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Abstract. Many alternatives to canonical slow-roll inflation have been proposed over the
years, one of the main motivations being to have a model, capable of generating observable
values of non-Gaussianity. In this work, we (re-)explore the physical implications of a great
majority of such models within a single, effective field theory framework (including novel
models with large non-Gaussianity discussed for the first time below). The constraints we
apply — both theoretical and experimental — are found to be rather robust, determined to a
great extent by just three parameters: the coefficients of the quadratic EFT operators (δN)2

and δNδE, and the slow-roll parameter ε. This allows to significantly limit the majority of
single-field alternatives to canonical slow-roll inflation. While the existing data still leaves
some room for most of the considered models, the situation would change dramatically if the
current upper limit on the tensor-to-scalar ratio decreased down to r < 10−2. Apart from
inflationary models driven by plateau-like potentials, the single-field model that would have a
chance of surviving this bound is the recently proposed slow-roll inflation with weakly-broken
galileon symmetry. In contrast to canonical slow-roll inflation, the latter model can support
r < 10−2 even if driven by a convex potential, as well as generate observable values for the
amplitude of non-Gaussianity.
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1 Introduction and summary

In the last decades cosmology has seen a remarkable transformation into a precision science.
The ongoing experimental program aims at constraining the properties of the universe to an
unprecedented accuracy, the ultimate goal being to shed light on the precise physics governing
its dynamics.

Inflation provides perhaps the most compelling picture of the universe at the early
stages of its history. Although extremely successful as a paradigm, it is fair to say that the
details of the microscopic physics behind it are still far from clear: there are many models,
and a certain fraction of these is capable of reproducing the current observational data quite
well. While awaiting further experimental input, it is thus important to look for ways of
prioritizing the existing list of inflationary scenarios.

A particularly convenient framework for carrying out model-independent analyses of
single field inflation has been suggested in [1, 2], and goes under the name of the effective
field theory of inflation (EFTI) (see ref. [3] for a complementary approach to the problem).
The relevant effective theory is formulated in the unitary gauge, in which the inflation per-
turbations are frozen (or, in other words, ‘eaten’ by the metric), φ(x, t) = φ0(t). One then
writes down all possible operators in derivative expansion, consistent with the unbroken
symmetries; for single-field inflation, the latter are arbitrary reparametrizations of spatial
coordinates, xi → xi + ξi(x, t), and the most general unitary-gauge action reads [2]

S =

∫
d4x
√−g

[
M2
P

2

(
(3)R+

EijE
ij − E2

N2

)
− M2

P Ḣ

N2
−M2

P (3H2 + Ḣ)+

+
M4

2

2
(δN)2 +M4

3 (δN)3 − M̂3
1 δNδE + M̂3

2 (δN)2δE + . . .

]
,

(1.1)
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where by the ellipsis we have denoted terms of higher order in field perturbations1 and/or
spacetime derivatives. The building blocks of the relevant effective field theory are quantities
covariant under the three-dimensional diffeomorphisms, such as the lapse variable N , the
intrinsic and extrinsic curvatures of equal-time hypersurfaces (3)R and Kij = Eij/N , etc., see
appendix A for a detailed account. While the first line of (1.1) is fixed by the background
equations of motion, the coefficients of the operators in the second line are unconstrained
and parametrize all possible single-field models on a quasi de-Sitter space with a Hubble rate
H [2].

The free parameters of the effective theory (1.1) depend on the underlying model of
inflation. For canonical slow-roll inflation, for example, they all vanish. More generally, in
the spirit of EFT, one expects that the physical observables are predominantly determined by
operators with the least number of space/time derivatives. In particular, if the unitary-gauge
action (1.1) stems from an effective field theory of the inflaton with a single characteristic
cutoff scale Λ and with no unnatural parameters, one can show that the leading deviations
from slow-roll inflation are determined by the coefficients M4

2 , M
4
3 , etc. of the operators with

no derivatives. The rest of the operators give rise to effects further suppressed by powers
of the small ratio Λ/MPl, and the derivative expansion applies in the unitary gauge in a
straightforward way.

The effective field theories of the type (1.1) with non-zero coefficients M4
2 and M4

3 arise
from models such as k−inflation [4, 5] and DBI inflation [6, 7] (strictly speaking, it is only
the latter model that can be considered a well-defined EFT in terms of the original inflaton
field). The experimental constraints on DBI-like theories, described by the action (1.1) with
M̂3

1 = M̂3
2 = 0 are well-known [8, 9]. A particularly interesting region of the parameter

space is the one corresponding to strongly subluminal scalar perturbations, M4
2 � M2

Pl|Ḣ|,
in which case there is the possibility to generate sizeable non-Gaussianity within the regime
of validity of the low-energy effective theory. The existing experimental data still leaves
room for detecting interesting deviations from canonical slow-roll inflation within the DBI
framework, and indeed, any possible hints of (equilateral) non-Gaussianity would make a
strong case for these models.

In this paper we wish to explore the status of a more general effective theory of inflation,
characterized by non-zero M̂3

1 and M̂3
2 . At first sight, the above remarks concerning the

derivative expansion imply that large effects from the corresponding operators should not
be anticipated: they are higher-derivative, and are therefore expected to play a minor role.
There are however cases where the effects associated with these operators can, and do, become
large. This happens in theories characterized by weakly broken [10] invariance under galileon
transformations [11], which in the unitary gauge and Cartesian coordinates take on the
following form

t→ t+ bµx
µ . (1.2)

Whenever there exists an (approximate) invariance under (1.2), the magnitudes of the EFT
coefficients in the action (1.1) are governed by the following radiatively stable hierarchy [10]∣∣M4

2

∣∣ ∼ ∣∣M4
3

∣∣ ∼ ∣∣M̂3
1H
∣∣ ∼ ∣∣M̂3

2H
∣∣ . (1.3)

It is then straightforward to show that all of the operators in (1.1) play an equally important
role for the dynamics of perturbations. Furthermore, even for the simplest theories with

1By ‘δ’ we denote the perturbation of the relevant quantity over its background value. In what follows, we
will be interested in the effective action up to the 3rd order in the field perturbations.
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weakly broken galileon (WBG) symmetry, the coefficients in (1.3) are generically independent
of each other.

In order to proceed, one needs a guideline concerning magnitudes of the above EFT
coefficients that can arise from a sensible inflationary model. In fact, there are good reasons
to believe that the coefficients in (1.3) can not parametrically exceed M2

PlH
2 in magnitude if

the inflationary background under consideration is to be insensitive to loop corrections2 [10].
This motivates the following parametrization of the unitary-gauge effective theory (1.1)

α =
M̂3

1

2M2
PlH

, β =
M4

2

2M2
PlH

2
, γ =

M̂3
2

M2
PlH

, δ =
M4

3

M2
PlH

2
. (1.4)

The values of the above dimensionless coefficients will encode the deviations of a given model
from canonical slow-roll inflation, as well as distinguish between various single-field models.3

The cartoon in figure 1 illustrates the regions in the α–β plane, occupied by the theories that
we consider in what follows.

With the above remarks in mind, it is of some interest to study the observational status
of the general parameter space defined by4

0 . { |α|, |β|, |γ|, |δ| } . O (1) . (1.5)

This parameter space, as we argue in the next section, captures a great majority of existing
single-field inflationary models and one purpose of the present paper is precisely to explore
it in the light of the present experimental results.

As a technical, but crucial remark, we note that for the most general values of the
parameters from the range (1.5), the so-called decoupling limit (DL) analysis of perturbations
is not available. Indeed, the DL focuses on the dynamics of the Goldstone boson of time
translation symmetry breaking π, ignoring its mixings with the metric degrees of freedom
(this takes advantage of what is a direct analog of the Goldstone boson equivalence theorem in
massive spin-1 theories [12]). While in many cases this is an adequate approximation at the
relevant energy scales (i.e. those of order the inflationary Hubble rate), we will see that close
to saturating the upper bound in (1.5), mixings of π with gravity become order-one important
— invalidating any DL calculation of the scalar perturbations’ properties. Since we will find
that various theoretical/experimental constraints already cover much of the parameter space
of interest, even order-one theoretical effects can be important for studying the viability of
some of the theories we consider below.

Our calculation of the full cubic scalar action in the EFT (1.1) comes with several
interesting by-products. Namely, we find that for a certain part of the parameter space,
not only is mixing with gravity non-negligible, but it turns out to completely dominate
non-Gaussianity, giving rise to the relation

f equil
NL ∝ 1

c6
s

(1.6)

in the limit of a small speed of sound cs . Such an abrupt growth of fNL would have never been
seen from a decoupling limit perspective, which gives fNL ∝ 1/c2

s for the same region of the
parameter space5 (the regime characterized by (1.6) is studied in great detail in appendix C).

2The theories with WBG symmetry can saturate this upper bound within a well-defined low-energy EFT.
3The fact that we are near de Sitter space, generically makes the coefficients α, β, γ, δ almost time-

independent, their variation over an e-fold suppressed by the slow-roll parameters.
4To be as general as possible in the analysis below we will abuse our theoretical expectations by allowing

a slightly larger — order ten — upper bound on the dimensionless EFT parameters.
5See refs. [13, 14] for the DL treatment.
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Canonical Slow roll

DBI Inflation

Slow roll WBG

O(1)

O(1)

O(✏)

O(✏)

Galileon Inflation

�

↵
Kinetic WBG

Figure 1. Various single-field models of inflation in the α–β plane.

As interesting as it is, however, we unfortunately find that (1.6) can only be of academic
interest: the parameter space giving rise to such values of fNL is already ruled out by the
existing experimental bounds on primordial gravitational waves.

Another interesting effect is the inverse-proportional growth (for non-zero γ and δ) of
the amplitude of non-Gaussianity with a small tensor-to-scalar ratio r:

f equil
NL = γ

cs
r

80

81

α2 − 3α+ 2− ε+ 3(α− 1)2c2
s

(α− 1)4
− δ c

3
s

r

80

81

1

(α− 1)3
+ . . . , (1.7)

where we have defined ε ≡ −Ḣ/H2. This formula, supplemented by the present limits on
the primordial gravitational waves, will play an important role in constraining the theories
under consideration.

As to the phenomenology, we find that the constraints on the effective theory (1.1)
are rather robust: despite the apparent multitude of the EFT coefficients, basic theoretical
considerations (such as the absence of instabilities and of superluminal scalar modes) and
current limits on the primordial gravitational waves and on non-Gaussianity already limit
most of the parameter space. These constraints operate in a coordinated way, ruling out
complementary regions of the latter. Moreover, we find that the theoretical and experimental
viability of a given region of the parameter space is to a great extent determined by the set
of just three numbers characterizing the operators in (1.1), quadratic in perturbations: α, β
and ε. At the quadratic level, (1.1) in fact captures all single-field models with the comoving
curvature perturbation ζ obeying the usual, phonon-like dispersion relations

ω = csk , (1.8)

at energy scales above or around H, and our results apply to any theory with the latter
property.

– 4 –
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Current data still allows for an appreciable range of parameters for the EFTI (1.1),
leaving room for detectable non-Gaussianity. Reducing the existing upper bound on the
tensor-to-scalar ratio by less than an order of magnitude,

r < 10−2 , (1.9)

would however put the theories that predict the tensor and the scalar tilts of the same
order (|nT | ∼ ε ∼ |ns − 1|) in a serious tension with experiment. The model that has a
slightly better chance of surviving the bound (1.9) is slow-roll inflation with weakly broken
galileon symmetry (SRWBG) of ref. [15]. Unlike the canonical slow-roll models with plateau-
like potentials famously consistent with (1.9), this model can be consistent with the latter
constraint even if driven by a convex potential, as well as give rise to somewhat strongly
coupled and highly non-Gaussian (|fNL| ∼ 1− 20) scalar perturbations6 [15].

Set aside inflationary model-building, the results of this paper can be considered an
extension of the calculations by Maldacena [16] and Chen et al. [17] of the full cubic action
— including mixing with gravity — for the comoving curvature perturbation ζ. The first of
these references has dealt with the case of canonical slow-roll inflation; ref. [17], on the other
hand, has generalized the analysis to the case when arbitrary terms of the form P

(
φ, (∂φ)2

)
are present in the inflaton action. This is equivalent to considering operators of the form
(δN)n in the EFT of inflationary perturbations. Here we further generalize the analysis
of Chen et al. to the case when the operators of the form (δN)nδE become relevant in the
unitary gauge EFT, which is naturally true for the broad class of theories with weakly broken
galileon invariance. A calculation somewhat related to ours (although performed in a different
language) has been carried out in ref. [18]. That reference has however concentrated on the
concrete model of G-inflation, and the corresponding calculation is less general than the
effective field theory treatment we adopt here.7 We find the EFT approach rather convenient
since it captures an overwhelming majority of the existing single-field models, as well as
it makes transparent the above-described interesting features in eqs. (1.6) and (1.7). Our
presentation is close in spirit to those of [16, 17], and in the appropriate limits our results
are in agreement with the results of these references, as well as of ref. [18].

The rest of the paper is organized as follows. In section 2 we study the dynamics of
scalar perturbations in the theory specified by the action (1.1), and identify the full set of
regions in the parameter space characterized by significantly subluminal/non-Gaussian scalar
perturbations. Furthermore, we categorize the list of existing, as well as novel, models of
inflation with large non-Gaussianity according to which one of these regions they fall into. In
section 3, we explore various constraints — both theoretical and experimental — that these
theories are subject to. Finally, in section 4, we conclude. Various technical details, that
would overwhelm the main body of the text, are collected in the three appendices.

2 Dynamics of scalar perturbations

We start out with a brief account of the full analysis — including mixings with gravity — of
scalar perturbations in the theory specified by the action (1.1). To this end, we closely follow
and generalize Maldacena’s calculation [16] for canonical slow-roll inflation (see also ref. [17]).

The gauge freedom that remains after fixing to the unitary gauge, δφ(x, t) = 0, can be
used [16] so as to put the three-dimensional metric into the following form, gij = a2e2ζ(δij +

6This is three orders of magnitude greater than what one expects in canonical slow-roll inflation.
7See [19–23] for other works along the lines of ref. [18].

– 5 –



J
C
A
P
0
6
(
2
0
1
6
)
0
5
1

hij). In this gauge, the scalar and tensor perturbations are captured by ζ and hij respectively
(the lapse and shift variables are non-dynamical, and can be expressed in terms of the rest
of the degrees of freedom using their equations of motion). We will be exclusively interested
in the n−point functions of ζ, so we ignore hij altogether in the remainder of this work.
Integrating out the (scalar parts of) perturbations δN and Ni ≡ ∂iψ from the Hamiltonian
and momentum constraint equations, one obtains the effective action for the only remaining
scalar degree of freedom, ζ. The procedure is quite tedious, but straightforward, and is
outlined in appendix A; the final result for the quadratic action reads

S(2) =

∫
d4x a3N

[
ζ̇2 − c2

s

(∂iζ)2

a2

]
, (2.1)

where the explicit expressions for the kinetic normalization factor N and the speed of sound
cs are given in eqs. (A.6) and (A.7) of appendix A. In terms of the dimensionless parameters
of eq. (1.5), these are

N = M2
Pl

3α(α− 2) + β + ε

(α− 1)2
,

c2
s =

α(1− α) + ε

3α2 − 6α+ β + ε
.

(2.2)

We have neglected the ∂tM̂
3
1 term in the expression for c2

s, eq. (A.7). More generally, we will
neglect time derivatives of all the free EFT coefficients (in the second line) of the action (1.1)
throughout this work.8 This assumption will not change our conclusions in any appreciable
way, and we choose to make it in order to keep the presentation as simple as possible.

In what follows we will be mostly exploring the properties of the theory in the α − β
plane, fixing the rest of the parameters to some constant values. The reason is that it is
precisely these two parameters — along with the slow-roll parameter ε — that determine
the properties of the quadratic perturbation Lagrangian, see eqs. (2.1) and (2.2). As a
result, two out of the three constraints that we’ll impose below, namely those stemming
from stability/subluminality and the tensor-to-scalar ratio, are unambiguously determined
by α, β and ε. As to the third constraint arising due to non-Gaussianity, the latter three
parameters do also contribute to fNL. Whenever this contribution becomes too large, one
can turn on non-zero values for γ and δ to bring fNL back within the observational limits.
However, barring such an adjustment of parameters, it is a rather interesting fact that the
set of just three numbers, α, β and ε, can tell us a great deal about the theoretical and
experimental status of an overwhelming majority of single-field inflationary theories.

In fact, the latter set of parameters determines the phenomenology of any single-field
model of inflation in which the scalar perturbations are characterized by the usual, phonon-
like, dispersion relation (1.8) at freezout of the CMB modes. The reason is as follows. At
the quadratic order in perturbations, there are only two additional operators one can add
to the Lagrangian (1.1) to be consistent with eq. (1.8). These are

√−g (δEijδE
j
i − (δE)2)

and
√−g δN (3)R (the first of these operators can also change the tensor speed of sound).

Both of these operators, however, are redundant and can be removed by a perturbative field

8One can expect that the time dependence of any EFT coefficient Mn in (1.1) satisfies ∂tM
n ∼ ε′HMn �

HMn on a quasi-de Sitter space, where ε′ is slow-roll suppressed. As a result, the effects associated with
non-zero time derivatives of these coefficients are generically suppressed with respect to their leading-order
effects. We have explicitly checked this fact for the cases we consider below.

– 6 –
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redefinition [24], so at least the quadratic piece of our action (1.1) is very generic. Since, as
remarked above, the majority of the constraints on the EFT (1.1) stem precisely from the
quadratic Lagrangian, our analysis should (at least qualitatively) capture phenomenology of
any model satisfying (1.8).

Particularly interesting regions in the parameter space are the ones that correspond
to the (squared) speed of sound, c2

s , becoming small. The reason is that this generically
enhances the couplings of scalar perturbations, giving rise to fairly large values of non-
Gaussianity, potentially relevant for observations. One can see, from eq. (2.2), that there are
a number of ways to make the sound speed suppressed. We will divide these into the following
broad classes, which encompass most of the single-field models capable of generating large
non-Gaussianity.

2.1 DBI, and related models

In the unitary gauge, these models give rise to the following relations between the dimen-
sionless parameters [7, 17]

{α, γ} ∼ 0 , { |β|, |δ| } & ε , (2.3)

implying the following behaviour of the amplitude of non-Gaussianity for strongly subluminal
perturbations [17]

fNL ∝
1

c2
s

. (2.4)

The two non-zero coefficients β and δ in fact parametrically exceed the slow-roll parameter ε
in the small c2

s limit: β ∝ ε/c2
s, and δ ∝ ε/c4

s . However, current experimental bounds imply
c2
s & ε for the DBI model [25], so perhaps the optimal values for these parameters to keep in

mind are

|β| . 1 , |δ| ∼ β

c2
s

. (2.5)

2.2 G-inflation/Galileon inflation

In this category, we collect inflationary theories characterized by the dimensionless parame-
ters of (1.1) satisfying the following conditions

{ |β| , |γ|, |δ| } ∼ 1 , |α| < 1 , (2.6)

so that the subluminal limit corresponds to

c2
s ∼

α

β
< 1 . (2.7)

This can be the case in G-inflation [26], Galileon inflation [14] and, more generally, in the
kinetically driven phase of theories with weakly broken galileon symmetry [10] (see [27, 28]
for earlier work on scalar-tensor theories with second-order equations of motion). For a
suppressed speed of sound, the amplitude of non-Gaussianity grows similarly to DBI models

fNL ∝
1

c2
s

. (2.8)

– 7 –
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It has been noticed by Burrage et al. [14], however, that in the unitary gauge, the most
general theory of Galileon inflation introduces extra cubic operators on top of the ones
present in (1.1), such as

√−g δN(δEijδE
j
i −(δE)2) for example (with an order-one coefficient

in Planck units), and these can result in a faster growth

fNL ∝
1

c4
s

. (2.9)

We have not included such operators in our analysis. The major reason is that, as we will see
shortly, constraints on various inflationary models described by the EFT (1.1) are already
quite strong regardless of the cubic operators; including the latter can loosen the constraints
due to non-Gaussianity,9 but only at an expense of tuning/cancellations. As to the rest of
the constraints of the next section, they do apply equally well to the most general theory of
G-/Galileon inflation, as discussed above eq. (1.8).

2.3 Kinetically driven inflation with WBG symmetry

This model is characterized by

α ' 1 , { |β|, |γ|, |δ| } ∼ 1 , (2.10)

and arises in the context of general theories with weakly broken galileon symmetry [10], of
which the Covariant Galileon [29] behind Galileon inflation is a particular case. The values
of the parameters in (2.10) can in fact also arise in Galileon inflation [14]; unfortunately,
however, the corresponding regime can not be captured by the decoupling limit analysis
adopted in the latter reference. We have chosen to present this theory as a separate class,
since it gives rise to the fastest growth of non-Gaussianity with the small speed of sound,

fNL ∝
1

c6
s

, (2.11)

well within the regime of validity of the low energy EFT. We give a detailed account of the
kinetically driven inflation with weakly broken galileon symmetry (KWBG) in appendix C.
The expression in eq. (2.11) arises as a result of subtle effects associated with mixing of the
adiabatic perturbations with the metric degrees of freedom, partially explaining why it has
gone unnoticed in the literature.

2.4 Slow-roll inflation with WBG symmetry

This class of theories was introduced in ref. [15] and gives rise to the values of the dimen-
sionless parameters of the EFT (1.1) suppressed by slow-roll

{ |α|, |β|, |γ|, |δ| } ∼ ε . (2.12)

The speed of sound of scalar perturbations is generically order-one (but not necessarily strictly
one, in contrast to canonical slow-roll inflation). The background evolution, along with all
background characteristics (spectral tilt, number of e-folds from freezeout of the CMB modes
until the end of inflation, spectrum of gravitational waves, etc.) are all parametrically similar
to garden-variety slow-roll models. What’s different, though, is that the scalar perturbations

9Being manifestly at least cubic in perturbations, these operators only affect the spectrum from the set of
physical quantities we consider below.

– 8 –
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can be more strongly coupled than in canonical slow-roll inflation — in a way that, never-
theless, allows to keep control over the derivative expansion. This leads to an amplitude of
non-Gaussianity that grows like

fNL ∝
1

c4
s

(2.13)

in the subluminal limit. Note that, while this behaviour is similar to (2.9), the underlying
models are very different: the SRWBG model is a minimal deformation of slow-roll inflation,
unlike Galileon inflation which describes a kinetically-driven background. Moreover, as al-
ready mentioned above, the version of Galileon inflation described by the EFT (1.1) in fact
yields a DBI-like growth, eq. (2.4), while the slow-roll theories with WBG invariance lead
to (2.13) already within the realm of the EFT (1.1) — i.e. without the need of having extra
cubic operators. The strong dependence of non-Gaussianity on the speed of sound allows to
generate appreciable values for fNL even for mildly subluminal perturbations, arising for

α ' −ε (2.14)

in the SRWBG model (see eq. (2.2)).
Having classified various alternatives to canonical slow-roll inflation according to the way

they generate large non-Gaussianity, we proceed to explore the theoretical and experimental
constraints on the general EFT parameter space (1.5) in the next section.

3 Constraints

There is a number of constraints — both theoretical and experimental — that the models 2.1
through 2.4 discussed in the previous section are subject to. Above all, there is a constraint
expressing the absence of negative norm states (or, alternatively, boundedness from below
of the Hamiltonian) and of gradient instability. Theories, that do not satisfy this constraint
can hardly be made sense of. A somewhat less sharp constraint comes from demanding the
absence of superluminal scalar perturbations. While it is not fully clear whether superlu-
minality within a low-energy EFT is unconditionally unacceptable, there are good reasons
to believe that at the very least it is inconsistent with the standard properties (Lorentz-
invariance, locality, analyticity, etc.) of a hypothetical UV completion [30]. To be on the
safe side, we will thus demand that the scalar excitations are subluminal as well. The above
considerations then summarize into the following conditions on the dimensionless parameters
of the theory

N > 0 , 0 < c2
s ≤ 1 . (3.1)

Furthermore, an important role for our analysis will be played by the current limits on
the amplitude of primordial gravitational waves. The scalar-to-tensor ratio, r, can be readily
read off the quadratic ζ action, eq. (2.1),

r = 16
N c3

s

M2
Pl

= 16
ε+ α− α2

(α− 1)2

√
ε+ α− α2

3α2 − 6α+ β + ε
. (3.2)

In the slow-roll limit, α = β = 0, this reduces to the familiar expression rsr = 16ε, while for
DBI inflation (α = 0), eqs. (3.2) and (2.2) yield, rDBI = 16εcs.

– 9 –



J
C
A
P
0
6
(
2
0
1
6
)
0
5
1

Last but not least, we will impose the experimental limits on primordial non-Gaussianity.
The full calculation of the scalar bispectrum for the theory (1.1) is presented in appendices (A)
and (B), and we will not reproduce it here. We define the (shape-independent) measure for
the strength of non-Gaussian effects, fNL, in the following way

fNL =
5

18

Bζ(k, k, k)

Pζ(k)2
, (3.3)

where the bispectrum Bζ can be found from the three-point function of ζ

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 = (2π)3δ(3)

(∑
i

~ki

)
Bζ(k1, k2, k3) . (3.4)

As to the shape of non-Gaussianity, it is generically well-approximated by the equilateral
one [31] in the theory (1.1).

The precise expression for fNL in terms of the dimensionless parameters of the ac-
tion (1.1) (including the slow-roll parameter ε) is not particularly illuminating. As discussed
in the previous section, in different regions of the parameter space corresponding to signif-
icantly subluminal scalar perturbations, fNL acquires simple leading behaviour of the type
fNL ∝ 1/c2p

s , with p = 1, 2 or 3. Moreover, for non-zero γ and δ, there is a “fNL ∝ 1/r
effect”, mentioned below eq. (1.7).

We will ultimately project the parameter space onto the α − β plane, so some input
regarding the magnitude of the slow-roll parameter ε is needed. The measured tilt of the
primordial scalar spectrum ns suggests that ε . |ns−1| ∼ 10−2. The latter bound is saturated
for many inflationary models — e.g. those with convex potentials. On the other hand, there
are models characterized by plateau-like potentials such as Starobinsky’s R2 inflation [32], or
the so-called IR DBI inflation [33], where ε can be much smaller than the scalar tilt. In order
to capture both classes of models, we will assume two values for the slow roll parameter in
our analysis: ε = 10−2 and ε ∼ 0 (the latter precisely defined below).

The three constraints discussed above lead to an interesting interplay, in many cases
excluding complementary regions of the parameter space. Consider, for example, a DBI-like
model with a generic power-law potential, so that ε ∼ 10−2. The tensor-to-scalar ratio,
rDBI = 16εcs, has to be below ∼ 0.1 according to the current experimental limits [25],
requiring a somewhat suppressed speed of sound. On the other hand, significantly suppressing
cs , one runs into tension with the current limits on non-Gaussianity, in accord with eq. (2.4).
The precise constraint for DBI models is cs & 0.1 [34]. This means that measuring r ∼ 10−2

would rule out the given class of theories. In contrast, DBI theories driven by plateau-like
potentials like the IR model of ref. [33], are characterized by ε� 10−2 and therefore have a
better chance of being consistent with a small tensor-to-scalar ratio.

The examples of exclusion plots for the general parameter space of interest are shown on
figures 2 through 5. On the first two of these figures, we assume ε = 10−2, while the last two
correspond to ε ∼ 0. Moreover, we require fNL to be in the range −50 < fNL < 50, motivated
by the current limits on equilateral non-Gaussianity [34]. The orange, red and blue regions
depict parts of the parameter space excluded by instabilities and/or superluminality, limits
on the tensor-to-scalar ratio, and on non-Gaussianity respectively.

3.1 Models with ε ∼ |ns − 1|
On figure 2 the red regions are the exclusion bands due to the present 95% C.L. bound on the
amplitude of the primordial gravitational waves, r < 0.07 [35]. One can see, that the data
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Figure 2. Various regions of the parameter space, excluded by the requirements of stability &
subluminality (orange), current limits on the amplitude of primordial gravitational waves (red), and
on non-Gaussianity (blue). The slow-roll parameter has been fixed to ε = 10−2, and the red and blue
bands correspond to regions excluded respectively by the bounds r < 0.07 and −50 < fNL < 50. The
parameters γ and δ have been chosen to vanish everywhere except the upper left panel, where they
have been set to γ = δ = 5.

prefers significantly suppressed α, effectively ruling out inflationary theories with α� 10−2

(this is a rather general result, true for all cases that we consider below10).

For α much smaller than ε, the boundary between the DBI and G-/Galileon inflation
is blurred. An important discriminant that remains, though, is the fact that γ can be much
larger in the latter class of models. For this reason, we have chosen γ = δ = 5 in the upper
left panel, which results in an additional exclusion region in G-/Galileon inflation due to
large non-Gaussianity stemming from the “1/r” effect of eq. (1.7) (from the two terms in this
equation, only the one proportional to γ contributes significantly). Had we chosen |γ| � 1

10The allowed region can in fact reach out to α ' 0.1, but this only happens for β ∼ 50, casting shadow on
the quantum stability of the corresponding theories.
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as in DBI inflation, this band would have completely disappeared from the plot. The regions
of the α–β plane explored in the rest of the panels on figure 2 are not affected by γ and δ for
reasonable values of these parameters11 so we have set them to zero everywhere except the
upper left one.

The upper right panel of figure 2 shows the blue exclusion region due to non-Gaussianity
in the fNL ∝ 1/c2

s regime, characteristic of the models 2.1 and (2.2). The blue band shown
here appears for larger values of β, where the speed of sound becomes small enough (see
eq. (2.2))

c2
s ∼
O (α, ε)

β
, (3.5)

so as to trigger the growth of fNL according to eqs. (2.4) and (2.8).
Another part of the parameter space, corresponding to the model 2.3 (KWBG) is shown

on the lower left panel. One can see, that the region excluded by non-Gaussianity due to
the abrupt growth fNL ∝ 1/c6

s is concentrated around α ' 1 (as expected from eq. (2.10)).
Unfortunately, this model is already ruled out by the limits on the primordial gravitational
waves, combined with the theoretical requirements of stability and subluminality.

Finally, on the lower right panel, we zoom onto the parameter space corresponding to
the slow-roll WBG model of ref. [15], discussed in section 2.4. One can see the exclusion band
from non-Gaussianity around α ' −ε, corresponding to fNL growing like ∼ 1/c4

s. Just like in
DBI/G-/Galileon inflation, there remains an appreciable portion of the parameter space still
allowed by our constraints with r . 0.07, including regions of the α–β plane characterized
by detectable non-Gaussianity. We stress again, however, that the SRWBG model, being in
a well-defined sense a minimal deformation of canonical slow-roll inflation, is very different
from the rest of the models considered in section 2.

While the current data still leaves some room for most of the models with ε ∼ |ns − 1|,
the situation can change dramatically if the upper limit on r decreases to r . 10−2 (which is
less than an order of magnitude improvement in current precision). The plots, corresponding
to this case are shown on figure 3; one can see that the regions that were previously allowed
are now fully covered by the exclusion bands from gravitational waves. The only region that
still remains is a narrow band in the slow-roll model with weakly broken galileon invariance,
shown on the lower right panel of figure 3.

The canonical models of slow-roll inflation sit at the origin of the α–β plane, and are
of course not visible on our plots. Measuring r . 10−2 would rule out most of these, with
an exception of models with plateau-like potentials, such as Starobinsky’s R2 inflation [32].
In these models, the tilt of the scalar spectrum is mostly determined by the second slow-
roll parameter, ηV ≡M2

PlV
′′/V , so that ε can be much smaller than |ns − 1| to suppress the

tensor-to-scalar ratio. Needless to say, falling into the category of canonical slow-roll theories,
R2 inflation predicts undetectable non-Gaussianity, fNL ∼ 10−2 [16]. In contrast, (the non-
canonical) slow roll inflation with WBG symmetry, even if driven by the simplest convex
potentials (with ε ∼ |ns−1|), does possess a parameter space consistent with tensor-to-scalar
ratios as small as r . 10−2, as seen from the lower right panel of figure 3. Moreover, close
to the blue non-Gaussianity exclusion band, this model can generate detectable (equilateral)
non-Gaussianity, |fNL| . 50 [15].

11For the upper right and the lower left panels, even setting γ ∼ δ ∼ 10 has little effect on the exclusion
regions. The lower right panel corresponds to the model 2.4 (SRWGB), where both of these parameters are
naturally of order ε and lead to negligible effects.
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Figure 3. Here we illustrate the exact same situation as in figure 2, with the only difference in
the exclusion from the tensor-to-scalar ratio: the red band now corresponds to the regions, where
r > 10−2.

3.2 Models with ε� |ns − 1|

It is well-known that the tensor-to-scalar ratio can be significantly suppressed (and there-
fore the bounds coming from this observable ameliorated) in models where the variation of
the inflationary Hubble rate does not significantly contribute to the scalar tilt. A famous
example are theories (slow-roll or not) driven by plateau-like potentials. To capture this
class of models, we repeat the analysis of the previous subsection setting now ε = 0 for all
plots12 but that corresponding to slow-roll WBG inflation (in which the regime with large
non-Gaussianity crucially depends on the presence of a non-zero slow-roll parameter ε, see

12Ideally speaking, DBI inflation corresponds to a vanishing coefficient α. Setting ε = 0 then sends the
speed of sound to zero, or equivalently, fNL to infinity, ruling out the DBI models with vanishing ε. This can
be seen e.g. on the upper right panel of figure 4, where the non-Gaussianity exclusion band covers the whole
α = 0 axis. Of course, in a more realistic situation with a small but non-zero ε, an allowed region with α = 0
and a small-enough β opens up.
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Figure 4. Various regions of the parameter space corresponding to models discussed in section (2).
The red band shows the regions excluded by requiring r < 7× 10−2, while ε = 0 in all panels but the
lower right one, which has ε = 10−3.

eq. (2.14)). In the latter case we set ε = 10−3. Apart from these modifications, the figures 4
and 5 correspond to the exact same choices of parameters as in figures 2 and 3 respectively.

The situation for ε� |ns− 1| is qualitatively similar to the previous case (ε ∼ |ns− 1|).
The current data still allows parameter space, consistent with the existing bounds on r
and corresponding to measurable non-Gaussianity. However, improving the limits on the
amplitude of primordial gravitational waves could still induce dramatic changes. One novelty
compared to the case of the previous subsection is that for ε ∼ 0, there would still remain a
small allowed parameter space for DBI/G-/Galileon inflation even if r < 10−2 (see the upper
right panel of figure 5). However, a much larger fraction of the allowed parameter space
would survive the r < 10−2 bound in the slow roll WBG model, as seen from the lower right
panels of figures 4 and 5.
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Figure 5. Here we illustrate the exact same situation as in figure 4, with the only difference in
the exclusion from the tensor-to-scalar ratio: the red band now corresponds to the regions, where
r > 10−2.

4 Discussion and future directions

In this paper, we have explored a number of constraints — both theoretical and experimental
— on alternative theories to canonical slow-roll inflation, described by the general unitary-
gauge action (1.1). The latter action captures the great majority of single-field models moti-
vated by considerations of theoretical consistency (in particular, stability under quantum cor-
rections) and phenomenological interest (possibility to generate non-Gaussianity, detectable
by current or near-future experiments). The list of models covered by our analysis (1.1)
includes, but is not limited to, DBI inflation [6, 7], G-inflation [26], Galileon inflation [14],
the recently-proposed slow-roll inflation with weakly broken galileon symmetry [15], etc.

We have found that the requirement of the absence of instabilities and/or superlu-
minal propagation, the current experimental limits on the tensor-to-scalar ratio and on
non-Gaussianity result in an interesting interplay, ruling out complementary parts of the
parameter space (see figures 2 through 5). The existing upper bound on the amplitude of
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primordial gravitational waves, r . 0.07, still allows for an appreciable range of parameters
for most of the above models, leaving room for detectable non-Gaussianity. The only theory
which is already ruled out is the KWBG model 2.3, characterized by an abrupt growth of
non-Gaussianity, fNL ∝ 1/c6

s , in the subluminal limit (note, that this model is excluded in a
quite non-trivial way, however — see the lower left panel of figure 2).

Reducing the upper bound on the tensor-to-scalar ratio down to r < 10−2 would put all
of the above-considered theories in some tension with experiment. This situation is depicted
on figures 3 and 5. The former figure corresponds to models that predict ε ∼ |ns − 1|, in
which case the only allowed region that has a chance of surviving our constraints (shown on
the lower right panel) belongs to slow-roll inflation with weakly broken galileon symmetry of
ref. [15]. We thus find that, in addition to slow-roll models driven by plateau-like potentials
famously consistent with (1.9), there would still remain a chance for an alternative single-
field model driven by a convex potential (ε ∼ |ns − 1|), even if r is measured to be as small
as in eq. (1.9). While the latter model is slow-roll at the level of the background evolution,
there are quantitative differences from the standard models with a canonical kinetic term.
Most dramatically, the dynamics of perturbations is rather different in this model, allowing for
somewhat strongly coupled and highly non-Gaussian scalar perturbations (fNL ∼ 1−20) [15].

Figure 5, on the other hand, shows that the generic theories characterized by ε� |ns−1|
have more chance of being consistent with small values of the tensor-to-scalar ratio. The
SRWBG model (driven by a concave potential) seems to work slightly better compared to
the other models also in this case, retaining a bigger fraction of its allowed parameter space
with the decrease of the upper bound on r.

Our analysis is rather general but it is not without loopholes, of course. We have argued
above that, at the quadratic order, (1.1) is the most general action that captures theories
characterized by scalar perturbations with usual, phonon-like dispersion relations (1.8). How-
ever, there exist models such as ghost inflation [36–38], where α ∼ 0 and the background
describes a perfect de Sitter space (i.e. ε = 0), so that the scalar speed of sound vanishes at
the zeroth order (consistent with our general expression for c2

s, eq. (2.2)). In such a case,
one ought to consider effects of higher-derivative operators in (1.1) — e.g. δK2 — that will
dominate the gradient energy of the scalar modes at horizon crossing (i.e., at characteristic
frequencies of order ω ∼ H). This results in a rather different, ω = k2/M dispersion rela-
tion with M some cutoff scale, which would presumably modify our analysis. It would be
interesting to see how our conclusions are affected in this class of models.

While our theoretical calculation is complete, a precise analysis of the data on non-
Gaussianity has remained outside of the scope of this work. The reason is that while the shape
of non-Gaussianity generated by the effective theory (1.1) is always close to equilateral, it of
course does not generically coincide with the templates constrained by experiments; therefore,
extracting precision experimental limits is not straightforward. One possible improvement
of our results (which we believe won’t bring significant changes to our conclusions) would
precisely be to do a precision analysis of the existing data on the scalar bispectrum in the
context of our approach.

Most importantly, however, our analysis reveals an interesting interplay between various
theoretical and observational constraints that exclude complementary parts of the parameter
space in general inflationary effective theories like the one of eq. (1.1). We believe that
further developing this approach via incorporating more general effective theories and/or
more precise handling of the data could be a useful step in better understanding the ultimate
physics behind inflation.
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A The cubic ζ action

In this appendix, we derive the cubic Lagrangian for the comoving curvature perturbation ζ
for a general effective theory described by the action (1.1). The presentation closely follows
and generalizes Maldacena’s calculation of an analogous Lagrangian for canonical slow-roll
inflation [16], see also ref. [17] for a generalization. We will work with the ADM variables,

ds2 = −N2dt2 + gij(N
idt+ dxi)(N jdt+ dxj)

and denote by (3)R the three-dimensional curvature corresponding to the metric gij induced
on equal-time hypersurfaces, while the tensor Eij is related to their extrinsic curvature Kij

as follows

Eij = NKij =
1

2
(∂tgij −∇iNj −∇jNi) . (A.1)

For a given inflationary spacetime, the first line of (1.1) is completely fixed by the background
dynamics (i.e. by the Hubble rate and its first time derivative), while the second line (which
starts at least quadratic in metric perturbations) is a priori unconstrained. For a concrete
inflationary model, the coefficients M4

2 , M4
3 , etc. will depend on the parameters of the un-

derlying theory. A unitary-gauge action of the form (1.1) propagates a single scalar mode
in addition to the usual transverse-traceless graviton. We exclusively concentrate on the dy-
namics of the former mode in this appendix, and ignore the tensor and the (non-dynamical)
vector degrees of freedom from now on. The scalar mode is conveniently studied in the
gauge defined by gij = a2(t)e2ζδij , where ζ has the meaning of the curvature perturbation
of spatial hypersurfaces. In order to compute the cubic action for ζ in the theory (1.1), we
proceed as follows. We first integrate out the perturbations of the lapse and shift variables,
δN and Ni ≡ ∂iψ, from their respective equations of motion, and then plug the solutions
back into (1.1) to find the action for ζ at the desired order. To determine the cubic action, we
only need to solve for the lapse and shift to the linear order in ζ (see ref. [17] for a discussion
on this point). The Hamiltonian and momentum constraint equations, obtained by varying
the action w.r.t. N and N j , are

M2
P

2

[
(3)R− 1

N2

(
EijEij − E2

)
+

2

N2
Ḣ − 2(3H2 + Ḣ)

]
+M4

2 δN − M̂3
1 δE = 0 , (A.2)

∇̂i
[
M2
P

N

(
Eij − δijE

)
− M̂3

1 δ
i
jδN

]
= 0 , (A.3)

and one can readily find the linear solution

δN =
2M2

P

2M2
PH − M̂3

1

ζ̇ (A.4)

ψ = − 2M2
P

2M2
PH − M̂3

1

ζ +
2M2

PM
4
2 − 12M2

PHM̂
3
1 + 3M̂6

1 − 4M4
P Ḣ

(2M2
PH − M̂3

1 )2

(
∂

a

)−2

ζ̇ ≡ Cζ + χ .

(A.5)
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When plugged back into the original action (1.1), this yields the quadratic Lagrangian for
the comoving curvature perturbation of the form (2.1), where we have defined

N ≡M2
P

−4M4
P Ḣ + 2M2

PM
4
2 − 12M2

PHM̂
3
1 + 3M̂6

1

(2M2
PH − M̂3

1 )2
, (A.6)

c2
s =

4M4
P Ḣ − 2M2

PHM̂
3
1 + M̂6

1 − 2M2
P∂tM̂

3
1

4M4
P Ḣ − 2M2

PM
4
2 + 12M2

PHM̂
3
1 − 3M̂6

1

. (A.7)

Obtaining the cubic-order action requires significantly more work. A straightforward expan-
sion of (1.1) using the solutions (A.4) and (A.5) for the lapse and shift perturbations, yields
the following result

S(3) =

∫
d4x

{
− aN c2

sζ(∂iζ)2 + a3

[
CN +

C3

M4
Pl

λ

]
ζ̇3 + 3a3N ζζ̇2+

+
M2
P

2a

(
3ζ + Cζ̇

) [
(∂i∂jψ)2 − (∂2ψ)2

]
− 2M2

P

a
∂iζ∂iψ∂

2ψ+

+ aC2
(

2M̂3
1 − M̂3

2

)
ζ̇2∂2ψ

}
,

(A.8)

where

λ ≡ −M
2
P

2

[
2M2

P (M4
2 +M4

3 )− 3(2M2
PH − M̂3

1 )(2M̂3
1 − M̂3

2 )
]
. (A.9)

It will prove convenient to recast the action (A.8) into a slightly different form. In doing
so, we omit a number tedious but straightforward manipulations. Once the dust settles, one
finds the following expression, equivalent to (A.8) up to a total derivative

S(3) =

∫
d4x

{
a3

[
NC

(
1 +

HC

c2
s

)
− λ′

]
ζ̇3 +

a3N (HC)2

c2
s

(
%− 3 +

3c2
s

(HC)2

)
ζζ̇2

+ aN (HC)2

(
%− 2s+ 1− c2

s

(HC)2

)
ζ(∂iζ)2 + 2aNHCζ̇∂iζ∂iχ

+
a3N

2

d

dt

(
n(HC)2

c2
s

)
ζ2ζ̇ +

N c2
s

2a
∂iζ∂iχ∂

2χ+
N c2

s + 2M̂3
1C

4a
∂2ζ(∂iχ)2

+
M̂3

1C
2

a
∂2ζ∂iζ∂iχ+

M̂3
1C

3

2a
(∂iζ)2∂2ζ + aC3(2M̂3

1 − M̂3
2 )ζ̇2∂2ζ − g(ζ)

δL

δζ

}
.

(A.10)

In the last expression, we have defined a number of quantities

n =
1

H

d

dt
log
(
N c2

s

)
, % =

1

H

d

dt
log
(
HC2

)
, s =

1

H

d

dt
log(cs) , (A.11)

as well as

λ′ ≡ C3(M4
2 +M4

3 ) + C2(2M̂3
1 − M̂3

2 )

(
3− N

M2
P

)
. (A.12)

Furthermore, δL/δζ denotes the variation of the quadratic action by ζ,

δL

δζ
= −2M2

Pl∂t(a∂
2χ) + 2aN c2

s∂
2ζ , (A.13)
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and the coefficient of this term in the action (A.10) is

g(ζ) =
n(HC)2

4c2
s

ζ2 +
HC2

c2
s

ζζ̇ +
C2

4a2

[
−(∂iζ)2 + ∂−2(∂i∂j(∂iζ∂jζ))

]
+

− C

2a2

[
∂iζ∂iχ− ∂−2(∂i∂j(∂iζ∂jχ))

]
.

(A.14)

As a quick consistency check, we note that our eq.(A.10) reduces to an analogous ex-
pression, eq. (4.26) of ref. [17], with the following substitutions: M̂3

1 = M̂3
2 = 0, C → −H−1,

N c2
s → ε, n → η ≡ (d log ε/dt)/H and % → ε. In that case, a small speed of sound implies

large (equilateral) non-Gaussianity, f equil
NL ∼ 1/c2

s. Our result generalizes the cubic action

of [17] to the case of non-zero M̂3
1 and M̂3

2 , which opens up qualitatively novel ways of
generating large non-Gaussianity, as explained in the main text.

B Bispectrum

We follow the standard nomenclature in defining various quantities associated with the two-
and three-point functions of the comoving curvature perturbation ζ, see, e.g., ref. [39]. The
three-point function is defined as

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 = (2π)3δ(3)

(∑
i

~ki

)
Bζ(k1, k2, k3) , (B.1)

and kt ≡ k1 + k2 + k3. We will at times use a related quantity, BΦ = (3/5)3Bζ , for the
Bardeen potential Φ = (3/5)ζ. Moreover, we will denote

A = H2N , (B.2)

where N is the normalization factor for the ζ kinetic term. The scalar perturbations’ power
spectrum can be directly read off eq. (2.1)

Pζ(k) =
1

4

H4

A

1

(csk)3
, (B.3)

and dimensionless power spectrum is

∆2
ζ =

k3

2π2
Pζ(k) ' 5π2 · 10−9 . (B.4)

With all of the above qualifications, the contribution from each of the relevant cubic operators
(we only exclude the operators which are suppressed by at least two powers of slow-roll)
in (A.10) to the bispectrum reads

BΦ(k1, k2, k3) = 2

(
3

20

)3 H10

A3c6
s

∑
i

ciSi(k1, k2, k3) + cyclic . (B.5)

1. Contribution from ζ̇3

S1(k1, k2, k3) =
4

k3
t k1k2k3

(B.6)

c1 = −M
2
Pl

c4
s

α2−α−ε+c2
s (3α− γ + 1)

(
α2 − α− ε

)
+c4

s(α− 1)
(
6α2 − 3αγ + 3γ + δ − 2ε

)
(α− 1)4

(B.7)
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2. Contribution from ζζ̇2

S2(k1, k2, k3) = 2
kt + k1

k2
t k

3
1k2k3

(B.8)

c2 = 3
M2

Pl

c4
s

(α2 − α− ε)
(
1− (α− 1)2c2

s

)
(α− 1)4

(B.9)

3. Contribution from ζ(∂ζ)2

S3(k1, k2, k3) = (k2
1 − k2

2 − k2
3)

(
− kt

(k1k2k3)3
+

∑
i>j kikj

kt(k1k2k3)3
+

1

k2
t (k1k2k3)2

)
(B.10)

c3 = −c2

3
(B.11)

4. Contribution from ζ̇∂iζ∂i∂
−2ζ̇

S4(k1, k2, k3) =
k2

1 − k2
2 − k2

3

2ktk1(k2k3)3

(
2 +

k2 + k3

kt

)
(B.12)

c4 = −M
2
Pl

c4
s

(α2 − 5α− ε+ 4)(α2 − α− ε)2

2(α− 1)6
(B.13)

5. Contribution from ∂2ζ∂i∂
−2ζ̇∂i∂

−2ζ̇

S5(k1, k2, k3) =
k2

1 − k2
2 − k2

3

ktk1(k2k3)3

(
1 +

k1

kt

)
(B.14)

c5 =
M2

Pl

c4
s

(α2 − α− ε)2(3α2 − 3α+ ε)

4(α− 1)6
(B.15)

6. Contribution from ∂2ζ∂iζ∂i∂
−2ζ̇

S6(k1, k2, k3) =
k2

1 − k2
2 − k2

3

2ktk1(k2k3)3

(
2 +

2k1 + k2 + k3

kt
+

2k1(k2 + k3)

k2
t

)
(B.16)

c8 = −M
2
Pl

c4
s

2α(α2 − α− ε)
(α− 1)4

(B.17)

7. Contribution from ∂2ζ(∂ζ)2

S7(k1, k2, k3) = 2
k2

1 − k2
2 − k2

3

ktk1(k2k3)3

(
1 +

∑
i>j kikj

k2
t

+
3k1k2k3

k3
t

)
(B.18)

c7 =
M2

Pl

c4
s

α

(α− 1)3
(B.19)

8. Contribution from ∂2ζζ̇2

S8(k1, k2, k3) = 4
kt + 3k1

k4
t k1k2k3

(B.20)

c8 =
M2

Pl

c2
s

4α− γ
(α− 1)3

(B.21)
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We have left out the operator ζ2ζ̇ in (A.10), since its coefficient is at most of order ∼ ε2, and
it is not expected to affect our analysis in any significant way. Moreover, the last term in
eq. (A.10), being proportional to the lower-order ζ equation of motion, can be removed by a
field redefinition. The latter redefinition also contributes to the three-point function of the
conserved scalar mode through the function g(ζ) in (A.14). The contributions of the terms in
this function that include derivatives are suppressed at superhorizon distances. Moreover, the
first term contributes to fNL by an amount that scales as η/c2

s (see, e.g. [17]). We neglect this
piece in our analysis, since it is always expected to be sub-dominant (whenever non-trivial
constraints from bispectrum arise, there are leading contributions, enhanced by at least a
factor of 1/η compared to it).

C The regime with fNL ∝ 1
c6s

In this appendix, we show how the behavior (1.6) arises in the model (2.3). For our purposes,
it will be sufficient to set ε = 0 to avoid over-complication of expressions. In order to study
the part of the parameter space, described by (2.10), it will prove convenient to slightly
change the notation by defining

x ≡ 1− α
c2
s

, (C.1)

so that x is generically an order-one constant. The normalization factor for the curvature
perturbation then becomes

N = M2
Pl

1− xc2
s

xc4
s

. (C.2)

The latter quantity has a strong dependence on the speed of sound: for small c2
s, it grows

like N ∝ 1/c4
s, and this appears to make the scalar perturbations weakly coupled — sup-

pressing the self-interactions of the canonically normalized ζ, and therefore suppressing non-
Gaussianity. This observation is decisive, however: in order to make a conclusive statement
regarding non-Gaussianity, one has to study the cs-dependence of the cubic ζ interactions in
the theory at hand. In fact, we will find that the cubic interactions grow as fast as 1/c10

s , even-
tually leading to non-Gaussianity of order fNL ∝ 1/c6

s. The action for the comoving curvature
perturbation, up to the cubic order in non-linearity, is given in eq. (A.10). In the remainder
of this section, we will confine ourselves to the leading order in the 1/c2

s-expansion, which
allows to extract the fastest-growing effects in the deep subluminal region of the parameter
space of interest. There are seven operators that contribute in this limit, and assuming α ' 1,
the relevant cubic action becomes

S
(3)
ζ =M2

Pl

∫
d4x a3

{
1

xc4
s

[
ζ̇2 − c2

s

(∂ζ)2

a2

]
+

1

x3c10
s

[
1

H
ζ̇3 − 3ζζ̇2 + c2

sζ
(∂ζ)2

a2

− 3

2
ζ̇∂iζ∂i∂

−2ζ̇ − 3

4
∂2ζ∂i∂

−2ζ̇∂i∂
−2ζ̇ + 2

c2
s

H

∂2ζ

a2
∂iζ∂i∂

−2ζ̇ − c4
s

H2

∂2ζ

a2

(∂ζ)2

a2

]}
. (C.3)

Various terms in (C.3) appear to be of different order in 1/c2
s; however, one should keep

in mind that higher spatial derivatives lead to additional factors of 1/cs in the amplitude
of non-Gaussianity, so that e.g. the two cubic operators ζ̇3/c10

s and ζ(∂ζ)2/c8
s contribute

comparably to fNL in the small c2
s limit.
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Figure 6. The shape of non-Gaussianity, corresponding to eq. (C.4) (we use the standard notation:
x2 = k2/k1 and x3 = k3/k1).

Summing up all the contributions to non-Gaussianity described in the previous appendix
yields a simple expression at the leading order in the 1/c2

s expansion

BΦ (k1, k2, k3) = −12

(
3

20

)3 M2
PlH

10

(Ax)3c16
s

1

k3
t (k1k2k3)2

[∑
i

k3
i −

∑
i 6=j

k2
i kj + 2k1k2k3

]
. (C.4)

The shape of the bispectrum is close to the equilateral one, see figure 6. We note, that
the second and the third operators above lead to squeezed non-Gaussianity, which can not
characterize a derivatively coupled theory of the sort we are considering; and indeed, all
‘non-equilateralness’ cancels out in the full bispectrum, which is a nice consistency check of
our results. This leaves us with the simple expression in eq. (C.4).

The fact that all of these terms are equally important at typical frequency scales of order
of the inflationary Hubble rate can also be seen from the analysis of the 2→ 2 scattering of
ζ quanta. It is a fairly generic fact, that the strong coupling scale of a theory shrinks to zero
(or, more precisely, becomes dominated by higher-order effects in the dispersion relation) as
the speed of sound is taken to vanish, and in the limit of small c2

s that we are interested in
here, one should be extra careful with this scale. In particular, in order to be able to trust
our low-energy effective theory, we should make sure that the strong coupling scale of that
theory is parametrically greater than the Hubble rate H — the typical energy/frequency
scale that we measure the inflationary observables at. In order to assess the strong coupling
scale Λ? associated with the i-th cubic interaction in (C.3), one can study a 2→ 2 scattering
of ζ that stems from that interaction. These interactions are non-relativistic, however, and
extra care has to be taken in order to properly define the energy and momentum scales at
which perturbative unitarity is violated in the scattering of interest. There are various ways
of addressing these issues, and perhaps the shortest and the most straightforward one is via
formally switching back to the relativistic notation. To this end, one can rescale time variable
in the action (C.3), so that t = t̃/cs, and ω = ω̃cs for the frequency. The quadratic ζ action
then becomes

S
(2)
ζ = M2

Pl

∫
d3xdt̃ a3 1

xc3
s

[
(∂t̃ζ)2 − (∂ζ)2

a2

]
, (C.5)
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while the first cubic interaction in (C.3) reads

S
(3)
ζ ⊃M2

Pl

∫
d3xdt̃ a3

[
1

x3c8
sH

(∂t̃ζ)3 + . . .

]
. (C.6)

Canonically normalizing the curvature perturbation, ζ = x1/2c
3/2
s ζc , one immediately obtains

the strong coupling scale associated with the given operator Λ̃2
? = x3/2c

7/2
s MPlH. Note that

this scale is still defined in the rescaled temporal coordinates; going back to the original
coordinates, one finally arrives at the true strong coupling (energy) scale

Λ2
? = c2

sΛ̃
2
? = x3/2c11/2

s MPlH . (C.7)

Demanding that this scale be larger than the inflationary Hubble rate yields the following
bound

x3/2c11/2
s MPl > H . (C.8)

What about the rest of the cubic operators in (C.3)? We have seen, that they all contribute by
an equal order of magnitude to non-Gaussianity, so that there should exist a well-defined sense
in which they are all ‘equally strongly coupled’ around the Hubble frequencies. Repeating
the above analysis, it is easy to see that the six remaining cubic interactions in (C.3) imply
strong coupling scales, in general different from Λ?. For example, the operator ζζ̇2 starts
violating perturbative unitarity in a 2→ 2 scattering of ζ quanta around the frequency scales
of order

Λ̄? = x3/2c11/2
s MPl . (C.9)

Being different from Λ?, the expression for Λ̄? nevertheless implies the exact same condi-
tion (C.8) if the scattering at Hubble frequencies is to be unitary. One can straightforwardly
check that the same conclusion applies to all operators in (C.8), fixing the sense in which all
of these operators are equally important for the physics at the horizon.
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