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Abstract. Many models of inflation driven by vector fields alone have been known to be
plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work,
we seek a new class of vector-driven inflationary models that evade all of the mentioned
instabilities. We build our analysis on the Generalized Proca Theory with an extension
to three vector fields to realize isotropic expansion. We obtain the conditions required for
quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and
those for their stability at the level of linearized perturbations. Identifying the remedy to
the existing unstable models, we provide a simple example and explicitly show its stability.
This significantly broadens our knowledge on vector inflationary scenarios, reviving potential
phenomenological interests for this class of models.
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1 Introduction

Inflation has since its birth been a successful paradigm to resolve the horizon, flatness and
unwanted relics problems in the Hot Big Bang cosmology as well as providing the initial seeds
for fluctuations in the cosmic microwave background (CMB) radiation and for the large-scale
structure formation.1 A number of past, ongoing and upcoming CMB experiments, space-
based [10–13] (latest results by Planck [14]), balloon-borne [15–17], and ground-based [18–25],
as well as those for the large-scale structure (LSS), aim to measure and/or constrain inflation-
ary parameters. The observational precisions of the forthcoming experiments are expected to
be yet at unprecedented levels, and the nomenclature precision cosmology is more appropriate
than has ever been.

Most of the realizations of inflation rely on slow roll of one or multiple scalar fields.2 The
slow roll is to ensure a prolonged period of inflationary stage, and the use of scalar fields is
the simplest realization in field theories that is consistent with a spatially isotropic expansion.
On the other hand, possibilities to obtain inflationary solutions driven by higher-spin fields,
especially vector fields, have been sought for.3 Since the standard U(1) gauge field only
with the kinetic action −F 2/4 is conformally coupled to gravity and thus its energy density
quickly decays away, the attempts of vector-driven inflation often employed breaking of gauge
invariance, such as non-minimal coupling to gravity [39–42], introduction of potential terms

1Some alternative mechanisms to inflation have been proposed. A small subset of them consists of pre-
big-bang scenario [1] (and references therein), string gas cosmology [2], matter bounce [3, 4], Ekpyrotic
scenario [5, 6], cosmology in Hořava-Lifshitz gravity [7, 8], and Galilean Genesis [9].

2See, e.g., [26, 27] for a good collection of models. There are examples that do not require the slow roll,
such as k-inflation [28], where the inflationary solution is supported by the kinetic term of a scalar field.

3There are examples of inflation by p-form fields in [29–38].
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V (A2) [43, 44], and fixing the norm by Lagrange multiplier [45]. However, these models
contain a longitudinal mode of the vector field that has been found to suffer instabilities on
inflationary backgrounds, and therefore all have turned out to be pathological [46–48].

A different model was proposed in [49], in which the U(1) gauge invariance is preserved
while the kinetic term of the vector (gauge) field is modified by a scalar field φ with a
flat potential, through a −I2(φ)F 2 term, and this coupling leads the vector to an attrac-
tor phase and prevents it from decaying away by expansion. While the dominant energy
component is the one of φ and therefore this is not a vector-driven inflation per se, the dan-
gerous longitudinal mode is absent in this model. The same type of coupling but without
the vector vacuum expectation values (vev) has been extensively studied in the context of
primordial magnetogenesis [50–62], while it has been shown that the CMB constraints on
higher-order correlation statistics place stringent bounds on the produced amplitude of mag-
netic fields [63–65]. This is the only coupling between a scalar and a vector field that respects
gauge invariance and parity, without invoking derivatives.4 In the case of a pseudo-scalar φ,
symmetries admit a coupling to a gauge field in the form φFF̃ , where F̃ is the dual of the
field-strength tensor F . It results in a copious, exponential production of the vector field,
and its backreaction can slow down the motion of φ that would otherwise roll down its poten-
tial quickly [68]. In addition, this model turns out to have rich phenomenological signatures
such as non-Gaussianity [69, 70], helical gravitational waves [71–77], magnetogenesis [78–80],
baryogenesis [81, 82], and primordial black holes [83, 84] (for further review, see [85]).5

Ref. [87] promoted the Abelian vector to a non-Abelian gauge field coupled to a pseudo-
scalar φ as in the Abelian case, dubbing the model as Chromo-natural inflation. Another
model called Gauge-flation proposed in [88, 89], which can be interpreted as a limit of
Chromo-natural model with φ heavy and integrated out [90, 91], was a novel vector-driven
model of inflation. These models employ an SU(2) gauge field, and due to the local property
SU(2) ∼= SO(3), one can orient the vev of the three vector fields along the three spatial direc-
tions, and then an isotropic expansion is manifestly an (local) attractor [92]. Unfortunately,
however, neither of these models survives against observational constraints: essentially the
tensor modes experience a tachyonic growth for a limited duration around horizon crossing,
and the tensor-to-scalar ratio is always beyond the level of observational upper bound, for
any acceptable values of the scalar spectral index [93–95]. Recently, the variants of these
models, with massive SU(2) fields, were considered, dubbed Massive Gauge-flation [96] and
Higgsed Chromo-natural [97], and it has been proposed that the mass terms can enlarge the
parameter space so that the model predictions are in agreement with the data.

As described above, among the plethora of the models, almost all of the vector-only-
driven ones are either theoretically inconsistent due to ghost/gradient instabilities or ob-
servationally unfavored. So far, the only known stable models of inflation solely driven by
vector fields are the Gauge-flation and its massive variant, and they involve the SU(2) struc-

ture constants ǫabc in an essential way through the term of the form ǫabc∂[µA
(a)
ν] A

(b)µA(c)ν .

However, as mentioned above, the Gauge-flation with the unbroken SU(2) gauge symmetry is
observationally disfavored. Once the SU(2) gauge symmetry is abandoned, the SU(2) specific
structure is not necessary and a more general class of models is allowed/motivated. (The
SU(2) specific structure is kept if the gauge symmetry is broken spontaneously but in this
case the system inevitably involves an additional scalar field, i.e. a Higgs field.) Therefore,

4Some derivative coupling operators and their effects on magnetogenesis have been considered in [66, 67].
5The same type of coupling can invoke a rotation of photon polarizations in the propagation between the

last scattering surface and the present time, called cosmological birefringence [86].
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our aim of this paper is, as a first step towards a wider class of models of vector-only driven
inflation, to search a stable inflationary solution driven by vector fields without the mentioned
SU(2) specific structure. This would significantly broaden our knowledge on vector-driven
inflationary models.

Taking the lessons from the preceding unsuccessful cases, we start from a highly general
class of vector-field models: Generalized Proca theory. This theory has been introduced
in [98–102] and consists of a vector field without gauge invariance, and thus its longitudinal
mode propagates as a physical degree of freedom. While it contains derivative terms of
the vector field in the action without gauge invariance, the theory is constructed in such a
way that it takes the most general form with which the variations of the action give rise
only to the equations up to second-order derivatives. Therefore, Generalized Proca theory
is by construction guaranteed to be free from higher-derivative instabilities, also known as
Ostrogradsky ghosts [103].6 The theory is quite general, as it is characterized by several free
functions (five, in the most general case — further extensions are proposed in [104, 105]). In
this work, we investigate this general class and identify the conditions under which all the
perturbations around inflationary backgrounds are stable against both ghost and gradient
instabilities. We also restrict our attention to the case where the background is quasi de-Sitter
with an attractor behavior analogous to the standard slow-roll attractor.

Some deformation of the original theory is necessary for our current purpose.
In [107, 108], the application of this theory to the late-time accelerated expansion was ana-
lyzed. There the vector field is given a vev in its temporal component, and for this reason,
the value of the Hubble parameter (and the vev) is exactly constant, not allowing a quasi
de-Sitter solution. On the other hand, when its spatial components take a vev, a vector field,
as its name stands, inevitably points to a specific direction in space. An expansion driven by
such a field therefore has a privileged direction, and the correlation functions become statis-
tically anisotropic [45]. In fact, the model in [49] was studied intensively in the context of
statistical anisotropy [109–129],7 and anisotropic solutions in Generalized Proca are explored
in [135]. However, since the amount of anisotropy is stringently constrained by the Planck
data [136], we deform the original theory so as to minimize the anisotropic configuration,
while preserving the no-Ostrogradsky-ghost construction. To this end, we introduce 3 vector
fields and correspondingly give each of their spatial components a homogeneous vev pointing

in each of the spatial directions perpendicular to each other, namely 〈A(a)
i 〉 = A(t)δai , where

the superscript (a) is the label of the three vectors. Moreover, in order to set up the theory
consistent with this background configuration, we impose a global O(3) symmetry in the field
space and retrieve the terms that respect it.8 This setup, together with the conditions for
a background attractor, indeed ensures an isotropic expansion of the universe and vanishing
statistical anisotropy, at least in the linearized perturbations.

We focus on quasi de-Sitter solutions for the background, i.e. almost constant Hubble
parameter Ḣ ≈ 0, that are given by a slowly varying physical vector vev, i.e. ∂t(A/a) ≈ 0,
where a is the scale factor. Our interest in this work is to analyze the stability of these
background solutions. Specifically, we investigate the model window that satisfies all of the

6Recently an inflationary solution is investigated in a model in which vector fields couple non-minimally
to gravity [106]; however, this model is neither within the class of Generalized Proca theory nor contains the
terms, identified in our work, to cure ghosts at the linearized order.

7Vector curvaton scenarios in a resembling circumstance were considered in [130–134].
8During our preparation of this manuscript, generalization of Generalized Proca to multiple vectors ap-

peared in the literature [137]. Our deformation of the original theory is mutually consistent with this work,
under the concerned symmetry.
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following conditions: (i) the one for the quasi de-Sitter solutions to be an analogue of the
standard slow-roll attractor, (ii) the one to preserve the background isotropic configuration
and geometry, and (iii) the ones for the stabilities of perturbations against both ghost and
gradient instabilities. The condition (ii) is to ensure that the vector vev does not run away

from 〈A(a)
i 〉 ∝ δai and therefore that no anisotropic part of the background metric is excited

dynamically. The perturbations are decoupled into 3 sectors at the linearized order, analogous
to the standard tensor/vector/scalar decomposition,9 and we separately examine the stability
conditions for each sector. Our analysis clarifies that the terms of the form AµAνF

µρF ν
ρ are

crucial for the absence of ghosts, and no inflationary models of vector fields can be stable
without those terms within the class of model considered in the present paper. (See (2.2)–(2.4)
below.) The conditions for gradient stability are quite involved, and those in the general case
are not illuminating. We therefore consider some examples, and then provide a (relatively)
simple example that can indeed satisfy all the conditions simultaneously. This is the first
example of inflationary model in which vector fields alone, without the structure specific to
the SU(2) gauge symmetry, drive quasi de Sitter inflationary expansion.

This paper is organized as follows. In section 2, we introduce the theory we consider
and describe the necessary deformation of the original Generalized Proca theory to have
isotropic expansion. In section 3, we seek for quasi de-Sitter background solutions and in
particular provide the attractor condition. Section 4 is devoted for the stability analyses of
perturbations: we outline the general procedure in section 4.1, then proceed the analysis for
tensor, vector and scalar sectors in sections 4.2, 4.3 and 4.4, respectively, and provide the
condition to ensure the background attractor to be isotropic in section 4.5. We summarize
all the conditions in section 4.6. Section 5 illustrates some examples: we consider existing
(therefore unstable) models and identify the instabilities in section 5.1 and then provide a
successful model with all the stability conditions satisfied in section 5.2. We finally conclude
in section 6. Throughout the paper we use the natural units with ~ = c = 1, take the
(−+++) metric signature, and denote the reduced Planck mass by Mp.

2 Generalized Proca theory with O(3) invariance

Our aims are to search for a model of inflation that is driven solely by vector fields, to identify
necessary building blocks and to broaden the class of allowed models. It has been known that
simple implementations of this are plagued by instabilities [46–48] and thus we need to resort
to more dedicated models. In this regard, we turn our attention to the so-called generalized
Proca theory, introduced in [98–102, 137] as the straightforward extension of the Horndeski
scalar-tensor theory [138–142] to a vector-tensor one (thus free from Ostrogradsky instabil-
ities [103]). As already stated in the introduction, a single vector field with a timelike vev
does not allow for a graceful exit from inflation. On the other hand, a single spacelike vector
field intrinsically carries a privileged direction and hence inevitably introduces anisotropy.
In order to realize inflation with isotropic expansion, we thus introduce three vector fields

A
(1,2,3)
µ with vacuum expectation values (vev),10

〈A(a)
i 〉 = A(t) δai , 〈A(a)

0 〉 = 0 . (2.1)

9This analogy is only an approximate one, since the decomposition of the triplet vector fields is not the
standard one under spatial rotation. See section 4 and refs. [88, 93] for clarification.

10One can start from 〈A
(a)
0 〉 6= 0 instead, but then they can see that 〈A

(a)
0 〉 = 0 is a trivial solution of the

background. We thus set this from the beginning.
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Moreover, in order to preserve this background configuration, we impose a global O(3)
symmetry in the internal field space.11 Requiring the form of Generalized Proca ac-
tion [99–102, 137] with three vectors and the symmetry and restricting to a class of simple
actions, we have

S =

∫

d4x
√−g (L2 + L4) , (2.2)

where12,13

L2 = G2(X,Y, Z,W1,W2,W3) ,

L4 = G4(X)R+G4,X

3
∑

a=1

[

∇µA
(a)µ∇νA

(a) ν −∇µA
(a) ν∇νA

(a)µ
]

, (2.3)

X ≡ −1

2

3
∑

a=1

A(a)
µ A(a)µ , Y ≡ −1

4

3
∑

a=1

F (a)
µν F

(a)µν , Z ≡ −1

4

3
∑

a=1

F (a)
µν F̃

(a)µν ,

W1 ≡
3
∑

a,b=1

A(a)
µ A(a)

ν F (b)µρ F (b) ν
ρ , W2 ≡

3
∑

a,b=1

A(a)
µ A(b)

ν F (a)µρ F (b) ν
ρ ,

W3 ≡
3
∑

a,b=1

A(a)
µ A(b)

ν F (b)µρ F (a) ν
ρ , (2.4)

with F
(a)
µν = ∇µA

(a)
ν − ∇νA

(a)
µ , F̃ (a)µν = ǫµνρσF

(a)
ρσ /2, and G4,X ≡ ∂G4/∂X. Notice the

different contractions in the definitions of W1,2,3, and that the superscript on the vectors is
merely a label of the three vector fields. Also we have excluded the L6 term for simplic-
ity. Although there are in principle many other possible ways to contract the (a) indices,

such as A
(a)
µ A(b)µA

(a)
ν A(b) ν etc., we take the minimal choice as in (2.4) and demonstrate

that it equips sufficient room to provide stable inflationary solutions. More importantly, we
exclude the dependence of G2 on yet another SO(3) (≃ SU(2)) invariant scalar combina-

tion ǫabcF
(a)
µν A(b)µA(c)ν , where ǫabc represents the SO(3) (≃ SU(2)) structure constants. This

specific combination is included in known models of vector-only driven inflation, i.e. Gauge-
flation and its massive variant. In the present paper we shall find a stable model of inflation

without relying on the combination ǫabcF
(a)
µν A(b)µA(c)ν and thus significantly broaden a class

of allowed models of inflationary models driven solely by vector fields. Note that the case of
G2 = Y and G4 = 0 is the standard free U(1) gauge theory, that of G2 = Y +m2X (G4 = 0)
the original Proca theory with mass m, and that of G2 = Y +m2X and G4 = M2

p /2−X/6
the non-minimally coupled model considered in e.g. [40–42] (with the terms proportional to
G4,X dropped by hand). Eq. (2.2) is the action we study in this work, and we derive the
stability conditions around the inflationary background.

11In the case of SU(2) gauge fields, such as in Chromo-natural inflation [87] and gauge-flation [88], or
any larger group that has SU(2) as its subgroup, this type of symmetry is naturally realized since SU(2) is
homomorphic to SO(3).

12One can also include in G2 the terms AµAν F̃
µρF̃ ν

ρ, but they can be re-expressed in terms of X, Y and
W and therefore are redundant.

13Here we set parameters c2 in the L4 term [99] to be zero for simplicity. Since they vanish from the
action in the scalar limit Aµ → ∂µπ, they do not contribute to the background dynamics and affect only the
vector (and tensor in our calculations) sectors [107]. Recovering them can be done straightforwardly, and the
procedure of our subsequent calculations will be the same.
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3 Inflationary background

The class of models given by (2.2) consists of three vector fields A
(a)
µ , and their vev (2.1)

drives inflation. We assume the background geometry to be the flat Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric,

ds2 = −dt2 + a2(t)δijdx
idxj , (3.1)

being consistent with the vector vev configuration. We then have

X̄ = −3A2

2 a2
, Ȳ =

3Ȧ2

2 a2
, Z̄ = 0 , W̄1 =

W̄2

3
= W̄3 = −3A2Ȧ2

a4
, (3.2)

where bar denotes background quantities, and dot denotes derivative with respect to physical

time t. Z vanishes on the background, since Z ∝ ǫijk∂tA
(a)
i ∂jA

(a)
k and the homogeneous vector

vev does not survive against the spatial derivative on it. The background action reads

S(0) = V

∫

dt a3
[

Ḡ2 − 6 Ḡ4
ȧ2

a2
+ 12 Ḡ4,X

ȧ

a

A

a
∂t

(

A

a

)]

(3.3)

where V is the comoving volume. There are two dynamical degrees of freedom in the back-
ground, namely A(t) and a(t). The corresponding equations of motion are, respectively,

∂t

{

[

Ḡ2,Y − 2
(

Ḡ2,W1 + 3Ḡ2,W2 + Ḡ2,W3

)

B2
]

(

Ḃ +HB
)}

+ 2HḠ2,Y

(

Ḃ +HB
)

+ Ḡ2,XB

+ 2
(

Ḡ2,W1 + 3Ḡ2,W2 + Ḡ2,W3

)

B
(

Ḃ2 −H2B2
)

+ 2Ḡ4,XB
(

2Ḣ + 3H2
)

= 0 , (3.4)

4Ḡ4Ḣ + 2
[

Ḡ2,Y −
(

Ḡ2,W1 + 3Ḡ2,W2 + Ḡ2,W3

)

B2
]

(

Ḃ +HB
)2

+ Ḡ2,XB
2

− 4 ∂t

(

Ḡ4,XBḂ
)

+ 2Ḡ4,XB
2
(

2Ḣ + 3H2
)

= 0 . (3.5)

together with the constraint equation

6Ḡ4H
2 = −Ḡ2 + 12 Ḡ4,XHBḂ + 3

[

Ḡ2,Y − 2
(

Ḡ2,W1 + 3Ḡ2,W2 + Ḡ2,W3

)

B2
]

(

Ḃ +HB
)2

,

(3.6)
where we have defined the Hubble parameter H and “physical” vector vev B as14

H ≡ ȧ

a
, B ≡ A

a
. (3.7)

Note that the choice of G2 = Y +m2X and G4 = M2
p /2 correctly reproduces the equations

of motion and of state for the Proca theory minimally coupled to gravity.
In order to obtain an inflationary solution, we specifically look for one with quasi de

Sitter expansion, namely,
Ḣ ≈ 0 . (3.8)

One can realize that background equations have (3.8) as a solution only if the vector vev B
is in the slow-roll phase, i.e.,

Ḃ ≈ 0 . (3.9)

14The word “physical” means that the value of B is a tetrad component of the vectors and thus does not
depend on the normalization of the scale factor a.

– 6 –
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This can be seen by setting Ḣ = 0 in the background equations of motion. First, (3.6) can be
solved algebraically with respect to Ḃ. Hence, Ḃ and B̈ can be expressed as functions of H
and B, where we set Ḣ = 0 to obtain the expression for B̈. By substituting them to (3.5) and
setting Ḣ = 0, we obtain an algebraic equation involving H and B only. Solving this results
in B = B(H). Therefore, barring fine-tunings, given a constant H as in (3.8), the background
equations only admit a constant B as an inflationary solution. Moreover, once Ḣ in (3.4) is
replaced with the use of (3.5), one observes that (3.4) can be written as B̈ = h(H,B, Ḃ)Ḃ,
where h(H,B, Ḃ) is non-singular at Ḃ = 0. Therefore, B̈ = 0, which is the consistency of
Ḃ = 0, is automatically satisfied by Ḣ = Ḃ = 0. (This is no surprising, since (3.4)–(3.6)
form a constrained system and thus any valid solution of (3.6) and one of the remaining
two should automatically satisfy the other.) Imposing (3.8) and (3.9) simplifies (3.4), (3.5)
and (3.6) to

Ḡ2 − 3
[

Ḡ2,Y − 2
(

Ḡ2,W1 + 3 Ḡ2,W2 + Ḡ2,W3

)

B2
]

H2B2 + 6Ḡ4H
2 ≈ 0 (3.10)

Ḡ2,X + 2
[

Ḡ2,Y −
(

Ḡ2,W1 + 3Ḡ2,W2 + Ḡ2,W3

)

B2
]

H2 + 6Ḡ4,XH
2 ≈ 0 (3.11)

with the third equation being a redundant one, due to the nature of a constrained system.
Bearing in mind that Ḡ2 and Ḡ4 are functions of B and H, (3.10) and (3.11) are simply alge-
braic equations of these variables, and the solutions to them provide the de Sitter background
in the considered model.

Given a solution to this set of equations, (3.8)–(3.11), we impose the conditions under
which it is an attractor of the system. To this end, we perturb B and H as B = B0+ δB and
H = H0+δH in the original equations (3.4)–(3.6) such thatB0 andH0 satisfy (3.8)–(3.11) and
then linearize them in terms of δB and δH. Now δH (and δḢ) can be algebraically solved
in favor of δB, δḂ and δB̈, giving the master equation with respect to δB with constant
coefficients. This second-order equation takes the form δB̈+3H0δḂ+CattH

2
0δB = 0, where

the numerator and denominator of Catt are given by

(Num. of Catt) = GW

[

4G4 + 6G4,XB
2
0 + 9G4,XXB

4
0 +

3G2,XX

2H2
0

B4
0

]

B2
0

+3GW,X

[

2
(

G4 − 3G4,XB
2
0

)

− 3
(

G2,Y +G2,XYB
2
0 +G2,Y YH

2
0B

2
0

)

B2
0

]

B4
0

+3GW,Y

[

2
(

5G4 + 9G4,XB
2
0 + 9G4,XXB

4
0

)

+

(

2G2,Y +
3G2,XX

H2
0

B2
0 + 3G2,XYB

2
0

)

B2
0

]

H2
0B

4
0

−3 (GW,W1 + 3GW,W2 +GW,W3)

[

2
(

4G4 + 12G4,XB
2
0 + 9G4,XXB

4
0

)

+5G2,YB
2
0 + 3

(

G2,XX

H2
0

+ 2G2,XY +G2,Y YH
2
0

)

B4
0

]

H2
0B

6
0

+6GW

[

GW,X + (GW,W1 + 3GW,W2 +GW,W3)H
2
0B

2
0

]

B8
0 + 9

(

GW,X +GW,YH
2
0

)2
B10

0

+

[

3G4

(

6G4,XX +
G2,XX

H2
0

+G2,XY − 2G2,Y YH
2
0

)

+3G4,X

(

G2,Y + 3G2,XYB
2
0 − 3G2,Y YH

2
0B

2
0

)

− 9

2
G4,XX

(

G2,Y + 3G2,Y YH
2
0B

2
0

)

B2
0

+G2
2,Y − 3

4
G2,Y

(

G2,XX

H2
0

− 4G2,XY

)

B2
0 +

9

4

(

G2
2,XY −G2,XXG2,Y Y

)

B4
0

]

B2
0 ,
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(Den. of Catt) = −4G2
4,XB

2
0 +

(

G4 + 2G4,XB
2
0

)

(3.12)

×
{

12
[

GW,Y −(GW,W1+ 3GW,W2+GW,W3)B
2
0

]

H2
0B

4
0+2GWB

2
0 −

(

G2,Y + 3G2,Y YH
2
0B

2
0

)

}

,

with GW ≡ Ḡ2,W1 + 3Ḡ2,W2 + Ḡ2,W3 and constant B0 and H0. This parameter Catt plays
the roll of the effective mass square (in the unit of H0) in the conventional models, and
in order to realize a sufficiently long period of inflation with a graceful exit, we require
|Catt| ≪ 1. Whenever we consider the de-Sitter limit in the following analyses, we therefore
take Catt → 0. In this limit, we have δB̈ + 3H0δḂ = 0, leading to δB ∝ δḂ ∝ a−3 (with
the constant solution absorbed into B0), and thus deviations from de-Sitter solutions B0 are
quickly washed away. Since δH and δḢ are written as linear combinations of δB, δḂ and δB̈,
this guarantees an exponential decay of these variables as well and therefore the attractor
behavior.15 Hence we conclude that inflationary expansion is achieved by the approximate
solutions of (3.8)–(3.11) under the attractor condition |Catt| ≪ 1. The deviation from the
pure de Sitter is expected to be at slow-roll orders O(Ḣ/H2, Ḃ/HB). The condition for this

attractor to stay isotropic, i.e. 〈A(a)
i 〉 ∝ δai and 〈gij〉 ∝ δij , is shown in section 4.5.

4 Perturbations

We have obtained in the previous section inflationary solutions given by (3.8)–(3.11) in the
theory (2.2) and their attractor condition |Catt| ≪ 1 in (3.12). In this section, we analyze
the linear perturbations around this background and search for the model regions where
it is stable. The concerned system has three vector fields and one metric, and thus the
starting number of variables of perturbations is 3×4+10 = 22. A convenient decomposition

for perturbations δA
(a)
µ ≡ A

(a)
µ − 〈A(a)

µ 〉 and δgµν ≡ gµν − 〈gµν〉 respecting the background
configuration (2.1) and (3.1) is [88]

δA
(a)
0 = Ya + ∂aY , δA

(a)
i = a(t) [δQ δai + ∂i (Ma + ∂aM) + ǫiab (Ub + ∂bU) + tia] , (4.1)

δg00 = 2φ , δg0i = a(t) (Bi + ∂iB) ,

δgij = a2(t) (2ψ δij + 2∂i∂jE + ∂iEj + ∂jEi + hij) , (4.2)

where we reserve the indices a, b, . . . for different vector fields, while i, j, . . . for the spa-
cial coordinates. The “vector” (Ya,Ma, Ua, Bi, Ei) and “tensor” (tia, hij) modes have trans-
verse/traceless properties, i.e.

∂iYi = ∂iMi = ∂iUi = ∂iBi = ∂iEi = 0 , (4.3)

∂itij = ∂jtij = ∂ihij = ∂jhij = 0 , tii = hii = 0 , (4.4)

and also tij and hij are symmetric. We denote other modes as “scalar.” While the modes
{Y, δQ,M,U}, {Ya,Ma, Ua} and {tia} do not transform as scalar, vector and tensor, respec-
tively, in the standard sense, the decomposition (4.1) is particularly useful in that, already at
the linear order, they are decoupled from each other and coupled separately to the true scalar

15The procedure described here has another different but equivalent version that leads to the same attractor
condition. We have solved the constraint equation in favor of δB and its derivatives, but we can instead solve
it in such a way that we have two coupled first-order equations in terms of δH and ∂t(δB). The characteristic
equation of this system is given as λ2 +3λ+Catt = 0 with λ being the eigenvalues and with the same Catt as
given in (3.12). Some other versions are also possible.
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{φ,B, ψ,E}, vector {Bi, Ei} and tensor {hij} modes in the metric. This is therefore an ex-
ceptional case to the standard decomposition theorem in that the decomposition is done with
respect not only to the coordinate space but also to the vector-fields’ internal space, which
is also the case for models like Chromo-natural inflation and Gauge-flation. The quadratic
action can be written as a sum of the three sectors,

S(2) = S
(2)
S [Y, δQ,M,U, φ,B, ψ,E] + S

(2)
V [Ya,Ma, Ua, Bi, Ei] + S

(2)
T [tia, hij ] . (4.5)

Let us note in passing that the decomposition of the type (4.1)–(4.2) can always be done,
but its usefulness comes from this linear decoupling, a consequence of the background field
configuration (2.1) and FLRW spacetime (3.1).

Not all of the modes are physically relevant degrees of freedom. There is a gauge freedom
regarding general coordinate transformation, which we fix by taking the spatially-flat gauge,
ψ = E = Ei = 0. Note that the vector fields under consideration do not possess gauge
invariance and no further gauge fixing is applicable. Among the remaining modes, {Y, φ,B}
and {Ya, Bi} are non-dynamical, i.e., they enter the quadratic action without time derivatives,
up to total derivatives, and therefore can be integrated out by constraint equations. We
are then left with the truly propagating degrees of freedom, 3 scalar {δQ,M,U}, 4 vector
{Ma, Ua} and 4 tensor {tia, hij} modes. The action (4.5) reduces to

S(2) = S
(2) ′
S [δQ,M,U ] + S

(2) ′
V [Ma, Ua] + S

(2)
T [tia, hij ] , (4.6)

expressed in terms only of physical degrees of freedom. In the current work, we are only
interested in studying the linearized theory of perturbations. This amounts to expanding the
equations of motion up to first order, or equivalently to expanding the action up to quadratic
order. In either way, the three sectors (scalar/vector/tensor) are decoupled from each other
(their couplings emerge only at the nonlinear level). We study the stability conditions in
each sector; we first outline the general procedure and then proceed the analyses of each
sector separately in the following subsections. Also we explain that the stability of the tensor
modes in the long-wavelength limit is equivalent to the one against anisotropic deformations
in our setup and demonstrate to ensure the background isotropy by demanding the stability
of the tensor sector in the this limit k → 0.

4.1 General procedure

Our goal is to investigate the stability of the inflationary solution (3.8)–(3.11) against per-
turbations. Disastrous breakdown of the solution arises in the form of ghost and/or gradient
instabilities. We focus in particular on their high momentum limit, as this would immediately
lead to the breakdown of vacuum states while low-energy instabilities only hint the ones à la
Jeans instability and may thus be under control [143]. This subsection is devoted to outlining
the procedure of how to identify those ghost and gradient instabilities and the conditions to
evade them.

In performing the computations, it is convenient to Fourier-transform the perturba-
tions as

δ (t,x) =

∫

d3k

(2π)3/2
eik·x δ (t,k) , (4.7)

where δ (t,x) denotes each perturbation. The variations with respect to non-dynamical modes
({Y, φ,B} in the scalar sector and {Ya, Bi} in the vector) give the constraint equations, which
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are algebraic in the Fourier space, and they can be solved to integrate out those modes. As
a result, the action of each decoupled sector (sometimes sub-sector) is written in terms only
of dynamical modes, i.e. {δQ,M,U} for scalar, {Ma, Ua} for vector and {tia, hij} for tensor,
and can be cast into the form

S(2) =
1

2

∫

dt d3k a3
[

δ̇†D T δ̇D + δ̇†DX δD − δ†DX δ̇D − δ†D Ω2 δD

]

, (4.8)

up to addition of appropriate total derivatives, where δD is an array of dynamical modes,
dagger denotes Hermitian conjugate, and T , X and Ω2 are square matrices with the size
corresponding to the number of the dynamical modes and with the properties T † = T ,
X† = −X and Ω2 † = Ω2. The non-vanishing off-diagonal components of these matrices are
the indication of a coupled system. Notice that we factor out the volume element (a3) from
the definitions of the matrices.

The matrix T is in general not diagonal. We thus perform a rotation in the field space

δD = R∆D , (4.9)

such that R†TR is diagonal. Then the action (4.8) becomes, again after properly adding
total derivatives,

S(2) =
1

2

∫

dt d3k a3
[

∆̇†
D T̄ ∆̇D + ∆̇†

D X̄∆D −∆†
D X̄ ∆̇D −∆†

D Ω̄2∆D

]

, (4.10)

where X̄† = −X̄, Ω̄2 † = Ω̄2, and

T̄ ≡ R†TR = diag (λ1, λ2, . . . , λN ) , (4.11)

with N the number of dynamical degrees. The matrix T̄ is Hermitian by construction,
and thus λi are real for all i. It is convenient for our later purpose to choose the rotation
matrix (4.9) so to have (we have this freedom for constant rescaling)

λi ∝ k0 , for k → ∞ . (4.12)

Ghosts refer to the modes that have a negative time kinetic term, and therefore, the no-ghost
condition is the requirement

λi > 0 , no ghost condition , (4.13)

for all i. As mentioned at the beginning of this subsection, we are particularly interested in
the cases where (4.13) is satisfied in large k limit.

The equations of motion for ∆D are derived by varying (4.10) with respect to ∆†
D.

Thanks to the choice (4.12) and to the fact that X̄ ∝ k0 or k1 and Ω2 ∝ k2 in the k → ∞
limit for all the cases of our current concern, the equations of motion in this limit read

(

T̄ ∂2t + 2X̄ ∂t + Ω̄2
)

∆D ≈ 0 , (4.14)

where time derivatives of T̄ and X̄ are of order Ḣ or Ḃ and therefore negligible. Eq. (4.14)
is an operator equation, and we assume that the “eigenvector” takes the form ∆D ∝
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exp
[

−i
∫ t
csk/a(t

′) dt′
]

e in the deep subhorizon, where cs is the sound speed and e is a

constant vector. Then the existence of non-trivial solutions to (4.14) requires

det

[

T̄
k2

a2
c2s + 2iX̄

k

a
cs − Ω̄2

]

= 0 , (4.15)

where the time derivatives of cs and a are of order H, Ḣ or Ḃ, and therefore negligible
compared to k in this limit. Solving (4.15) determines the sound speed of the dynamical
modes in large k limit, and the condition to evade gradient instabilities is given by c2s > 0
for all the solutions of (4.15). For our current study of perturbations, each decoupled sector
is either a 2× 2 or 3× 3 system. For a 2× 2 case, (4.15) leads to a quadratic equation for c2s,

(

c2s
)2 − α c2s + β = 0 . (4.16)

To ensure that the two roots of c2s for this equation are both real and positive, we thus require

α > 0 , β > 0 , α2 − 4β ≥ 0 , for c2s > 0 in a 2× 2 system . (4.17)

On the other hand, for a 3× 3 system, (4.15) reduces to a cubic equation of c2s,

(

c2s
)3 − γ

(

c2s
)2

+ δ c2s − ǫ = 0 (4.18)

and then the reality and positivity of all the roots of c2s imposes

γ > 0 , δ > 0 , ǫ > 0 , γ2 − 3 δ ≥ 0 , γ2δ2 − 4δ3 − 4γ3ǫ+ 18γδǫ− 27ǫ2 ≥ 0 ,

for c2s > 0 in a 3× 3 system , (4.19)

In order for the system to be completely stable against ghost and gradient instabilities, all
the dynamical degrees of freedom must simultaneously satisfy both of the conditions of no-
ghost (4.13) and positive squared sound speeds (4.17)/(4.19). In the following subsections,
we apply this procedure for the tensor, vector and scalar sectors individually. The conditions
for positive sound speeds are extremely lengthy for the vector and scalar sectors with the
general functions of G2 and G4 (see (2.2)), and so we restrict ourselves to showing the explicit
results only in section 5, where we demonstrate some illustrative examples.

4.2 Tensor sector

The tensor sector perturbations consist of hij and tia, with 2 + 2 = 4 degrees of freedom.
While tia is not a tensor quantity under a spatial rotation, it couples to the metric tensor

mode hij at the linear level. Due to the presence of Z = −F (a)
µν F̃ (a),µν/4 in the function G2

(see (2.4)), parity violation is involved in this theory. Thus it is convenient to work in the
right- and left-handed basis of the tensor modes, following the decomposition of hij as16

hij (t,k) =
∑

λ=R,L

Πλ
ij

(

k̂
)

hλ (t,k) , tia (t,k) =
∑

λ=R,L

Πλ
ia

(

k̂
)

tλ (t,k) , (4.20)

16The usual decomposition of tenor perturbations hij = h+e
+
ij + h×e

×

ij is translated in terms of the left-
handed and right-handed canonical modes by hR = (h+ − ih×) /2, hL = (h+ + ih×) /2.
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where Πλ
ij is the polarization tensor satisfying symmetric, traceless and transverse properties

together with Π
R/L
ij (−k̂) = Π

R/L ∗
ij (k̂) = Π

L/R
ij (k̂) and iǫiklk̂kΠ

R/L
lj (k̂) = ±Π

R/L
ij (k̂). After this

decomposition, we observe that the two handed modes are separated, namely

S
(2)
T [hij , tia] = S

(2)
R [hR, tR] + S

(2)
L [hL, tL] . (4.21)

The actions of the two sectors do not exactly coincide, which is indication of parity violation,
and the difference appears only in the terms that are proportional to Ḡ2,Z . However, they do
not contribute in the high k limit and do not arise in either the no-ghost or gradient stability
conditions for tensor modes. Therefore this difference between the right- and left-handed
tensor modes is irrelevant for our current analysis, and we hereafter omit the labels R/L
whenever causing no ambiguity.

In S
(2)
R/L, the modes hR/L and tR/L have kinetic mixing. Following the procedure de-

scribed in section 4.1, we diagonalize the kinetic matrix by the rotation

RT =

(

Ḡ2,Y − 2
(

Ḡ2,W1 + Ḡ2,W3

)

B2 0
Ḡ4,XB

1
2

)

, (4.22)

where subscript T denotes tensor modes. Then the kinetic matrix after the rotation, corre-
sponding to T̄ in (4.10), becomes diagonal. Its explicit form is

T̄T =

(

2CNG1CNG2 0
0 CNG1

)

, (4.23)

where

CNG1 ≡ Ḡ2,Y −2
(

Ḡ2,W1 + Ḡ2,W3

)

B2 , CNG2 ≡ CNG1

(

Ḡ4 + 2 Ḡ4,XB
2
)

−2 Ḡ2
4,XB

2 . (4.24)

Notice that T̄T is independent of k. In large k limit, the mixing matrix X̄T and mass matrix
Ω2
T read

X̄T ≃ 0 , (4.25)

Ω̄2
T ≃ k2

a2

(

2CNG1

[

CNG1

(

G4+3G4,XB
2
)

−2G2
4,XB

2
]

− 8G2,W1G
2
4,XB

4 −4Ḡ2,W1Ḡ4,XB
3

−4Ḡ2,W1Ḡ4,XB
3 CNG1−2G2,W1B

2

)

.

Then the no-ghost conditions are given by requiring every component of T̄T to be positive, i.e.,

CNG1 > 0 , CNG2 > 0 , (4.26)

and the no-gradient-instability conditions are obtained by demanding the positive roots
of (4.15) for c2s given the large k limit of the matrices, (4.23) and (4.25), yielding

αT ≡ 2 +
CNG1G4,X − 2G2,W1

(

G4 + 2G4,XB
2
)

CNG2
B2 > 0 (4.27)

βT ≡ 1 +
CNG1G4,X − 2G2,W1

(

G4 + 3G4,XB
2
)

CNG2
B2 > 0 . (4.28)

α2
T − 4βT =

B4

C2
NG2

[

C2
NG1G

2
4,X + 4G2

2,W1

(

G4 + 2G4,XB
2
)2

+4G2,W1G4,X

(

CNG2 − 2G2
4,XB

2
)

]

> 0 . (4.29)
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As mentioned previously, these conditions apply to both of the right- and left-handed modes,
and therefore the stability in the tensor sector is guaranteed by satisfying all of (4.26)–(4.29)
simultaneously.

In the above, we have demonstrated the calculation of the tensor stability and shown
the explicit expressions for all the conditions, as they are relatively compact in length. We
now proceed to the vector and scalar sectors and follow the same procedures to obtain their
stability conditions, but the expressions for the sound speeds for them are extremely lengthy
and not illuminating. Thus we refrain from showing the full results for the most general
functions of G2 and G4. Instead, we only show the no-ghost conditions in the following sub-
sections and discuss the gradient stability conditions when we study some specific examples
in section 5.

4.3 Vector sector

The vector sector is initially composed of 2 × 4 = 8 perturbations, Ya,Ma, Ua, Bi (Ei have
been gauged away), including the non-dynamical modes Ya and Bi. As we have used the
R/L basis in the tensor sector, it is convenient to work the circular polarization states. This
amounts to decomposing the vector modes Vi = {Yi,Mi, Ui, Bi} as, in the Fourier space,17

Vi (t,k) =
∑

λ=±

eλi

(

k̂
)

Vλ (t,k) , (4.30)

where eλi is the circular polarization vector satisfying traceless property and e±i (−k̂) =

e±∗
i (k̂) = e∓i (k̂) and iǫijkk̂je

±
k (k̂) = ±e±i (k̂). Then the ± sectors decouple, i.e.,

S
(2)
V [Ya,Ma, Ua, Bi] = S

(2)
+ [Y+,M+, U+, B+] + S

(2)
− [Y−,M−, U−, B−] . (4.31)

One can observe that the two sub-sectors S
(2)
± do not coincide. This is due to the fact

that the non-vanishing Z dependence in G2 breaks parity (the same reason as S
(2)
R 6= S

(2)
L

in the tensor) and also that the Ua mode behaves as a pseudo-vector due to the presence
of ǫiab in front of its definition, (4.1), with the background configuration (2.1). Therefore,

the difference between S
(2)
+ and S

(2)
− , hinting parity violation, comes with the terms either

proportional to Ḡ2,Z or linear in U±.
To proceed to stability analyses, we first integrate out the non-dynamical modes, Y±

and B±. They enter the quadratic action without time derivatives, up to addition of total
derivatives, and thus the variations of action with respect to them lead to constraint equations
that are only algebraic in the Fourier space. Solving them and plug the expressions for Y±
and B± back in, we obtain the action only in terms of the physical degrees of freedom, i.e.,

S
(2)
± [Y±,M±, U±, B±] = S

(2) ′
± [M±, U±] , (4.32)

where the equality holds on the constrained hypersurface. Since M± and U± have kinetic
mixing, we follow the procedure in section 4.1 and rotate the system by

R± =

( 1
2 a ∓ 1

k

[

Ḡ2,Y − 2
(

Ḡ2,W1 − Ḡ2,W3

)

B2
] (

Ḡ4 + Ḡ4,XB
2
)

0
(

Ḡ2,Y − 2Ḡ2,W1B
2
) (

Ḡ4 + 2Ḡ4,XB
2
)

− Ḡ2
4,XB

2

)

(4.33)

17More explicitly, provided that momentum vector Vi is oriented along the z-axis, the components V± can
be expressed in terms of Vi as V± = (V1 ∓ iV2) /2.
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where subscripts ± denote the ± vector modes. Then the kinetic matrices after the rotation,
corresponding to T̄ in (4.8), become

T̄± =

(

H2CNG3

1+2 a2

k2
CNG3C

−1
NG4(G4+G2,Y B2−2G2,W1

B4)
0

0 2CNG2CNG4CNG5

)

(4.34)

where

CNG3 ≡
[

−Ḡ2,Y + 2
(

2Ḡ2,W1 + 2Ḡ2,W2 + Ḡ2,W3

)

B2
]

(

1 +
Ḃ

HB

)2

−2
(

Ḡ4 + Ḡ4,XB
2
) Ḣ

H2B2
+ 6Ḡ4,XX

BḂ

H
+

2

H2B2
∂t

(

Ḡ4,XBḂ
)

, (4.35)

CNG4 ≡
(

Ḡ2,Y − 2Ḡ2,W1B
2
) (

Ḡ4 + 2Ḡ4,XB
2
)

− Ḡ2
4,XB

2 , (4.36)

CNG5 ≡ Ḡ2,Y − 2
(

Ḡ2,W1 − Ḡ2,W3

)

B2 . (4.37)

To obtain (4.35), eq. (3.5) is used to replace Ḡ2,X . Notice that the kinetic matrices of both
sub-sectors are identical, T̄+ = T̄−. The no-ghost conditions in the vector sector are to ensure
that both of the components of T̄± should be strictly positive at all times. As argued at the
beginning of section 4.1, we pay particular attention in the large momentum limit, k → ∞.
Therefore, the vector ghost stability conditions are

CNG3 > 0 , CNG4CNG5 > 0 , (4.38)

provided CNG2 > 0, already imposed from the tensor no-ghost condition (4.26).

In large k limit, one can observe that T̄+ = T̄−, X̄+ = −X̄− and Ω̄2
+ = Ω̄2

−, and for
this reason, the characteristic equation (4.15) for sound speed is identical for the ± modes.
Therefore, the conditions to ensure gradient stability are the same for the two sub-sectors and
can be obtained by (4.17) with corresponding expressions of α and β, denoting αV and βV ,
respectively. We discuss these conditions in more details for some specific cases in section 5.

4.4 Scalar sector

The scalar sector contains 6 perturbations, Y, δQ,M,U, φ and B, with ψ and E gauged away.
Among these modes, Y , φ, and B are non-dynamical and enter the quadratic action without
any time derivatives (up to total derivatives). By solving the constraint equations, obtained

by varying the action S
(2)
S with respect to them, we can integrate out these non-dynamical

modes and express S
(2)
S in terms only of the dynamical variables, {δQ,M,U}, i.e.

S
(2)
S [Y, δQ,M,U, φ,B] = S

(2) ′
S [δQ,M,U ] , (4.39)

where the equality holds on the constrained hypersurface. One can then observe that U
does not have a kinetic mixing with δQ or M , and so it suffices to rotate the {δQ,M} part.
Together with a trivial rescaling for U , we rotate the system by, as in (4.9),

RS =







G4 +G4,XB
2 0 0

CNG6
2k2

2G4+CNG1B
2

G4+G4,XB2 − 1
ka

0 0 1
k






(4.40)
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where subscript S denotes the scalar sector,

CNG6 ≡ (4.41)
{

Ḡ2,Y −2ḠWB2+3Ḡ2,Y Y H2B2+12H2B4
[

−∂Y +B2 (∂W1
+3∂W2

+∂W3
)
]

ḠW

} (

Ḡ4+2Ḡ4,XB2
)

+4Ḡ2
4,XB2

Ḡ2,Y −2
(

Ḡ2,W1
+Ḡ2,W2

+Ḡ2,W3

)

B2+Ḡ2,Y Y H2B2+4H2B4 [−∂Y +B2 (∂W1
+3∂W2

+∂W3
)] ḠW

,

with ḠW ≡ Ḡ2,W1+3Ḡ2,W2+Ḡ2,W3 , and the operator −∂Y +B2 (∂W1 + 3∂W2 + ∂W3) is acting
only on ḠW on its right. Note that this expression already assumes the de Sitter solution of
the background, see (3.8)–(3.11). Then the kinetic matrix after the rotation, corresponding
to T̄ in (4.8), takes the form, in de Sitter and large k limit,

T̄S = 2





CNG2CNG6 0 0
0 H2CNG7 +O(k−2) 0
0 0 CNG5



 , (4.42)

where

CNG7 ≡ −Ḡ2,Y + 2
(

2Ḡ2,W1 + 2Ḡ2,W2 + Ḡ2,W3

)

B2 . (4.43)

Notice CNG7 = CNG3 in the de Sitter solutions we are currently interested in, Ḃ = Ḣ = 0,
and therefore as far as the stability around such background is concerned, CNG7 does not
give any new condition. The stability against ghosts in the scalar sector then requires that
the remaining two components in T̄S be positive at all times, namely

CNG5 > 0 , CNG6 > 0 , (4.44)

provided that CNG2 > 0, which is ensured by the tensor stability (4.26).

In order to compute the stability against gradient terms, we take the k → ∞ limit on the
de Sitter background and then compute the characteristic equation (4.18) for c2s. The system
is now 3× 3, and therefore we impose 5 conditions as in (4.19), for reality and positivity of
all the c2s values. We denote the three coefficients in (4.18) by γS , δS and ǫS . We show some
concrete examples and illustrate these stability conditions explicitly in section 5.

4.5 Attractor condition against anisotropic expansion

In this subsection, we derive the condition under which the isotropic configuration of the
background, given by (2.1) and (3.1), is stable against anisotropic deformations. As opposed
to the case of a scalar inflaton, even if the system starts out with the configuration (2.1), off-
diagonal components of 〈Aa

i 〉 might be excited dynamically and spoil the isotropic expansion.
The anisotropic part in the metric corresponds to its traceless and transverse components
in the homogeneous background and therefore coincide exactly with hij in (4.2) in the long-
wavelength limit. This tensor mode couples to tia in δAa

i at the linear order. Therefore, in
order to have the isotropic configuration, it suffices to guarantee the stability of the tensor
sector {hij , tia} in the limit k → 0.18 It is worth emphasizing that our approach is slightly
different from a conventional analysis of attractor behaviors in the context of the inflation

18One may speculate that due to the specific form of the decomposition (4.1), the “vector” mode Ua also
enters in δAa

i without any spatial derivatives and thus could source the metric vector mode Bi, spoiling the
isotropy. However, since Bi is a vector while Ua behaves as a pseudo-vector on the vev (2.1), they do not
couple in the limit k → 0 at the linear order, which we have confirmed explicitly. Therefore the vector sector
would not induce any background anisotropy.
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which shows the FLRW attractor solution in the system starting from an anisotropic metric,
e.g. Bianchi type-I cosmology. Our method is, instead of adding an additional dynamical
variable responsible for anisotropy at the background level, simply to consider the stability
of the long-wavelength tensor modes. This should be satisfactory at least for small, linearized
anisotropic deformations.

The tensor sector consists of two sub-sectors, right-handed {hR, tR} and left-handed
{hL, tL}, and their actions are identical in the k → 0 limit. By varying the tensor action (4.21)
with respect to hR/L and tR/L, we obtain a set of two second-order differential equations in
each sector. After differentiating them once and twice with respect to time, we can substitute
all the tR/L and its derivatives to obtain a single fourth-order differential equation for hR/L,
which reads, in the de-Sitter and k → 0 limit,

∂4t hR/L + 6H ∂3t hR/L +H2Ch,2 ∂
2
t hR/L +H3Ch,1 ∂thR/L = 0 , (4.45)

where

Ch,1 =
12B2

CNG2

[

3
(

Ḡ2,W1 + 2Ḡ2,W2 + Ḡ2,W3

) (

Ḡ2,W1 + 3Ḡ2,W2 + Ḡ2,W3

)

B4

− 3
(

2Ḡ2,W1 + 3Ḡ2,W2 + 2Ḡ2,W3

)

Ḡ4,XB
2

−
(

Ḡ2,W1 + Ḡ2,W3

)

Ḡ4 −
1

4
Ḡ2

2,Y +
3

2

(

Ḡ4,X − Ḡ2,W2B
2
)

Ḡ2,Y

]

,

Ch,2 =
Ch,1

3
+ 9 . (4.46)

Let us note in passing that the absence of the term proportional to hR/L without time deriva-
tives in (4.45) implies that it admits a constant solution for hR/L in the super horizon as in
the standard slow-roll inflation in general relativity. Constant tensor modes in super horizon
can be regarded as gauge modes for local observers inside horizon and do not disturb the
isotropic attractor, since the background perturbed by them become more and more indis-
tinguishable from the unperturbed one as the universe expands at an accelerated rate. The
stability against anisotropic expansion is ensured by imposing that hR/L has only constant
or decreasing modes in this limit. By taking the ansatz hR/L ∝ exp(λHt), (4.45) reduces to a

fourth-order polynomial equation, which can be solved as λ = 0,−3, (−3±
√

9− 4Ch,1/3)/2,
using the relation (4.46) between Ch,1 and Ch,2. Therefore, the necessary and sufficient con-
dition for hR/L to have only non-increasing modes, i.e. for the real parts of all the λ to
be non-positive, imposes Ch,1 ≥ 0.19 Therefore, in order to have isotropic expansion as an
attractor against anisotropy, we require a single condition

Ciso ≡ 3
(

Ḡ2,W1 + 2Ḡ2,W2 + Ḡ2,W3

) (

Ḡ2,W1 + 3Ḡ2,W2 + Ḡ2,W3

)

B4

− 3
(

2Ḡ2,W1 + 3Ḡ2,W2 + 2Ḡ2,W3

)

Ḡ4,XB
2

−
(

Ḡ2,W1 + Ḡ2,W3

)

Ḡ4 −
1

4
Ḡ2

2,Y +
3

2

(

Ḡ4,X − Ḡ2,W2B
2
)

Ḡ2,Y

≥ 0 , (4.47)

provided CNG2 > 0. This prevents the background system from running away from the
isotropic configuration (2.1), and the expansion stays isotropic throughout the inflationary
evolution.

19When Ch,1 = 27/4, then two roots of λ are degenerate. One can show that the solution to (4.45) in this
case is hR/L ∝ const., e−3Ht, e−3Ht/2, t e−3Ht/2, and therefore it would not lead to any appreciable growth.
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4.6 Stability conditions

We here collect all the conditions we need to impose in order to stabilize the system around
the de Sitter solutions against anisotropy, ghosts and gradient instabilities. As the attractor
condition for the background dynamics, we impose

|Catt| ≪ 1 , (4.48)

and take the limit Catt → 0 for the pure de Sitter. Also for the background evolution, the
condition to prevent from rolling to anisotropic configuration away from (2.1) is

Ciso ≥ 0 , (4.49)

where Ciso is defined in (4.47).
Regarding perturbations, we are concerned with instabilities in the high momentum

limit on the background (3.8)–(3.11). As noted below (4.43), CNG7 ≈ CNG3 in the (quasi) de
Sitter limit; moreover, CNG4 can be expressed as

CNG4 =
CNG2

2
+

CNG5

2CNG1

(

CNG2 + 2G2
4,XB

2
)

, (4.50)

and hence CNG4 > 0 is granted as long as the other no-ghost conditions are respected.
Therefore in order to ensure stability against ghosts, it suffice to impose the following 5
inequalities

CNG1 > 0 , CNG2 > 0 , CNG3 > 0 , CNG5 > 0 , CNG6 > 0 , (4.51)

where the definitions can be found in (4.24), (4.35)–(4.37) and (4.41). One immediate obser-
vation is that since CNG1+CNG3 = 2(Ḡ2,W1 +2Ḡ2,W2)B

2 > 0 (remember to take Ḃ ≈ Ḣ ≈ 0
in the expression (4.35) for CNG3), one must have a model with Ḡ2,W1 6= 0 or Ḡ2,W2 6= 0, at
the very least, for a no-ghost inflationary solution. This is a quick evidence of ghosts in the
existing models of vector-driven inflation.

On the other hand, the gradient stabilities demand, in the same large k and de Sit-
ter limit,

αT > 0 , βT > 0 , α2
T − 4βT ≥ 0 ,

αV > 0 , βV > 0 , α2
V − 4βV ≥ 0 , (4.52)

γS > 0 , δS > 0 , ǫS > 0 ,

γ2S − 3 δS ≥ 0 , γ2Sδ
2
S − 4δ3S − 4γ3SǫS + 18γSδSǫS − 27ǫ2S ≥ 0 ,

where T, V, S correspond to the tensor, vector and scalar sectors, respectively. While the ex-
pressions for αT and βT are given in (4.27) and (4.28), respectively, those for αV , βV , γS , δS , ǫS
are to be shown and discussed with concrete examples in the next section. For a stable in-
flationary solution to be realized in the class of models (2.2), all of the conditions in (4.51)
and (4.52) need to be satisfied at all times.

5 Illustrative examples

In the previous section, we have analyzed the stability around the (quasi) de Sitter back-
ground (3.8)–(3.11) in the theory (2.2) without specifying any functional forms of G2 or
G4. In this section, we consider a few concrete examples. In particular, first we take a few
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existing, therefore unstable, cases in section 5.1 and demonstrate how ghost and/or gradient
instabilities appear. Then we provide a simple yet successful example that evades all the sta-
bility conditions (4.51) and (4.52) in section 5.2. We also impose the condition under which
the background is an attractor, i.e. |Catt| ≪ 1 with Catt given in (3.12), and its de-Sitter
limit by Catt → 0.

5.1 Existing (unstable) examples

Existing models in the literature in which inflation is driven solely by vector fields without

the non-Abelian-specific structure ǫabc∂[µA
(a)
ν] A

(b)µA(c)ν can be classified into three main cat-

egories: (i) potential driven one [43], (ii) non-minimal coupling [39, 40, 42], and (iii) fixed
norm of AµA

µ [45]. All of these models have been found unstable, by ghost and/or gradi-
ent instabilities [46–48]. Here we translate their results to the ones in our framework and
illustrate the cause of instabilities. The first two can actually be combined with the choice
of functions G2 = Y − V (X) and G4 = M2

p /2 + ξX with some constant ξ, so we study
them together.20 One note to make is that in [39, 40, 42], the term proportional to G4,X

in (2.3) is set to be zero by hand, but this is expected to lead to a higher-derivative ghost,
or Ostrogradsky instability, at the nonlinear level, and here we include it for consistency and
show that instabilities appear nonetheless.21 The third category fixes the value of A2 by
the term of Lagrange multiplier λ(A2 −M2), driving inflation; however due to the presence
of an additional variable, λ, this model does not fall in the domain of the class of models
characterized by (2.2). Therefore, we retract our concern from this model (the presence of
instabilities is studied in detail in [46]) and focus on the first two models combined.

The model in question is with a potential term of the vector fields and their non-
minimal coupling to gravity, motivated by [39, 40, 42, 43]. Although these original works
did not include the counter terms proportional to G4,X in (2.3) that eliminates a non-linear,
higher-derivative ghost, we do so for a consistent treatment. The original model is known to
suffer from instabilities [47, 48] already, and we here demonstrate that the same conclusion
holds even with the inclusion of the counter terms. This model is characterized by the choice
of functions

G2 = Y − V (X) , G4 =
M2

p

2
+ ξX , (5.1)

with a constant ξ. The background equations in de Sitter, (3.10)–(3.11), read

3M2
pH

2 ≈ 3 (1 + 6ξ)

2
H2B2 + V , 2 (1 + 3ξ)H2 ≈ V,X , (5.2)

as well as Ḃ ≈ Ḣ ≈ 0. In order for this to be an attractor, one needs (4.48)

|Catt| =
B2

H2

∣

∣

∣

∣

∣

3V,XX − 4 (1 + 3ξ)H2 + 3 (1 + 4ξ)2 V,XXB
2

4CNG6

∣

∣

∣

∣

∣

≪ 1 . (5.3)

20In the original works [40, 42], ξ = −1/6 was taken, but we leave it arbitrary in our analysis.
21This higher-derivative ghost mode is not excited at the order of quadratic action, as is evident from

the full analysis in [48]. The reason is a technical one: this ghost is associated with the longitudinal mode
AL

µ = ∂µχ and arises from the term A2R ⊃ −2A2
0 ∂tK/N3, where N is the lapse and K is the trace of the

extrinsic curvature Kij ⊃ ∂tgij/2N . Since 〈A0〉 = 0 on the background, the ghost becomes relevant only for
A2R ∝ (∂tχ)

2∂tφ, where φ ≡ −δN , and after φ is integrated out, with our gauge fixing choice. Thus this
should occur in the cubic action or higher.
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The stability against anisotropic expansion requires (4.49)

Ciso =
6ξ − 1

4
≥ 0 , (5.4)

and therefore ξ ≥ 1/6 is necessary.

The no-ghost conditions (4.51) in this model are satisfied by making the following quan-
tities positive:

CNG1 = CNG5 = 1 , CNG2 =
M2

p

2
+
ξ (1−4ξ)

2
B2 , CNG3 = −1 , CNG6 = CNG2 + 6ξ2B2 .

(5.5)
Since CNG3 = −1, one vector and one scalar modes are always ghosty, at least near de
Sitter. On the other hand, the squared sound speeds for tensor and vector modes, cTs and cVs
respectively, can be solved easily, yielding

cT 2
s = 1 , 1 +

ξB2

CNG2
, (5.6)

cV 2
s = 1 , 1 +

ξ2B2

CNG2
. (5.7)

Also the squared sound speed of one of the scalar modes is also unity. The other two can be
obtained by solving the equation (cS 2

s )2 − αS c
S 2
s + βS = 0, where

αS = 2− V,XXB
2

2H2
− 2ξ3 (1− 2ξ)

CNG2CNG6
B4 , βS =

(

1− V,XXB
2

2H2

)[

1− 2ξ3 (1− 4ξ)

CNG2CNG6
B4

]

, (5.8)

and their positivity and reality can be ensured by requiring αS > 0, βS > 0 and α2
S−4βS > 0

simultaneously.

By looking at (5.3)–(5.8), one can see that the conditions for no gradient instabilities
around attractor solutions can be achieved in, for example, the cases where B2 ≪ M2

p and
V,XXB

2 ≪ H2 with reasonable values of ξ; however, the system suffer ghosts in the vector
and scalar sectors. Note also that in the case B2 ≫ M2

p with V ∝ X and ξ = −1/6, we
additionally have negative values of Ciso, CNG2, CNG4, αS and βS , indicating anisotropic
background expansion, ghosts in all the sectors and gradient instabilities in the scalar sector.
Therefore, this model with vector potential and non-minimal coupling to Ricci scalar is always
unstable around inflationary backgrounds.

5.2 A simple successful example

We have so far considered known models of vector-driven inflation and identified the causes
of instabilities. In this subsection, we provide a proof of existence by demonstrating a simple
example that can satisfy all of attractor, no-ghost and gradient stability conditions simul-
taneously. First we turn off Z (vanishing on the background) and W3, while we need to
preserve G2,W1 or G2,W2 for ghost stability, as mentioned below (4.51), and thus we do both.
We then consider a class of models that contain terms linear in W1,2. We postulate the
following simple forms of G2 and G4 to be

G2 = F (X,Y ) + c1W1 + c2W2 , G4 = c3 + c4X , (5.9)
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where ci are constants and F is a function of X and Y . To further simplify our analysis, we
consider the case where F has properties

F̄,XX +H2F̄,XY = H2
(

H2F̄,Y Y + F̄,XY

)

= 0 , (5.10)

where bar denotes quantities on the quasi de Sitter background, which is given by the solutions
to (3.8)–(3.11), i.e. Ḣ ≈ Ḃ ≈ 0 and

6c3 ≈ − F̄

H2
+ 3F̄,YB

2 − 3 (c1 + 3c2)B
4 + 9c4B

2 ,
F̄,X

H2
+ 2F̄,Y − 2 (c1 + 3c2)B

2 + 6c4 ≈ 0 .

(5.11)
For the attractor condition |Catt| ≪ 1, the expression (3.12) now reduces to

Catt=−B
2

2

4
[

F̄ 2
,Y +3c4F̄,Y +4 (c1+3c2) c3

]

+3
[

5F̄,YB
2−2 (c1+3c2)B

4+8c3+12c4B
2
]

F̄,XY

(2c3 + c4B2)
[

F̄,Y −
(

3F̄,XY + 2c1 + 6c2
)

B2
]

+ 8c24B
2

.

(5.12)
The isotropic configuration described by (2.1) and (3.1) is preserved if (4.49), i.e.

Ciso =
3

2
(c1 + 2c2)

[

2 (c1 + 3c2)B
2 − 3c4

]

B2−c1c3−
1

4
F̄ 2
,Y +

3

2

(

c4 − c2B
2
)

F̄,Y ≥ 0 , (5.13)

is satisfied. The parameters for the no-ghost conditions are

CNG1 = CNG5 = F̄,Y − 2c1B
2 , CNG2 = CNG1

(

c3 +
c4
2
B2
)

− 2c24B
2 ,

CNG3 = −F̄,Y + 4 (c1 + c2)B
2 ,

CNG6 =
1

2

(

2c3 + c4B
2
) [

F̄,Y −
(

3F̄,XY + 2c1 + 6c2
)

B2
]

+ 8c24B
2

F̄,Y −
(

F̄,XY + 2c1 + 2c2
)

B2
,

(5.14)

and we require CNG1, CNG2, CNG3, CNG6 > 0 simultaneously. Among the parameters in this
model, we can express F̄,Y , F̄,XY , c1 and c3 in terms of CNG1, CNG2, CNG3 and CNG6. We
replace them in the expressions of other stability conditions, and they are now all written
in terms of c2, c4, CNG1, CNG2, CNG3, CNG6 and B, which can now be treated as indepen-
dent model parameters (note that F̄ and F̄,X are eliminated by using the background equa-
tions (5.11)). Further, by considering the de-Sitter limit of the attractor, we take Catt → 0,
with which we can replace CNG6. Then all the stability conditions are expressed by the in-
dependent parameters c2, c4, CNG1, CNG2, CNG3 and B. To illustrate the stable region in the
parameter space, we expand those expressions in the limit |c4| ≫ |c2|B2 ≫ CNG1,3, CNG2/B

2,
finding

αT =
8 c2c

2
4B

4

CNG1CNG2
+O

(

c14, c
0
2

)

, βT =
8 c2c

2
4B

4

CNG1CNG2
+O

(

c14, c
0
2

)

, (5.15)

αV =
8 c22c

2
4B

6

CNG1CNG2CNG3
+O

(

c14, c
1
2

)

, βV =
8 c32c

2
4B

8

C2
NG1CNG2CNG3

+O
(

c14, c
2
2

)

(5.16)

γS =
32 c22c

2
4B

6

3CNG1CNG2CNG3
+O

(

c14, c
1
2

)

, δS =
128 c32c

2
4B

8

3C2
NG1CNG2CNG3

+O
(

c14, c
2
2

)

, (5.17)

ǫS =
28 (CNG1 − CNG3) c

2
2c

2
4B

6

3C2
NG1CNG2CNG3

+O
(

c14, c
1
2

)

. (5.18)
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Hence we can immediately see that all the stability conditions can be satisfied when c2 > 0
and CNG1 > CNG3, provided that |c4| ≫ c2B

2 ≫ CNG1,3, CNG2/B
2. Notice that the model

has sufficient number of independent parameters to achieve this set of conditions. The
reality conditions of c2s are also fulfilled, as α2

T − 4βT ≈ α2
T > 0, α2

V − 4βV ≈ α2
V > 0,

γ2S − 3 δS ≈ γ2S > 0, and γ2Sδ
2
S − 4δ3S − 4γ3SǫS + 18γSδSǫS − 27ǫ2S ≈ γ2Sδ

2
S > 0. Moreover, in

the same limit, we have, from (5.13),

Ciso =
4 c2c

2
4B

2

CNG1
+O

(

c14, c
0
2

)

(5.19)

and thus the isotropic condition is also satisfied.

Albeit some required hierarchy and tuning of parameters, we have presented a sim-
ple model (5.9) that has an inflationary solution as an isotropic attractor fulfilling (4.48)
and (4.49) and that satisfies all the stability conditions (4.51) and (4.52). This is, to our
knowledge, the first example of stable inflationary models in which inflation is driven only
by vector fields without relying on the terms specific to non-Abelian gauge fields.

6 Conclusion

We have demonstrated that, in a new class of models where vector fields are solely responsible
for inflation, quasi de-Sitter solutions can be an inflationary attractor that is stable against
all the pathological instabilities. It has been known that, in most of vector-driven inflationary
models, violation of gauge invariance is invoked in order to sustain a sufficiently long period
of accelerated expansion, but it leads to propagating longitudinal modes of the vector fields
that suffer from ghost and/or linear instabilities on the desired background. While some non-
Abelian gauge field models are known to provide stable inflationary backgrounds, spectra of
perturbations in those models are incompatible with observational data. This implies that
the gauge symmetry should be broken in those models. Once the gauge symmetry is broken,
a more general class of models is allowed/motivated. In this paper, we have explored a
new class of model Lagrangians that allows for stable inflationary solutions driven solely by
vector fields.

In order to perform a general analysis and then to narrow down the stability conditions,
we have taken the Generalized Proca theory with an additional global O(3) symmetry as
our starting point, see (2.2). Quasi de-Sitter solutions for the background, Ḣ ≈ 0, are then
sought for, and the “slow roll” of the vector vev, Ḃ ≈ 0, immediately follows, unless there
is some fine-tuning of the model functions, as discussed right after (3.9). For these solutions
to be an isotropic inflationary attractor, two conditions, (4.48) and (4.49), are demanded,
and we have provided their explicit expressions in (3.12) and (4.47). Proceeding the analysis
of linearized perturbations, we have decomposed them into 3 decoupled sectors, “tensor,”
“vector” and “scalar,” where the decomposition is done with respect to the vector-field
internal space as well as to the spatial coordinates. We have outlined the general procedure
to obtain the conditions to evade both the ghost and gradient instabilities and applied it to
each sector separately. The set of no-ghost conditions makes it visible that the simultaneous
fulfillment of them requires (not necessarily suffices) to have G2 depend on at least one

of W1 = A
(a)
µ A

(a)
ν F (b)µρF (b)ν

ρ and W2 = A
(a)
µ A

(b)
ν F (a)µρF (b)ν

ρ. Within the class of model
Lagrangian (2.2)–(2.4), these terms are therefore necessary ingredients for a vector model
with inflationary solutions without ghosts.
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We have obtained the attractor, no-ghost and gradient-stability conditions for the gen-
eral case. In order to show that there exists a model that has a parameter window to satisfy
all those conditions, we have chosen simple examples. This also helps to make the analysis
of gradient stability more illuminating, since the conditions are quite lengthy in expression
for the general case, especially those of vector and scalar perturbations. Two examples are
considered: the first one, specified by G2 = Y −V (X) and G4 =M2

p /2+ ξX, is motivated by
a few existing, unstable models, and the second is a new, successful model without instabili-
ties, given by G2 = F (X,Y )+ c1W1+ c2W2 and G4 = c3+ c4X. The first example resembles
the combination of the vector field model with a potential and the one with non-minimal
coupling to gravity, while the difference is the inclusion of the terms proportional to G4,X

in the action (2.2), those that eliminate the Ostrogradsky ghost degree of freedom in the
nonlinear orders. It is shown that despite the inclusion of these counter terms, the model has
no parameter region to have stable inflationary solutions. The second example is truly stable
model — at least against ghost and gradient instabilities in the high momentum limit — and
we have explicitly shown that it admits a viable scenario to respect all of the attractor and
stability conditions.

Our aim of this paper is devoted to the demonstration of viable models of inflation
that are healthy at the theoretical level, which has turned out successful. Phenomenological
consequences of such pathology-free models are therefore of interest for further studies. The
observational bounds on the scalar spectral index and the tensor-to-scalar ratio can con-
strain/falsify these models. In the simple example we have considered, there is no helicity
dependence in the tensor sector, but for models with G2,Z 6= 0 on the background, where

Z = −F (a)
µν F̃ (a)µν/4, parity is broken, and the left- and right-handed tensor modes are ex-

pected to be produced by different amounts. Also, the vector perturbations are dynamical,
as opposed to scalar-tensor theories, and their fate potentially leaves distinctive signatures
in the CMB/LSS and other observable spectra. Moreover, various non-standard interaction
terms should arise at cubic and higher orders, and thus higher-order correlation functions are
expected to have interesting features. In addition, due to the unique behavior of the scalar,
vector and tensor modes in this model, we would expect that the CMB [144] and the large
scale clustering fossils, [145–148], coming from this model would be distinguishable from the
ordinary realizations of the scalar, vector and tensor modes. Cross correlations, especially
parity-odd correlators [86], may also provide a unique arena to test the models of this class
(notice that parity violation exists even without the presence of Z terms, as the vector mode
Ua in fact behaves as a pseudo vector).

While the primary interest of the present paper is in inflationary models of the early
universe, the quasi de Sitter solutions that we have found may provide the origin of the
accelerated expansion of the universe today as well. In this case the attractor condition,
|Catt| ≪ 1 for the inflationary attractor, is replaced by Catt & 0 and any non-negative
or slightly-negative value of Catt is allowed. Compared with the previous model of dark
energy based on the generalized Proca field [107, 108], one of the distinguishing features
of the current model is the existence of extra tensor modes. This may have some impacts
on gravitational-wave physics. While astrophysical objects such as binary systems excite
the ordinary gravitational wave modes hij , they are not mass eigenstates but are linear
combinations of them (see the off-diagonal component of (4.22)). Mass eigenstates with
different masses then propagate differently. Thus the gravitational waves are expected to
exhibit oscillations with the other tensor modes tia as they propagate towards gravitational
wave detectors. This implies that the detectors will observe linear combinations that are
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different from those at the source. This kind of phenomenon analogous to neutrino oscillation
has been considered in the context of bimetric theories of gravity in the literature [149]. The
quasi de Sitter solutions found in the present paper provides a new theoretical basis for the
gravitational wave oscillation.
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