaon-to-pion production ratio. The STAR
measurement was performed using Au+Au collisions at RHIC [41], the NA49 using Pb+Pb collisions
at SPS [42], and the E735 using p̄ + p collisions at Tevatron [43]. The MINOS [9], IceCube [8], and
Borexino measurements were performed indirectly via a measurement of the effective temperature
coefficient.

for Pb+Pb collisions at SPS [42], and by E735 for p + p̄ collisions at Tevatron [43]. Results
of many older measurements using various reactions are summarized and referred to in [44].
The theoretical uncertainty of the kaon-to-pion ratio in current cosmic ray models is of the
order of 40% [36]. Even though the indirect measurements do not directly compare with the
accelerator experiments since the latter are performed with fixed beam energies, the central
values are consistent as shown in figure 10. We place the Borexino data point in figure 10 at
a center-of-mass energy

√
s = (190± 28) GeV, calculated assuming an average collision of a

primary 18 TeV proton on a fixed nucleon target. The proton energy is chosen to be ten times
the mean threshold energy 〈Ethr〉 = (1.8±0.2) TeV we computed using the MUSIC/MUSUN
inputs in our simulation, given that cosmic muons with E > 1 TeV obtain on average one
tenth of the energy of the primary cosmic ray particle [1]. Due to the broad energy range
of contributing muons, uncertainties on the center-of-mass energy need to be considered for
the indirect measurements. Our result agrees with former indirect and direct measurements.
Note that while the indirect measurements feature larger uncertainties than the accelerator
experiments, they may infer the atmospheric kaon-to-pion ratio using cosmic ray data. Due
to the smaller muon statistics at greater depths, our measurement uncertainty is larger than
for the MINOS and IceCube results. However, Borexino contributes the data point at the
highest center-of-mass energy for indirect as well as fixed target measurements.
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8 Lomb-Scargle analysis of muon flux and temperature

Besides the seasonal modulation of the cosmic muon flux underground, further physical
processes might affect the cosmic muon flux and cause modulations of different periods. To
investigate the presence of such non-seasonal modulations in the cosmic muon flux with
Borexino, we perform a Lomb-Scargle analysis of the muon flux data.

Lomb-Scargle (LS) periodograms [45, 46] constitute a common method to identify si-
nusoidal modulations in a binned data set described by

N(t) = N0 ·
(

1 +A · sin
(

2πt

T
+ φ

))
, (8.1)

where N(t) is the expected event rate at time t given the data set is modulated with a period
T , a relative amplitude A, and a phase φ. The LS power P for a given period T in a data
set containing n data points may be calculated via

P (T ) =
1

2σ2

([∑n
j wj(N(tj)−N0) cos 2π

T (tj − τ)
]2∑n

j cos2 2π
T (tj − τ)

+

[∑n
j wj(N(tj)−N0) sin 2π

T (tj − τ)
]2∑n

j sin2 2π
T (tj − τ)

)
, (8.2)

where N(tj) − N0 is the difference between the data value in the jth bin and the weighted
mean of the data set N0 and σ2 is the weighted variance. The weight wj = σ−2

j /〈σ−2
j 〉 of the

jth bin is computed as the inverse square of the statistical uncertainty of the bin divided by
the average inverse square of the uncertainties of the data set. The phase τ satisfies [47]

tan

(
4π

T
· τ
)

=

∑n
j wj sin(4π

T · tj)∑n
j wj cos(4π

T · tj)
. (8.3)

Since the quadratic sums of sine and cosine are used to determine the LS power, the latter
is unaffected by the phase of a modulation as long as its period is short compared to the
overall measurement time.

Figure 11 shows a LS periodogram for the ten year cosmic muon data acquired with
Borexino. To estimate the significance at which a peak in LS power exceeds statistical
fluctuations, we use the known detector livetime distribution and mean muon rate to produce
104 white noise spectra distributed equally to the data. We define a modulation of period T
to be significant if it surpasses a LS power Pthr that is higher than 99.5% of the values found
for white noise spectra. This threshold is indicated by the red line in figure 11.

Besides the leading peak of the seasonal modulation at 365 d, several secondary peaks
are visible in figure 11, the second most significant one being a long-term period of ∼ 3000 d.
However, it is known that the LS method may identify harmonics of the leading modulation
as significant [48]. Therefore, only the highest significance peak can be safely regarded as
physical. In order to clarify if the long-term modulation is physical, we subtract the seasonal
modulation as in eq. (3.1) with the parameters returned by the fit described in section 3. The
power spectrum of the subtracted data set is shown in figure 11 (right). The peak at ∼ 3000 d
remains to be significant and now has the highest LS power, which verifies its presence in
the data. Additionally, the peak at 180 d still exceeds the significance level, although only
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Figure 11. The left side shows the LS periodogram for the ten year cosmic muon data acquired
with Borexino. The right side shows the LS periodogram of the cosmic muon data after the seasonal
modulation was subtracted statistically. The red lines indicate the significance level of 99.5%.
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Figure 12. The left side shows the LS periodogram for the ten year effective atmospheric temperature
data at the location of the LNGS [26]. On the right side, the LS periodogram of the effective
atmospheric temperature data after the seasonal modulation was subtracted statistically is shown.
The red lines indicate the significance level of 99.5%.

slightly. We consider also this peak to be of physical origin and related to the minor maxima
in winter and spring described in section 3, which determine a deviation from the purely
sinusoidal behaviour as previously noted in [6]. Finally, a peak at the verge of significance is
observed at ∼ 120 d.

With the period of the long-term modulation being close to our overall measurement
time, the phase of the modulation is expected to affect the LS power. To investigate this,
we artificially generated data samples including a seasonal and a long-term modulation of
3000 d period equally binned as the muon flux data. For each sample, the phase of the long-
term modulation was altered and we computed a LS periodogram. We found the location of
the peak to vary between ∼ 2550 d and ∼ 3750 d, which indicates the absolute uncertainty
of the period. However, the long-term modulation appears as a significant peak in the LS
periodogram independent of the inserted phase.

On the left panel of figure 12, we show the LS periodogram of the effective atmospheric
temperature. Here, only the seasonal modulation and the 180 d period are found as significant
peaks. No further period surpasses the threshold power.

To ensure that no long-term modulation might be inserted by the statistical subtraction
of the seasonal modulation from the data, we repeated this procedure for the effective tem-
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Figure 13. Cosmic muon flux measured by Borexino after statistically subtracting the leading order
seasonal modulation in year-wide bins. The red line depicts the observed long-term modulation.

perature data. As illustrated in the right panel of figure 12, no further significant peaks are
introduced by this approach. However, the 180 d period remains above the significance level,
confirming our understanding of its origin. Thus, we conclude that the significant long-term
modulation in the cosmic muon flux at ∼ 3000 d is not present in and, hence, not related to
the effective atmospheric temperature.

We determine the phase and amplitude of the observed long-term modulation by fitting
a function accounting for both the seasonal and the long-term modulation of the form

Iµ(t) = I0
µ + ∆Iµ = I0

µ + δIµ cos

(
2π

T
(t− t0)

)
+ δI long

µ cos

(
2π

T long
(t− tlong

0 )

)
(8.4)

to the daily-binned data. The fit returns a long-term modulation with a period T long =
(3010± 299) d = (8.25± 0.82) yr, a phase tlong

0 = (1993± 271) d, and an amplitude δI long
µ =

(14.7± 1.8) d−1 = (0.34± 0.04)%. T long is in good agreement with the period inferred from
the LS periodogram and the phase of the long-term modulation indicates a maximum of the
modulation in June 2012 for the investigated time frame. The parameters describing the
seasonal modulation were left free in the fit and consistent results to the values reported in
section 3 were obtained. The χ2/NDF reduces from 3921/3214, when only a single modulation
according to eq. (3.1) is fitted to the data, to 3855/3211.

Figure 13 shows our residual muon data in year-wide bins after having statistically
subtracted the seasonal modulation in each day bin. Small effects of a possibly uneven
distribution of the detector livetime across different years are thus removed. The red line
shows the observed long-term modulation with the parameters as obtained by the fit to the
daily-binned data. The data points show a clear variation in time, fully consistent with the
fit result and the period observed in the LS analysis.
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Figure 14. Daily sunspot data corresponding to the Borexino data acquisition time [51]. The curve
shows a fit to the individual solar cycle.
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Figure 15. LS periodogram of the daily sunspot data [51] corresponding to the time frame of the
Borexino muon data acquisition. The red line indicates the significance level of 99.5%.

9 Long-term modulation of the cosmic muon flux and the solar activity

A long-term modulation of the cosmic muon flux has been observed before, e.g. in [49] and
in [50], also in comparison with the solar activity. To investigate the possibility of such
a correlation, we perform a LS analysis of the daily sunspot data provided by the World
Data Center SILSO, the Royal Observatory of Belgium in Brussels [51] for the timeframe
corresponding to the cosmic muon data acquired by Borexino as shown in figure 14. Since
individual solar cycles are known to have significantly varied periods, it is not sensible to use
a data set including earlier sunspot data. In figure 15, the most significant peak in the LS
periodogram occurs at a period of ∼ 3000 d, in coincidence with the long-term modulation of
the cosmic muon flux. The significance level of 99.5% was calculated following the procedure
outlined in section 8. Further modulation periods are found to be significant in the sunspot
data. This is expected since several authors observed minor modulations in the solar activity
besides the solar cycle (see [52] and refs. therein). Also the increase in LS powers towards
very high periods is expected since solar activity modulations larger than the solar cycle have
been observed.
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An individual solar cycle can be described by a cubic power law and a Gaussian de-
cline as [53]

F (t) = A

(
t− ts
b

)3
[

exp

(
t− ts
b

)2

− c

]−1

(9.1)

with A being the amplitude of the solar cycle, ts the starting time, b the rise time, and
c an asymmetry parameter. We fit the sunspot data starting from the minimum of solar
activity in March 2009 accordingly to eq. (9.1) and obtain an amplitude A = (168.1 ± 0.4)
sunspots per day, a start time ts = (−434± 3) d prior the minimum set at the 1st of March
2009, a rise time b = (1578 ± 3) d, and an asymmetry parameter c = 0.000 ± 0.001. These
parameters correspond to a maximum of the solar activity for the present cycle around the
8th of April 2013. The χ2/NDF of the fit is 143145/2672, revealing that eq. (9.1) is only
a first approximation of the complex sunspot data. Note that the comparably short period
indicated by the fit matches optical observations of the current solar cycle [54].

When we apply a fit similar to eq. (9.1) to the measured cosmic muon flux after sta-
tistically subtracting the seasonal modulation, we obtain an amplitude A = (45.4 ± 8.1)
muons per day, a start time ts = (−34 ± 111) d prior the minimum set at the 1st of March
2009, a rise time b = (1208 ± 116) d, and an asymmetry parameter c = 1.00 ± 0.02 at a
χ2/NDF = 3302/2665. This indicates a maximum in March 2012.

In summary, we observe the following parameters for the long-term modulation of the
cosmic muon flux and the solar sunspot activity:

Half Period/ Rise Time [d] Maximum

Muon Flux (Sinusoidal Fit) 1505± 150 16th of June 2012 ± 271 d

Muon Flux (Gaussian Fit) 1207± 116 4th of March 2012 ± 180 d

Solar Sunspot Activity

(Gaussian Fit) 1578± 3 8th of April 2013 ± 5 d

The large uncertainties of the parameters of the long-term modulation of the cosmic muon
flux for both fits as well as the large reduced χ2 of the fit to the sunspot data indicate that the
results need to be treated with care. A correlation between the solar sunspot activity and the
flux of high energy cosmic muons can neither be ruled out nor clearly be proven. However, we
find indications encouraging further investigation of this phenomenon, especially considering
the agreement between the modulation periods observed in the LS analysis. To eventually
prove or negate a correlation, longer measurement times for the underground muon flux
across several solar cycles will be necessary.

Concerning the observation of a long-term muon flux modulation reported in [50], we
note that: (1) the amplitude of (0.40 ± 0.04) % is compatible with our observation; (2) the
period is also in agreement with the duration of the solar cycle; (3) the phase is however
anti-correlated with the sunspot data. While the analysis of [50] includes not only MACRO
and LVD but also Borexino data from [6], the latter contributes only to the last four years
and seems to be in tension with the presented modulation fit.

An indication of a positive correlation between solar activity and the flux of high energy
cosmic rays was found by the Tibet AS array [55] in observations of the size of the shadow the
Sun casts on ∼ 10 TeV cosmic rays. This shadow was observed to be modulated depending on
the solar activity with the shadow shrinking by ∼ 50% at the maximum activity. Monte Carlo
simulations performed by this collaboration for several solar surface models that predict the
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Figure 16. Rate of neutron-producing muons per day (left) and the cosmogenic neutron production
rate (right) selecting only events with neutron multiplicity n ≤ 10. Ten years of data are projected to
a single year with monthly binning. The red line depicts a sinusoidal fit to the data with the period
fixed to twelve months.

coronal magnetic field gave consistent results. However, the amplitude δI long
µ = (0.34±0.04)%

we measure for the long-term modulation of the cosmic muon flux is too high to leave a
modulation of the solar shade as the sole explanation of a possible correlation.

10 Modulation of the cosmogenic neutron production rate

Cosmic muons may produce cosmogenic neutrons through various spallation processes on
carbon in the Borexino organic scintillator target [56]. Neutrons are detected via the emission
of a 2.2 MeV γ-ray following the capture on hydrogen or a total γ-ray energy of 4.9 MeV after
the capture on 12C. The capture time is τ = (259.7±1.3stat±2.0syst)µs [25]. As a secondary
product of cosmic muons, the number of cosmogenic neutrons is expected to also undergo
a seasonal modulation. Cosmogenic neutrons have been discussed as a possible background
for the expected modulation in direct searches for particle dark matter [57]. We investigate
here the amplitude and phase of the cosmogenic neutron production rate.

We select cosmogenic neutrons in a special 1.6 ms acquisition gate that is opened after
each ID muon [27]. Events with a visible energy corresponding to at least 800 keV are selected.
The efficiency of the neutron selection has been measured to be εdet = (91.7 ± 1.7stat. ±
0.9syst.)% after the stabilization of the electronics baselines ∼ 30µs after the passage of a
muon. Due to the stable muon detection efficiency and no significant changes of the detector,
we expect this efficiency to be stable.

We fail to observe the seasonal modulation of the cosmogenic neutron production rate,
which we attribute to the occurrence of showering muons producing extremely high neutron
multiplicities of up to ∼ 1000 [25] and following a non-Poissonian probability distribution.
This hypothesis is sustained by the fact that an annual modulation can indeed be seen
in the LS periodogram for the rate of neutron-producing muons. However, in order for the
modulation to be significant in the neutron production rate, we need to remove those neutrons
that are produced in high multiplicity showers from the sample.

Figure 16 shows on the left the monthly binned data of neutron-producing muons pro-
jected to one year with a sinusoidal fit similar to eq. (3.1) and the period fixed to twelve
months. Without efficiency correction, we obtain an average rate of neutron-producing
muons R0

µn = (36.8 ± 0.1) d−1, an amplitude δRµn = (0.9 ± 0.2) d−1 = (2.3 ± 0.5)%, and
a phase t0 = (6.3 ± 0.4) months. The reduced χ2 of the fit is χ2/NDF = 11/9. For the
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Neutron Phase Amplitude Amplitude

Multiplicity Projected [months] Projected [%] Residual [%]

Neutron-producing muons 6.3± 0.4 2.3± 0.5 2.5± 0.8

n = 1 6.6± 0.5 2.3± 0.6 2.6± 1.0

n ≤ 2 6.1± 0.3 2.6± 0.5 2.8± 0.8

n ≤ 3 5.8± 0.4 2.2± 0.4 2.5± 0.8

n ≤ 4 6.0± 0.3 2.2± 0.4 2.3± 0.7

n ≤ 5 6.1± 0.3 2.3± 0.4 2.4± 0.7

n ≤ 10 6.0± 0.3 2.6± 0.4 2.7± 0.7

Table 3. Parameters of the seasonal modulation observed for the number of neutron-producing muons
and the neutron production rate applying increasingly high neutron multiplicity cuts. The second
and third column show the phase and the amplitude of the seasonal modulation observed in the fit
to the projected data, respectively. The last column shows the relative amplitude of the modulation
following the residual approach.

cosmogenic neutron production rate including neutrons produced in showers featuring up to
10 neutrons shown in figure 16 on the right, we observe a rate R0

n = (61.9 ± 1.5) d−1, an
amplitude δRn = (1.6 ± 0.2) d−1 = (2.6 ± 0.4)%, and a phase t0 = (6.0 ± 0.3) months at a
χ2/NDF = 42/9. Beyond a neutron multiplicity of 10, we are unable to observe the seasonal
modulation applying the LS periodogram. The observed phase is in good agreement with the
seasonal modulation of the entire cosmic muon flux. However, we find the amplitude of the
modulation to be higher with a difference of about 2σ compared to the relative amplitude of
(1.36± 0.04)% measured for the entire cosmic muon flux in section 3.

Table 3 lists the phase and amplitude of the seasonal modulation measured for the
number of neutron-producing muons as well as for the neutron production rate applying
increasingly high neutron multiplicity cuts. Consistent results are found for all samples with
neutron multiplicities n ≤ 10 beyond which the modulation is no longer significant in the
LS periodogram. We find the phase of the cosmogenic neutron production rate to agree
with the muon flux. Correspondingly, the maximum occurs approximately one month later
than expected for dark matter particles. However, the amplitude of the modulation is higher
compared to the muon flux’s, independently of the multiplicity cut that was actually applied.
To further probe this effect, we computed the average cosmogenic neutron production and
neutron-producing muon rates in three summer months and three winter months for each
data set. We inferred the amplitude by assuming a sinusoidal modulation around the mean
of the two values. The amplitudes observed following this residual approach are listed in the
last column of table 3. We find consistent values to the ones obtained from the fit in each
data sample confirming the increased modulation amplitude.

The modulation of the cosmogenic neutron production rate has formerly been measured
by the LVD experiment reporting an even higher modulation amplitude of δRn = (7.7 ±
0.8)% [58]. Since the neutron production depends on the muon energy, the larger amplitude
of the modulation of the cosmogenic neutron production rate was interpreted as an indirect
measurement of a seasonal modulation of the mean energy Eµ of cosmic muons observed in
the LNGS. The values measured by LVD implied a modulation amplitude of the mean muon
energy of ∼ 10% or ∼ 28 GeV [58]. Following this interpretation and the calculation outlined
in [59], our measurement of the modulation amplitude of the cosmogenic neutron production
rate would indicate a modulation of the mean energy of cosmic muons of ∼ 4.5 GeV. In order
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to verify the plausibility of this hypothesis, we have increased the mean muon energy by
1 GeV in the MUSIC/MUSUN [40] simulation codes by altering the muon spectral index (see
eq. (7.2)) by 0.01. Even this small variation in the mean energy results in a 14% change in the
muon flux, which is ten times larger than the amplitude of the observed annual modulation.
We conclude that a modulation of the mean muon energy of several GeV is unlikely.

Additionally, we performed simulations of the muon production using the MCEq
code [60] for various atmospheric models and inferred the muon surface spectra at Gran
Sasso in winter and summer. We used these spectra as inputs for MUSIC/MUSUN to pre-
dict the corresponding underground spectra. Based on these simulations, we obtained a
difference of the cosmic muon flux between the summer and winter spectra of about 1.4% in
accordance to our measurement but observed only slight deviations of the mean muon energy
of less than ∼ 0.1 GeV.

With the exclusion of a modulation of the mean muon energy, a more complex energy
dependence of the cross section for neutron production than the conventionally assumed
E
α
µ law [59] must be hypothesized to explain our observations. However, relatively large

uncertainties of the atmospheric models and of the neutron production processes in the
scintillator make it difficult to further investigate this percent-level effect.

11 Conclusions

We have presented a new precision measurement of the cosmic muon flux in the LNGS under
a rock coverage of 3800 m w.e. using ten years of Borexino data acquired between May 2007
and May 2017. We have measured a cosmic muon flux of (3.432± 0.001) · 10−4 m−2s−1 with
minimum systematics due to the spherical geometry of the detector. The seasonal modulation
of the flux of high energy cosmic muons is confirmed and we have observed an amplitude
of (1.36 ± 0.04)% and a phase of (181.7 ± 0.4) d corresponding to a maximum on the 1st

of July. We have used data from global atmospheric models to investigate the correlation
between variations of the muon flux and variations of the atmospheric temperature and
showed that the seasonal modulation is also present in the effective atmospheric temperature.
The correlation coefficient between the two data sets is 0.55 indicating a positive correlation
and we have measured the effective temperature coefficient αT = 0.90 ± 0.02 reducing the
statistical uncertainties of our former measurement by a factor ∼ 2. The measurement
is in good agreement with theoretical estimates and previous measurements carried out at
the LNGS.

We have performed a Monte Carlo simulation to calculate the theoretical expectation
of αT at the location of the LNGS as a function of the atmospheric kaon-to-pion ratio rK/π.
By calculating the intersection region of the expected value and our measurement of αT in
dependence on rK/π, we have indirectly measured rK/π = 0.11+0.11

−0.07. This measurement is
compatible with former indirect and accelerator measurements and constitutes a determina-
tion of rK/π in a new energy region for fixed target experiments.

Based on a Lomb-Scargle periodogram, we have found evidence for a long-term modu-
lation of the flux of high energy cosmic muons with a period of ∼ 3000 d that is not present
in the effective atmospheric temperature data. The amplitude of the long-term modulation
is measured to be (0.34±0.04)% and the maximum occurs around June 2012. We have found
indications of an agreement between this modulation and the solar activity. However, given
our short observation time compared to the period of the long-term modulation, these indi-
cations are only modest and further investigation especially based on longer measurements
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is required. Additionally, the physical reason for a correlation between the high energy part
of the cosmic muon flux and the solar activity remains unclear.

We have analyzed the production rate of cosmogenic neutrons in the Borexino detector
as well as of the number of neutron-producing muons and found a seasonal modulation
in phase with the cosmic muon flux but increased amplitudes of ∼ (2.6 ± 0.4)% and ∼
(2.3±0.5)%, respectively. We have shown that a strong modulation of the mean muon energy
underground as an explanation of this phenomenon is disfavored by performing simulations
of the muon surface spectrum in summer and winter using the MCEq software code [60] and
simulating the corresponding underground spectra using the MUSIC/MUSUN codes [40].

A Effective temperature weight functions

The weights assigned to temperature measurements at different atmospheric depths Xn in
eq. (4.1) to compute the effective atmospheric temperature are defined as [9]

W π
n (Xn) ≡ A1

πe
−Xn/Λπ(1−Xn/Λ

′
π)2

γ + (γ + 1)B1
πK(Xn)(〈Ethr cos θ〉/επ)2

,

WK
n (Xn) ≡

A1
Ke
−Xn/ΛK(1−Xn/Λ

′
K)2

γ + (γ + 1)B1
KK(Xn)(〈Ethr cos θ〉/επ)2

(A.1)

with

K(Xn) ≡
(1−Xn/Λ

′
M)2

(1− e−Xn/Λ′M)Λ′M
/Xn. (A.2)

The parameters A1
K/π describe the relative contribution of kaons and pions, respectively, and

include the amount of inclusive meson production, the masses of mesons and muons, and the
muon spectral index γ. The input parameters are A1

π = 1 and A1
K = 0.38 · rK/π, where rK/π

is the atmospheric kaon-to-pion production ratio. The parameter B1
K,π considers the relative

atmospheric attenuation length of the mesons, Ethr is the threshold energy a muon needs
to possess to penetrate the rock overburden and reach the LNGS, and θ is the zenith angle
from which a muon is arriving. The attenuation lengths for primary cosmic rays, pions, and
kaons are ΛN, Λπ, and ΛK, respectively, and 1/Λ′M ≡ 1/ΛN− 1/ΛM. επ = (114± 3) GeV and
εK = (851± 14) GeV are the critical meson energies separating the interaction and the decay
regimes. Since Ethr depends on the direction from which a muon arrives at the LNGS due
to the shape of the rock overburden, the median of the product of the threshold energy and
the cosine of the zenith angle 〈Ethr cos θ〉 is used for the computation of Teff . Based on our
Monte Carlo simulation, 〈Ethr cos θ〉 = (1.34± 0.18) TeV at the location of the LNGS.
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