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1 Introduction

One of the most baffling problems in cosmology and fundamental physics today concerns the
acceleration of the universe, as inferred from the redshifting of the type Ia supernovae. Along
with this observation, the WMAP data and the large scale structure measurements can all
be explained by invoking a dark fluid with negative pressure dubbed as dark energy. This
has given rise to the so-called flat ΛCDM or concordance model consisting of approximately
only 4% of visible matter (baryons), the rest being dark (approximately 3/4 dark energy and
1/4 dark matter). However, what is this dark energy and why its abundance should be such
that it happens to be exactly in concordance with matter density today, remains very much
a mystery.

Recently, a few researchers have tried to take a different point of view: what if the effect
of large scale structure could account for the observed luminosity to redshift behavior of type
Ia supernovae (i.e. give rise to an “apparent” acceleration of the universe), without Dark
Energy? Recent studies of exact solutions to the Einstein equations have, in fact, been able
to reproduce the observed luminosity to redshift relation that is usually attributed to acceler-
ation, provided that we lived in a large region (“void”) that has less matter density than the
spatial average density over the cosmological Horizon [1–3] (see [4] for a review). However,
in order for the void model to be taken seriously, several key issues have to be addressed.
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Firstly, the observation of small, nearly scale invariant CMB temperature fluctuations,
strongly supports the principle that our universe is homogeneous and isotropic on large scales.
According to our current understanding of structure formation, O(1) non-linearities are only
expected typically at scales ∼ O(10Mpc/h). In this case one can argue that the effect of
these inhomogeneities on cosmology, which is governed by the Hubble scale ∼ 3000Mpc/h,
would be to too small to be significant. However, there are reasons why one could be wary
of such a conclusion.

From the theoretical point of view, the non-linear behaviour of structure formation is
not a trivial issue. For instance, due to non-linear effects it is known that smaller voids can
percolate to form much larger underdense structures which occupy most of the volume of
the Universe (see e.g. [5], according to which such a percolation has a threshold, when the
density is about 50% lower than the average), forming what is known as a “cosmic web” of
superclusters and voids. Also, we note that non-standard features on the primordial power
spectrum, such as a spike at a particular scale, or some non gaussianity may enhance the
possibility of having larger structures and voids.

Observationally speaking, several huge nonlinear structures (notably, the Sloan Great
Wall has a length of 400/h Mpc [6]) have been revealed through surveys like SDSS and 2dF (of
course, these data are only tracing the visible matter, so their interpretation in terms of total
matter is subject to a bias). It is unclear whether the presence of these large observed objects
is consistent with the present understanding of structure formation. Further, there has been
observational evidence for the presence of a local large underdense (∼ 25% less dense) region
(that extends to ∼ 200Mpc/h) from number counts of galaxies [7]. This represents a 4 sigma
fluctuation, and would be at odds with ΛCDM. More recently, there has been a claim that
the presence of the cold spot in the CMB detected in the WMAP sky [8] is also associated
with a similar Big Void in the large scale-structure [9]. Intriguingly, the presence of such Big
Voids has also been advocated by [10] in order to explain some features of the low multipole
anomalies in the CMB data (in addition to the cold spot). Finally we note that two recent pa-
pers [11, 12] claim a significant (95% C.L.) detection of an anisotropy in the local Hubble flow
in the Hubble Key Project data [12] and in the SN Ia dataset [11]. These would be completely
natural consequences of being inside a large local void [13], since, of course, we are neither
expected to be exactly at the center nor the void is not expected to be exactly spherical.

However, it is fair to say that the presence of large voids becomes more unlikely (thus re-
quiring probably a non-conventional paradigm of structure formation), as the size of the void
and the density contrast that we consider become larger. This emphasizes the need to find
the “Minimal Void (MV) Model” i.e., with minimal length scale and underdensity contrast
that is required to give a consistent fit to the supernovae data (the reader will easily recognize
that the larger is the void, in general the better is the fit) . This is the first goal of our paper.

The second important issue that one has to address in the context of the MV model
is whether it can reproduce the successes of ΛCDM model for many different observations,
most notably the WMAP third year data. In this paper we present an analysis of the MV
model subject to the WMAP 3yr data using the COSMOMC package [14], using a Monte
Carlo Markov Chain (MCMC) method. Finally we combine the CMB analysis with the SN
Ia data, to constrain local measurements of the Hubble parameter.

Our model consists of a matter dominated Universe (EdS) plus a Void, but actually
reduces to fitting WMAP with a pure EdS Universe, since, as we will show, the corrections
induced by a Void of 200 − 300Mpc/h radius for a central observer are negligible for CMB
observations. A similar analysis has already been done in EdS by [15–17]; nonetheless,
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for completeness of the presentation and to better combine the constraints from CMB and
supernovae, we perform an independent analysis of the WMAP 3 yr data. We obtain results
similar to [15, 16], although we use different priors on the primordial spectrum, lending
robustness to the findings of [15, 16]. We show how it is possible to combine WMAP and SN
data in the Void model, and how this leads to higher values of the local Hubble parameter
in the Void model with respect to the pure EdS model.

As an aside we note that we obtain analytical expressions for the luminosity-redshift
curve for arbitrary density profiles which are excellent approximations even when the local
inhomogeneous patch extends up to ∼ 400 Mpc/h.

We now proceed as follows: in section 2, we introduce our swiss-cheese model and
briefly discuss the non-linear structure formation, as well as the photon propagation in this
configuration. In section 3 we explain qualitatively how the MV model can be consistent
with both the supernovae and WMAP data, as well as local measurements of the Hubble
parameter. In section 4, we perform supernovae fits for the void model. Next in section 5,
we perform a MCMC analysis of the WMAP data without a cosmological constant. Finally,
we conclude by summarizing our findings, suggesting possible future directions, and also
pointing out unique predictions of the MV model. The appendix contains approximate
analytical solution of the trajectory, redshift and luminosity distance of a photon in the
radially inhomogeneous “LTB” (Lemaitre-Tolman-Biondi) metric.

2 Large scale structure and LTB metrics

As emphasized in the introduction, in this paper we will advocate that perhaps we are sitting
near the centre of a “Big Void” spanning a radius of ∼ 200 Mpc/h which, as we will explain,
is roughly the minimal size needed to account for the SN-Ia supernova data (although one
can go down to values of about 150Mpc/h by accepting a slightly worse fit).

To accurately model such inhomogeneous structures/voids we use the spherically sym-
metric LTB metric [18], which describes “radially” inhomogeneous patches of any desired
radius, L (such metric describes the most generic spherically symmetric dust-filled space-
time; we refer to appendix A for definitions and details). Such spherical patches can be
pasted onto a homogeneous FLRW metric consistently [19], which also ensures that the av-
erage density inside the spherical patch is the same (almost exactly, see again appendix A
for details) as the background density outside the patch. Thus, an underdensity around the
central region is compensated by a shell-like structure near the circumference.1

Technically, it is somewhat complicated to describe the dynamics of the LTB metric
(see appendix A for details and for the choice we made for the so-called mass function), but
intuitively it is as if one had an independent scale factor corresponding to each (comoving)
radial coordinate, r, which is evolving as an independent FLRW metric with a given spatial
curvature k(r). A priori, k(r) is an arbitrary function which also determines the density
profile. Assuming L ≪ RH (the Hubble radius) one has

ρ(r, t) ≃ 〈ρ〉(t)
1 + (t/t0)2/3ǫ(r)

, where 〈ρ〉(t) ≡
M2

p

6πt2
, and ǫ(r) ≡ 3k(r) + rk′(r) . (2.1)

We observe that the FLRW behaviour for the density is given by the factor 〈ρ〉(t), while
the fluctuations are provided by the presence of ǫ(r) in the denominator. When ǫ(r) is close

1In fact we may speculate that the Sloan Great Wall may be indicative of such a shell-like structure, given
its location, at about 250 Mpc/h away from us, and its two-dimensional shape [6].
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to its maximum value we have a void, while when it is close to its minimum, it signals an
overdensity. Note that at early times the density contrast δ(r, t) ≡ (ρ(r, t) − 〈ρ〉(t))/〈ρ〉(t),
defined in the usual way, grows as t2/3, in agreement with the prediction of cosmological
perturbation theory. On the other hand at late times, when (t/t0)

2/3ǫ(r) ∼ O(1), the density
contrast grows rapidly (and this result is the same as found within the Zeldovich approxi-
mation [20]). In fact, for an overdense region, the structure ultimately collapses, as to be
expected because LTB metrics cannot account for virialization that we observe in nature.
Nevertheless, for our purpose, as long as we do not reach the collapse time, LTB metrics
adequately capture the effects of non-linear stucture formation on photon propagation.

Now, we are interested in modeling a spherical void region surrounded by a compensat-
ing shell-like structure, and this is obtained using a k(r) which starts off from a maximum
at r = 0 and falls off to a constant value at r = L such that

k′(0) = k′(L) = 0 , (2.2)

k(L) =
4π

3
Ωk, for |Ωk| ≪ 1 , (2.3)

One can check that such an LTB metric can consistently match to an FLRW background [19],
with curvature abundance Ωk. In this paper we will mostly focus on a background FLRW
metric which is flat. The essential reason for choosing a flat background metric is that
curvature is known to be constrained to be very small in order to get a good fit of the WMAP
data along with other measurements (such as measurements of the Hubble constant [21]).
We note in passing that in LTB models we are considering we do not have back-reaction
effects in the outside region, i.e. on the average the FLRW regions do not feel at all the
presence of holes. The particular choice of the curvature function that we employ to model
the inhomogeneities and fit the supernova data is given by

k(r) = kmax

[

1 −
( r

L

)4
]2

. (2.4)

One can check that eq. (2.4) satisfies eq. (2.3), in the case with Ωk = 0. It contains two im-
portant physical parameters, L and kmax, which correspond to the length-scale and amplitude
of fluctuations respectively.2

3 The Minimal Void Model

As we shall see later, we need to invoke a Big Void with a radius of about 200/h Mpc (and
with average density contrast of roughly 〈δ2〉 ≃ 0.4). The probability of having non-linear
structures at larger scales becomes progressively smaller. Using the conventional linear and
Gaussian power spectrum for radii of about ∼ 200 Mpc/h the typical density contrast instead
is only of about 0.03 − 0.05 (for a radius of ∼ 160 Mpc/h the typical contrast is instead
about 0.06).

So, as stated in the Introduction, we would like to find the “Minimal Void Model” i.e.,
with minimal length scale and underdensity contrast that is required to give a consistent fit to

2The exponent of r/L has been chosen to be equal to 4, but the reader may note that any exponent n > 1
is good, as well. Varying n one varies the width of the shell-like structure. The larger the n, the flatter the
void, and narrower the structure. However, we choose to stick only to the case n = 4, since it already gives us
a sufficiently flat profile for the underdense region which we found to improve the supernova fit, and anyhow
the whole analysis and discussion is not very much affected by the precise shape of the shell.
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the supernova data. This is obtained by realizing that the crucial evidence for acceleration
comes from the fact that we observe a mismatch between the expansion at low redshifts
(between roughly 0.03 ≤ z ≤ 0.07) and the expansion at higher redshifts (where supernovae
are observed [22], between roughly 0.4 ≤ z ≤ 1). This situation arises because of the current
experimental status of supernovae observations: we have very few data in the redshift range
between 0.07 and 0.4 . The situation will dramatically change with the coming release of the
SDSS-II supernovae data [23], which will include about 120 data points in upcoming first
year data release, ranging between redshifts 0.05 and 0.4.3 Thus it is not necessary to alter
the EdS DL(z) all the way up to z ∼ O(1), but a large correction to the Hubble expansion
in the local region, 0.03 ≤ z ≤ 0.07, stretching up to ∼ 200Mpc/h, may be sufficient. In
particular if we are living in a local underdensity, then we experience extra stretching as
voids become “more void” (that is how structure formation works) which manifests as a local
Hubble expansion rate larger than average (outside the patch), precisely what is required
to mimic acceleration. Another way of seeing this is that all sources in the local region
have a collective radial peculiar velocity due to the gravitational attraction of the shell-like
structure, which adds to the overall expansion.

Let us now see more precisely how the MV model works. We first focus on the high
redshift region, i.e. outside the LTB patch. In this region the DL(z) curve of the MV
model basically corresponds to that of the homogeneous EdS curve parameterized by a lower
average Hubble parameter,4 hout. Further, in this range of high redshift supernovae, the EdS
curve can run very close to the ΛCDM model, albeit with a different, slightly lower, Hubble
parameter, hout as compared to the Hubble parameter h of the ΛCDM curve. For instance,
if we compare the EdS distance (DE) with the ΛCDM distance (DΛ) [27]:

DE

DΛ
≡ R(z) , (3.1)

it turns out that the ratio R does not change much in the relevant range of high-z supernovae,
0.4 ≤ z ≤ 1:

R(0.4)/R(1) ≃ 1.12 . (3.2)

Moreover, the ratio R(z) itself is proportional to the ratio h/hout. Thus, by choosing
the latter ratio appropriately, the luminosity distance of the average EdS model can be made
to approximately coincide with that of the ΛCDM one in the redshift range 0.4 ≤ z ≤ 1.

Next, let us look at the low redshift region. In this region, the DL(z) curve is basically
linear, the slope being given by the Hubble parameter:

H−1
0 ≡ lim

z→0

DL(z)

z
=

3000 Mpc

h
. (3.3)

3We can estimate the impact on the χ2 simulating 120 points [23] randomly distributed in this range,
assuming a concordance ΛCDM reference model and assuming an error in magnitudes of ∆m. The difference
in χ2 for our best fit MV model would be of order ∆χ2

∼ 70 for ∆m = 0.15 (which is the typical intrinsic
dispersion used in SNIa analysis). Therefore such data can be used to discriminate between our model and
concordance ΛCDM.

4We may briefly discuss the difference between LTB and EdS models in the outer region as follows.First
of all, there is an integrated effect (Rees-Sciama), which goes like (L/rH)3, leading to an ∼ O(10−5) ef-
fect [24].There is also a shift due a local effect (the Sachs-Wolfe effect), since the value of the gravitational
potential at the centre differs from the one of the outer sources by an amount of order (L/rH)2. Bothe effects
for O(300)Mpc/h sized Voids lead only to a small shift in the CMB monopole, which can safely be neglected.
Finally, as stressed in [24–26] there are in general (L/rH)2 corrections to the luminosity distance in the LTB
metrics due to Lensing effects, but these effects are actually zero when averaged over the entire sky, or when
the observer is at the centre.
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Thus in order for the MV model to agree with the best-fit ΛCDM, the Hubble parameter
inside the LTB patch should coincide with the measured local Hubble parameter.

As we will see later, we find a very good fit to the SN data (where we use the dataset [22]),
with goodness-of-fit ∼ 50%, without Λ in the MV models. Assuming our model, a param-
eter estimation (with likelihood e−χ2/2) gives at 95% C.L. the following range for the jump
parameter:

1.17 ≤ J ≡ h

hout

≤ 1.25 . (3.4)

On the other hand the fit to the WMAP data will fix the value of the global hout. As
we will see in section 5, this is the important quantity for the photons that come from the
last scattering surface, and not for example the local h. Crucially, a reasonable fit of the
WMAP data without Λ requires a relatively low Hubble parameter outside the Void:

0.44 ≤ hout ≤ 0.47 , (3.5)

(at 95% C.L.).
Now, these two constraints (hout from CMB and the J from Supernovae) can be com-

bined together leading to
0.51 ≤ h ≤ 0.59 . (3.6)

(see figure 5) and we have to compare this with the local measurements.
These local values typically vary over a wide range. The Hubble parameter measured

using supernovae [28] reads h = 0.59+.04
−.04, the Hubble Key Project [21] measures a value of

h = 0.72+.08
−.08 (although in [29] a lower value of h = 0.62+0.05

−0.05 is given, with an improved
treatment of Cepheids). Measurements of clusters using Sunyaev-Zeldovich distances [30]
(which is based on data at different redshifts, up to z ≃ 1) gives a much lower estimate,
h = 0.54+.04

−.03 (in EdS), although a more recent revision of the data [31] leads to higher values,
consistent with HST . Also, measurements at high redshift (0.3 < z < 0.7) using gravitational
lensing [32] give h = 0.48+.03

−.03 (for a more comprehensive summary see [16]). In fact, the value
of h estimated also seem to decrease as one looks at sources with larger redshifts which would
be a prediction for the MV model.

For reference, a range to consider for h, would be perhaps:

0.55 . h . 0.8 . (3.7)

This can now be used also to pinpoint the underdensity contrast required in the void. As
we will analytically show in the next section (and verify numerically), the jump parameter
in LTB models does not depend on the details of the curvature (density) profile, but only
on the amplitude kmax, or equivalently the maximal underdensity contrast at the center of
the void. We find that a central underdensity between 44% and 58% reproduces the relevant
range eq. (3.4) of the jump parameter, and it is easy to check that this is also consistent with
eq. (3.7) and eq. (3.5). Notice however that the average underdensity is always somewhat
smaller than the central value, see e.g. figure 2.

4 Supernovae fits

4.1 Analytical results

Our aim in this section is to quantitatively fit the supernova data (we use here the dataset
from [22]) using the MV model. In order to have better control, we decided to perform both
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numerical and analytical analysis. As explained in [24], as long as L ≪ RH , one can find ex-
cellent approximations to the luminosity distance-redshift relation. In the appendix we have
obtained expressions for DL(r) and z(r) (which can be used to obtain DL(z) implicitly) for
any general profile. We also provide the reader with a summary of all the equations necessary
to reproduce the analytic approximation for DL(z) in appendix A.6, in a self-contained form.
Inside the LTB patch, the redshift as a function of the radial coordinate looks like

z ≈ 2r

3t0
[1 + 2f (3k(r)/π)] . (4.1)

while the angular distance is simply given by

DA = r [1 + f (3k(r)/π)] . (4.2)

In deriving these formulas we have used a specific choice of the radial coordinate, given in
eq. (A.37) of appendix A.6, such that r approximately corresponds to the proper distance
today.

The luminosity distance, in General Relativity, is always related to the angular diameter
distance [33] DA via

DL = (1 + z)2DA . (4.3)

One can easily verify that, in the above expressions for DA and z, the terms outside the
brackets correspond to the FLRW results for a flat universe. f is an universal function (it
does not depend on the profile) defined in the appendix, which gives us the deviation of the
DL(z) curve from the FLRW result. As one can see, our analytical results agree very well
with the numerical solutions, see figure 6.

Now, one defines the Hubble parameter as the initial (z=0) slope in the DL − z plot:
using this definition one can obtain (see appendix A.4 for details) an exact relation between
the jump parameter and the central density contrast:

J =
h

hout
= 2 − (1 − |δ0|)1/3 . (4.4)

Surprisingly, this expression does not depend on the specific form of the profile, and therefore
lends generality to the analysis.

4.2 Numerical analysis

We employ in this section a two steps strategy. First, without even using the LTB metric,
we try to fit the data with a crude approximation of the void, which consists of an empty
(curvature dominated) FLRW Hubble diagram for the inner region and then an EdS Hubble
Diagram for the outer region. Between the two regions (z < zjump and z > zjump) there is a
discontinuous jump in the Hubble parameter Hin/Hout. In this way we get a good idea about
what are the best values for J and zjump. The results are shown in the left plot of figure 1.

As one can see from the plot, the larger is the value for zjump the better is the fit.
However, we do not gain much by taking zjump larger than, say, 0.08 (which corresponds
to a radius of 250Mpc/h). It is also interesting to note that a zjump as low as 0.05 (which
corresponds to a radius of 150Mpc/h) still gives a reasonable fit (goodness-of-fit is higher
than a few %). Almost independent of zjump, the best value for the jump is around J ≃ 1.2.

As a second step, we try to reproduce these results with a full LTB study. For simplicity
we focus on only one value of L for the LTB patch (zjump ≈ 0.085). A further observational
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zjump= [0.09,0.08,0.07,0.06,0.05] (from bottom to top)
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190

192.5

195

197.5

200

Χ2

zjump= 0.085

Figure 1. The χ2 for Supernovae IA as a function of the jump h/hout = Hin/Hout, for different values
of the size of the inhomogeneous region (whose boundary ends at redshift zjump). We have used in the
left plot a model with two FLRW regions (empty inside and EdS outside), with two different Hubble
parameters. From bottom to top the solid curves correspond to zjump = [0.09, 0.08, 0.07, 0.06, 0.05].
The two dashed lines correspond to a 10% and a 1% goodness-of-fit. in a full specific LTB model,
matched to FLRW at redshift zjump = 0.085. In the right plot we use a full LTB model, matched to
FLRW at redshift zjump = 0.085. The dashed lines correspond to the 1σ, 2σ, 3σ and 4σ where we

used as a likelihood e−χ2/2. The number of d.o.f. is 181 (we have used the Riess Gold dataset [22]).

motivation for considering such a redshift comes from the fact that it also approximately
coincides with the redshift of the Sloan Great Wall, which spans hundreds of Mpc across and
it could be suggestive of being the “compensating structure” expected at the boundary of
the LTB patch [6]. In the profile eq. (2.4), we therefore fix the radius L, and let kmax vary
(which corresponds to varying the jump J , or equivalently the central density contrast δ0).
We find that the 1σ range of the jump corresponds to 1.214+.019

−.019 (see right plot of figure 1).

For the density contrast at the center this translates to δ0 = 0.514+.034
−.036.

Let us comment briefly on the values that we get for the χ2 as compared to other models.
The EdS model has a very bad fit to the data. On the other hand the ΛCDM model has a
much lower χ2 than our model ([22] quotes 150),5 which is indeed strangely too low.6 Now,
in terms of goodness-of-fit our χ2 is what one expects typically, since it is roughly equal to
the number of d.o.f., and this makes our model a good fit to the data.

Note that we have fitted only to the “Gold” dataset [22], although there are more
up-to-date ones since our purpose is just to check the consistency of the model.

Finally we show, as an illustration, one example of a plot of DL − z in figure 2 together
with the shape of the density profile (as a function of z).

5 MCMC fit of the WMAP data

It is commonly assumed that the ΛCDM model, with a non-zero cosmological constant, is the
only one which can adequately explain the CMB spectrum. This is based on the result that

5The open empty Universe has also a low χ2, of about 160.
6We note here that all the SN fits are plagued by not knowing exactly what are the errors on the SN

measurements. In fact, if one used only instrumental errors, then the data points would have a very large
scatter with tiny errors, and there is no smooth curve which can give a fit to the data. Then what is done
by SN collaborations is to add an error of about 0.15 magnitudes due to the intrinsic variability. Introducing
such an error is what makes the concordance ΛCDM χ2 so low (see e.g. table 7 of [34], where the error due
to the intrinsic variability is determined by requiring that χ2/d.o.f. = 1 for the nearby supernovae).
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Figure 2. In the left plot we show a fit of the Supernovae data (Riess et al. [22]) with an LTB
model which has χ2 = 186 (the d.o.f. are 181). The inhomogeneous patch extends up to z ≃ 0.085
and the underdensity in the center is δCENTRE = −0.48. We have shown ∆m ≡ m − mempty: the
magnitude (m ≡ 5Log10DL) minus the magnitude of an empty open FLRW Universe as a function of
the redshift z. The blue solid line is our inhomogeneous model, the red dashed-line is an EdS model
(whose Hubble constant is normalized through the nearby supernovae), the green dotted line is the
best-fit ΛCDM . In the right plot we show the density contrast for the same model, as a function of z.
The average contrast (

√

〈δ2〉) in the inhomogeneous patch is 0.43 (
√

〈δ2〉 ≃ 0.33 in the underdensity,
√

〈δ2〉 ≃ 0.48 in the overdensity).

once one assumes a “flat” prior on Λ, it turns out that the “most likely” parameters, given the
WMAP data, correspond to ΩΛ ∼ 0.7. The question that we want to ask however, is about
consistency of WMAP with EdS: can we get a reasonable fit to the CMB spectrum even
after setting Λ to zero? To put it differently, if we had a strong theoretical prejudice against
having a non-zero cosmological constant, or if there were other observations disfavoring it,
then would the 3-yr WMAP data independently rule out an ΩM = 1, EdS universe? (Here
M means total matter = baryons + dark matter).

Rigorously speaking, fitting the CMB in our model seems technically challenging because
one would have to compute the secondary effects, i.e. what the spectrum of the CMB
radiation would look like after passing through the local underdense region (and maybe many
other such regions),7 it encounters on its journey to us. According to [24], the corrections to
the redshifts of photons which pass through a void of size L is a Rees-Sciama effect that goes
like (L/RH)3. A coherent addition of this effect due to many voids could produce a correction
of order (L/RH)2. Thus for a void with a typical radius ∼ 200/h Mpc that we considered
in this paper, such a cumulative effect could be ∼ 10−2 − 10−3. This can be ignored for the
study of supernovae. If these many voids exist, they would give a sizable effect on the CMB.
The number ∼ 10−2 − 10−3 would refer to a monopole in the CMB, while the correction to
higher multipoles would be smaller (depending on how different is the number of voids along
different directions in the sky). However, in this paper we ignore such secondary effects. On
the qualitative side, we expect this to be important only for small l and decay fast for larger
l, and it should act in the same way as an Integrated Sachs-Wolfe effect.8

7The assumption that we live in a void could naturally lead us to consider that the universe might contain
many such voids, a bubbly universe. In this case one would have to compute the passage of the photons
through many such voids.

8Let us note that in a EdS Universe it would be impossible to fit the claimed detections of ISW correla-
tions [36], since this is exactly zero at the linear level. Having Voids instead can allow the existence of a larger
effect, which in principle could be tested against such observations, although this goes beyond the scope of
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ΛCDM EdS EdS Curved

αs = 0 αs 6= 0 αs,Ωk 6= 0

min max min max min max min max

Ωbh
2
out

0.005 0.04 0.005 0.04 0.005 0.04 0.005 0.04

Ωmh2
out 0.01 0.3 0.01 0.3 0.01 0.3 0.01 0.3

ΩΛ 0 1 0 0 0 0 0 0

ns 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5

αs 0 0 0 0 −0.3 0.3 −0.3 0.3

Ωk 0 0 0 0 0 0 0.05 0.05

zre 4 20 4 20 4 20 4 20

1010As 10 100 10 100 10 100 10 100

Table 1. Priors for different parameters in the COSMOMC Runs. Here Ωbh
2
out is the physical

baryon density, Ωmh2
out is the physical dark matter density, zre is the redshift at re-ionization, ns is

the spectral index, αs is the running of the spectral index and As is the amplitude of scalar fluctuations
(for definitions see, e.g. [14]).

The correction to the CMB redshift that comes from our local void, instead, will depend
on how symmetric the void is, and how “centrally” we are located. For an off-center observer,
in appendix A.5 we perform a non-perturbative estimate of the dipole moment, and find that
in order for it to not exceed the observed value ∼ O(10−3), “we” must be located very close
to the center, approximately within 10% of the void-radius, in concordance with the findings
in [35]. In this case the correction to the higher multipoles are much more suppressed and not
visible in CMB [35]. Departure from spherical symmetry, on the other hand, may have a much
more interesting effect, specially on the lowest ls in the CMB spectrum, and could be visible.9

As stressed in the introduction, an analysis of the CMB has been already done in EdS
by [15, 16]. However, we have done an independent analysis again in the present paper to
have a complete presentation of how the constraints from the WMAP and SN data sets can
be combined, and in particular its implications for the Hubble parameter. An additional
difference is that we consider a spectrum with nonzero spectral index and running, while
in [15, 16] the authors assumed different priors (such as different power law indices, or the
existence of a bump and a change in the amplitude in the primordial spectrum), rather than
considering an overall running.

As one would expect, we find that if one assumes as priors, no dark energy, as well as
no additional features in the primordial spectrum (other than spectral index and amplitude)
the fit of the 3-yr WMAP data is very poor. However the situation changes if we introduce
a “running in the spectral tilt”, αs, in the observable ∼ 7 e-folds of our universe in CMB
(following the same definition as in [14])(see table 4).

We have performed a Monte Carlo Markov Chain (MCMC) analysis of the WMAP 3
year data using the program COSMOMC [14], with the priors given in table 1. We used
the version of the COSMOMC program which lets one analyze the range 2 ≤ l ≤ 30 for
TT correlations and the range 2 ≤ l ≤ 23 for TE+EE correlations using the pixel-based
approach (T, Q and U maps), which offers a much more accurate treatment of the low-l
likelihood [45]. One has (957+1172) pixel data in all. The rest of the correlations that we

the present work.
9In this context we note that similar effects in anisotropic geometric void configurations have been used to

explain the low multipole anomalies in the CMB sky [10].
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Figure 3. ΛCDM and EdS fits to the WMAP 3 binned data.

ΛCDM EdS, αs = 0 Eds, αs 6= 0 Eds, αs,Ωk 6= 0

Ωbh
2
out 0.022+0.002

−0.002 0.022+0.001
−0.001 0.018+0.001

−0.002 0.019+0.002
−0.001

Ωmh2
out 0.106+0.021

−0.013 0.198+0.008
−0.011 0.186+0.011

−0.009 0.167+0.009
−0.007

ΩΛ 0.759+0.041
−0.103 0 0 0

zre 11.734+4.993
−7.619 8.697+4.351

−6.694 13.754+2.246
−5.752 13.342+2.55

−5.011

Ωk 0 0 0 0.05

ns 0.96+0.04
−0.04 0.94+0.021

−0.038 0.732+0.07
−0.071 0.761+0.069

−0.069

αs 0 0 −0.161+0.044
−0.044 −0.13+0.037

−0.048

1010As 20.841+3.116
−3.442 25.459+2.135

−2.766 25.302+2.182
−2.968 23.975+2.198

−2.448

Ωm/Ωb 4.73+0.999
−0.485 9.119+0.341

−0.357 10.094+0.645
−0.489 8.929+0.512

−0.541

hout .72857+.05137
−.07393 .46857+.00888

−.01307 .4523+.01291
−.01129 .42069+.01107

−.00919

Age/GY r 13.733+0.389
−0.369 13.908+0.399

−0.258 14.408+0.369
−0.4 15.338+0.342

−0.393

σ8 0.77+0.121
−0.109 1.012+0.056

−0.081 0.919+0.07
−0.075 0.862+0.06

−0.063

τ 0.095+0.072
−0.074 0.047+0.037

−0.041 0.079+0.023
−0.044 0.081+0.024

−0.041

Table 2. Most likely parameter values with 1 σ errors for the various COSMOMC Runs.

considered consisted of CTT
l in the range 31 ≤ l ≤ 1000, and CTE

l in the range 24 ≤ l ≤ 450.

We find that an EdS universe with no dark energy but with a value of the Hubble
constant, Hout, significantly lower than the conventionally accepted value of 70 km/s/Mpc
gives a very reasonable fit to the CMB spectrum, see figure 3 and table 4. The most likely
parameter set along with their 1σ bounds are tabulated in table 2.

We also produce two 2-dimensional likelihood contour plots: (i) hout vs. Ωm/Ωb which
are the only two independent parameters related to the composition of the universe, and (ii)
ns vs. αs which characterize the spectrum.

In figure 5 we show a contour plot combining the constraint from supernova fit in the
previous section with that of WMAP. As promised before, we find that the locally measured
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Figure 4. Contour marginalized likelihood plots to the WMAP 3-yr data for the run “EdS, αs 6= 0”.
The coloured map corresponds to mean likelihood, while the solid lines correspond to marginalized
1-σ and 2-σ contours.

0.4
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h
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Figure 5. 1-σ and 2-σ Contour plots for h vs. hout. The blue bands come from the SN-I analysis,
while the red bands correspond to constraints coming from WMAP.

Hubble parameter can be as high as h ∼ .59 at the 2σ, or 95% C.L., which is within the
acceptable range of the different measurements of the Hubble parameter.

Let us briefly discuss about the values that we obtain for the other cosmological param-
eters.

The main constraint on the baryon density comes from BBN [37], 0.017 ≤ Ωbh
2
out ≤

0.024 at 95% C.L. This is indeed consistent with the parameter range that we obtain from the
WMAP run, Ωbh

2
out = 0.018+.002

−.002. Although we have a higher baryonic abundance, the lower
Hubble parameter almost precisely compensates to yield approximately the same baryonic
energy density as it is obtained in the “concordance” ΛCDM model, as already noted in [16].
As one can see from the likelihood plot, figure 4 as well as table 2, the ratio between dark
matter and baryons is somewhat higher, Ωm/Ωb ∼ 10, than the “concordance” ΛCDM model
value of Ωm/Ωb ∼ 6.

Then, our best fit spectral index is relatively low, ns ∼ .73, but there are several
inflationary scenarios where such low spectral tilts are common (for example in modifications
of the old inflationary scenario from false vacuum [38], or inflation from exponential potentials
naturally occurring in string theories, see for instance [39]). Our model also requires a
significant running, αs ∼ −.16. We have not confronted our model with a host of other
observations coming from large scale structure and weak lensing experiments, which may
require refining or adding new ingredients to the model (see for instance [15, 16] for progress
in these directions). For instance, it is well known that EdS based models fail to reproduce
the BAO peak [15, 40, 41]. At first sight the value for σ8 = 0.92+.07

−.08, in our model also
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Parameter L Ωbh
2
out Ωmh2

out zre σ8 ns αs δ0 hout h

Best-fit 250/h 0.018+0.002

−0.002 0.19+0.01

−0.01 13.8+2.2

−5.8 0.92+0.07

−0.08 0.73+0.07

−0.07 −0.16+0.05

−0.04 0.51+0.03

−0.04 0.452+.013

−.011 0.55+.024

−0.023

Acceptable-fit 160/h 0.02 0.2 13.8 0.92 0.73 −0.16 0.44 0.47 0.55

Table 3. Best-fit Minimal Void Model Parameters.

seems too high, which may be inconsistent with measurements of the Lyman-α forest [42].
Finally, we may not also be able to fit the turnaround point of the galaxy power spectrum,
which is mostly controlled by the product Ωmh, and as compared to the standard value of
Ωmh ≈ 0.21, this is too high in our model, although the analysis of [15, 16] shows that the
addition of a hot component (neutrinos) helps to fit the galaxy power spectrum (SDSS data
main sample). Ideally however, one should revisit these analysis in the light of MV model
that we have presented, by including running of the tilt as well as the non-standard DL(z)
relation in these inhomogeneous models,10 an important task that we leave for future. In any
case, the main aim of our paper is to demonstrate, that one can be consistent with CMB,
supernovae, BBN and local measurements of the Hubble parameter once one is willing to
give up the cosmological principle.

Finally, we note that our value of the re-ionization epoch (optical depth) is broadly
consistent with the usual observations [44] (see also discussion in [45]).

To summarize, our best fit (WMAP + SNIa) MV model consists of 8 parameters, one
of which, the length scale of the void, has been chosen at the value L = 250/h to derive our
best-fit model. However, as noted in the introduction, if one “accepts” a G.F. ∼ 10% to the
supernovae data, then one can go down to a much smaller length scale, L ∼ 160/h. Out of the
other seven parameters, six of them (columns 2 to 7 in the table of 3 are obtained from the
fit to the WMAP 3-yr data using COSMOMC, while the last one, (column 8), is constrained
from the supernovae data. We note that a “minimally acceptable” model with respect to the
central underdensity contrast would be obtained with a maximally acceptable hout ∼ 0.47,
at the 95% C.L.. This in conjunction with eq. (3.7), then tells us that the minimal jump
parameter has to be 1.17, or equivalently δ0 ∼ 0.44. Using these information we tabulate all
the parameters in table 3 for our “best-fit” and “minimally-acceptable” model. We note that
the values of δ0 and L in the “minimally-acceptable” fit is not far from what observationally
is suggested in [7].

We should clarify that although we quote comparative statistics between MV and ΛCDM
model, it is only meant as a guide, our aim here is not to compete with the ΛCDM model.
According to the Bayesian statistical likelihood analysis of both the supernovae and the CMB
data, our best fit MV model is still disfavored by many standard deviations as compared to
the concordant ΛCDM model. Crucially however, such an inference is based on assuming a
“flat” prior on the value of the cosmological constant. In other words it relies on the a priori
assumption that all the values of the cosmological constant are equally likely. According
to the Bayesian theory, such a priori probablities are to be assigned based on theoretical
prejudice. In other words, if we had a different theoretical prejudice (for example that a non-
zero cosmological constant is “unphysical”), then we could just ask the question whether
a non-homogenous matter distribution can fit the data, with an acceptable value of the
goodness-of-fit.

10For some of these measurements we would also need to understand the growth of density fluctuations in
an LTB metric, a problem which has only been recently attacked in [43].
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CTT
l CTT

l + CTE
l Total

Model χ2
eff G.F. χ2

eff G.F. χ2
eff G.F.

Concordant ΛCDM 1038.9 4.7% 1455.2 11.3% 3538.6 41%

EdS αs = 0 1124.6 0% 1711.9 0% 3652.3 6%

EdS αs 6= 0 1057.8 1.9 % 1475.5 5.7% 3577.4 24.6%

EdS αs, Ωk 6= 0 1048.7 2.9% 1466 7.9% 3560.9 31.1%

Table 4. χ2
eff and goodness-of-fit for the different COSMOMC Runs. The first column corresponds

to high-l TT power spectrum, (31 ≤ l ≤ 1000). The second column corresponds to both the high-l
TT (31 ≤ l ≤ 1000) and TE (24 ≤ l ≤ 450) data. Finally, the last column contains the total statistics
of TT (2 ≤ l ≤ 1000) and TE (2 ≤ l ≤ 450) spectrum.

6 Conclusion and discussion

The Type Ia supernovae data reveal that our universe is accelerating at redshifts that approx-
imately correspond to the epoch of non-linear structure formation on large scales (the epoch
of the formation of the so-called “cosmic web”). We have explored the possibility that the
effect of a large scale void can account for the currently observed acceleration due to a jump
between the local and the average Hubble parameter, instead of invoking a spatially constant
dark energy/cosmological constant component. We find that the Minimal Void (MV) model
can consistently account for the combination of the Type Ia supernovae, WMAP 3rd year,
BBN constraints, provided that the void spans a radius of about of 200 Mpc/h with a relative
under density of 45%, near the center. Moreover, having a local void ameliorates the discrep-
ancy between the low global Hubble parameter required by EdS models to fit CMB, with the
local measurements of the Hubble parameter. According to our analysis at the 95% C.L. the
local Hubble parameter can be as high as h ∼ .57, which is definitely within the acceptable
range eq. (3.7) although perhaps is still too low for comfort. We have also seen hints that
the MV model may be in trouble with large scale structure and weak lensing measurements.
Also, the overall goodness of fits of our model to both the supernovae and the WMAP data
is not as good as the ΛCDM model. More work is needed in order to find whether it would
be possible to overcome these potential problems by possibly modifying and/or adding new
ingredients to the model. For instance, a primordial spectrum with a bump [15] (instead of
running of the tilt as we considered here) as well as a 10% hot dark matter component [15, 16]
seems already to overcome some of these difficulties. Although in these models the number
of parameters is larger than what we consider, one obtains much better fits to the WMAP
data (in fact, slightly better than ΛCDM). This “bump” model, in its original form, of course
cannot reproduce the supernovae data, and the Hubble parameter (hout ∼ 0.44) is too low,
so it seems natural to merge this model with our MV scenario. Another different possibility
could be to add spatial curvature to the FLRW region. In fact we found that the goodness
of fit to the WMAP data improves significantly, see table 4 for more details, even if we only
include 5% in curvature. Finally, it may be that we have to look into larger voids, especially
in trying to account for the LRG data (both galaxy power spectrum and the BAO peak).

We end with observational and theoretical possibilities of distinguishing the MV model
from ΛCDM . The first logical way seems to be to perform galaxy counts up to very large
distances and in a wide area in the sky, in order to directly check if we could really be living
inside a huge Void. Secondly, there are features which can be checked by looking at SN Ia
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themselves: firstly, the luminosity-redshift curve in the two models deviate from each other
significantly at redshifts z ≥ 1. Moreover, in the MV model the curve has a sharp peak
(in correspondence with the boundary of the local region) around z ≃ 0.1, while this peak
does not exist in the ΛCDM model. The up-coming experiment SDSS-II [23] will probably
be able to discriminate the presence of such a peak. Another unique prediction for the MV
model comes from realizing that the void is not expected to be exactly spherically symmetric,
which could lead to detectable anisotropies in the Hubble parameter as well as in the low
multipoles in CMB. Additionally, these anisotropies should be correlated! We note, also, that
one could be able to constrain Voids by looking at the blackbody nature of the CMB [46, 47].
Our MV is still consistent with these constraints (while, according to [46], voids that extend
up to z ∼ 1 are excluded). Finally, studying large scale structure (as we plan to do in future
work) one can study the compatibility of the primordial power spectrum we are assuming
(with low tilt and large running, or with a bump) with the matter power spectrum. It may
also be possible to test the existence of such a large running using Planck-satellite data as
suggested by the Bayesian analysis performed in [48] using simulations.

In conclusion, we have shown that, for WMAP and SNIa observations, the MV model
could be taken as an alternative to invoking a dark energy component that will be further
tested in forthcoming supernovae observations. However, this should be only considered as a
step towards trying to build an alternative to concordant ΛCDM cosmological model which
has to be consistent with a host of other observations as well.

Note Added. Most of the above research work was completed before the release of the
WMAP 5yr data and we have decided not to re-analyze the CMB data in the present paper
for the following reason: although the 5-yr data improves the 3-yr data, there is no significant
qualitative difference between the results presented in the 3-yr and 5-yr survey.
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A Analytical results for LTB metric

A.1 Metric & density profile

In our paper we are interested in a special class of exact spherically symmetric solutions
of Einstein’s equations with dust, known as the “open” LTB metric (in units c = 1). We
follow the treatment given in ([3, 24]), where we have set the “mass function” to be cubic,
which amounts to a redefinition of the radial coordinate (which is always possible if the mass
function is a growing function of r). The metric is given by:

ds2 = −dt2 + S2(r, t)dr2 + R2(r, t)(dθ2 + sin2 θdϕ2), (A.1)
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Here we have employed comoving coordinates (r, θ, ϕ) and proper time t. The functions
S2(r, t) and the dust density ρ(r, t) is given in terms of R(r, t) via

S2(r, t) =
R

′2(r, t)

1 + 2(M̄r)2k(r)
, (A.2)

ρ(r, t) =
M̄2M2

p r2

R′(r, t)R2(r, t)
, (A.3)

where a dot denotes partial differentiation with respect to t and a prime with respect to
r, while the function R(r, t) itself is given implicitly as a function of (r, t) via an auxiliary
variable u(r, t):

R(r, t) =
2πr

3k(r)
(cosh u − 1) , (A.4)

τ3 ≡ M̄t =
π
√

2

3k(r)3/2
(sinh u − u) , (A.5)

In the above expressions, the “curvature” function k(r) is left arbitrary (except that k(r) ≥ 0)
and this is what controls the density profile inside the LTB patch, while M̄ is just an arbitrary
(unphysical) mass scale. Also, we have introduced the dimensionless conformal time τ for
later convenience.

We also note that the average density inside the LTB patch is equal to the outside
FLRW density (see for instance [3, 24]), in the limit in which we can neglect (M̄r)2k(r)
in eq. (A.2) in the spatial metric when defining the average (in our case the correction is
always negligible).

To get an intuitive and analytical understanding of how the density profile is related
to the curvature function it is instructive to look at the “small-u” approximation where we
only keep next-to-leading terms in eq. (A.4) and eq. (A.5). This gives us eq. (2.1).

A.2 Photon trajectories

In order to perform supernovae fits we need to compute the luminosity (or angular) dis-
tances and redshifts for a photon trajectory emanating (backwards in time) from the central
observer. The first step in this direction is to solve for the photon trajectory:

ds2 = 0 ⇒ dt(r)

dr
= − R′(r, t(r))

√

1 + 2(M̄r)2k(r)
. (A.6)

The negative sign in front takes care of the fact that the time increases as the photons go
towards the center. Analytical progress in solving the above equation is possible by realizing
two things. Firstly, all quantities (t(r), z(r),DL(r)) can be expressed as a power series in,
M̄r ∼ r/RH , and since this is a small quantity for the relevant inhomogeneous patches, we
can just keep the next-to-leading order terms in these expansions [24]. Secondly, formally one
can combine eq. (A.4) and eq. (A.5) to give us a power series expansion for R(r, t) explicitly
in terms of (r, t) [24]:

R(r, t) =
1

3
πγ2rτ2

(

1 + R2u
2
0 + R4u

4
0 + . . .

)

≡ 1

3
πγ2rτ2

(

1 + f(u2
0)
)

, (A.7)

where

u0 ≡ γ(M̄t)1/3
√

k(r) and γ ≡
(

9
√

2

π

)1/3

. (A.8)
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It is important to realize that the coefficients {Rn}, and hence the function f are universal
(do not depend on the specific curvature function). It is implicitly defined via

1 + f(u2
0) ≡

2(cosh u − 1)

u2
0

and 6(sinh u − u) = u3
0 . (A.9)

This is what allows us analyze the problem in its full generality.

It is convenient to recast the equation in terms of the conformal time, τ , and the
dimensionless radial coordinate

r̄ = M̄r . (A.10)

Substituting eq. (A.7) in eq. (A.6) one finds

dτ

dr̄
= −

π
9
γ2
[

1 +
∑∞

1 R2nγ2nτ2n(r̄kn)′
]

√
1 + 2kr̄2

. (A.11)

The prime now denotes differentiation with respect to the rescaled r̄. This can now be solved
perturbative in r̄ to give us

τ =
(

τ0 −
π

9
γ2r̄
)

− π

9
γ2r̄

∞
∑

1

R2nγ2nτ2n
0 kn(r̄) + O(r̄2) . (A.12)

The first two terms within the brackets corresponds to the FLRW expression for the trajectory
while the rest of the terms give us the largest corrections coming from the inhomogeneities
within a local patch. For corrections outside the patch see [24]. By comparing with eq. (A.7)
the above expression can succinctly be written as

τ(r̄) = τF (r̄) − π

9
γ2r̄f(γ2τ2

0 k(r̄)) , (A.13)

where the subscript F corresponds to FLRW.

A.3 Luminosity distance vs. redshift

Having found the photon trajectory, the next step is to compute the redshift which is governed
by the differential equation [2]

dz

dr
=

(1 + z)Ṙ′

√
1 + 2kr̄2

. (A.14)

Again, if we are only interested in computing corrections up to linear order in r̄, then the
redshift is given by

∫

dz

1+z
≈ 2πγ2

9

∫

dr̄

τ

[

1+
∑

n

(n+1)Rnγ2nτ2n(rkn)′

]

=
2πγ2

9

∫

[

dr̄

τ
+dr̄

∑

n

(n+1)Rnγ2nτ2n−1(rkn)′

]

.

(A.15)

To evaluate the first integral we note that we can replace τ by τF as we will only be making
an O(r̄2) error. Thus we have

∫

dr̄

τ
≈
∫

dr̄

τF
= − 9

πγ2

∫

dτF

τF
= −9γ2

π
ln

τF

τ0
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The second term can be integrated straight forwardly up to linear terms in r̄:

∑

n

(n + 1)Rnγ2n

∫

τ2n−1(rkn)′dr̄ ≈
∑

n

(n + 1)Rnγ2nτ2n−1
0

∫

(r̄kn)′dr̄

=
∑

n

(n + 1)Rnγ2nτ2n−1
0 r̄kn

= r̄[f(γ2τ2
0 k(r)) + γ2τ2

0 k(r)f1(γ
2τ2

0 k(r))]/τ0

where we have defined

f1(x) ≡ df(x)

dx
(A.16)

Putting everything together we have

1 + z =

[

τ0

τF (r̄)

]2

exp

{

2πγ2r̄[f(γ2τ2
0 k(r)) + γ2τ2

0 k(r)f1(γ
2τ2

0 k(r))]

9τ0

}

. (A.17)

Thus we have obtained an analytical approximation for the redshift as a function of the radial
coordinate. We note in passing that the term in front of the exponential precisely correspond
to the FLRW result. The corrections come from the exponential. In fact for small z one finds

z ≈ 2π

9τ0
γ2r̄[1 + f(γ2τ2

0 k(r)) + γ2τ2
0 k(r)f1(γ

2τ2
0 k(r))] . (A.18)

The luminosity distance, in General Theory of Relativity, is related to the angular
diameter distance, DA via

DL = (1 + z)2DA . (A.19)

Now, in an LTB model when the observer is sitting at the center, the angular distance is
simply given by

DA = R =
1

3
πγ2rτ2

(

1 + f(γ2τ2
0 k(r̄))

)

. (A.20)

Thus we now have both the luminosity distance and the redshift as a function of the radial
coordinate and one can easily plot DL(z) and check whether the local void model can provide
a good fit to the supernova data or not.

A.4 The “Jump”

A particularly important quantity that can be inferred from the DL(z) curve is the jump
parameter, J ≡ h/hout . Surprisingly, this turns out to not depend on the specific profiles,
let us here see this analytically. First observe that since k′ vanishes at r = 0, we have the
general result

R′(0, t) =
1

3
πγ2τ2

0 (1 + f0) , (A.21)

where f0 corresponds to the value of f at r = 0. Then using the exact expression for the
density function eq. (A.3) one finds

ρ(r, t) =
M2

p

6πt20(1 + f0)3
. (A.22)

The underdensity contrast at the center, δ0 now can be easily related to f0:

δ0 = (1 + f0)
−3 − 1 ⇒ 1 + f0 = (1 + δ0)

−1/3 . (A.23)
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Now, on the other hand using the definition of the Hubble parameter eq. (3.3), the
correction to the redshift eq. (A.18), and the luminosity distance eq. (A.20) one finds

H−1
0 = H−1

out

1 + f0

1 + f0 + u2
0f1,0

.

Or in other words

J =
h

hout
=

1 + f0 + u2
0f1,0

1 + f0
. (A.24)

Since δ0 uniquely determines f0 via (A.23), and f(u2
0) is a given function, it also determines

u2
0 and f1,0 ≡ f1(u

2
0). Thus in turn it also determines the jump parameter uniquely.

A.5 CMB dipole moment

Let us consider our observer to be located slightly off-center, at r = rO. In this case the
non-zero radial velocity of the observer will contribute towards a dipole moment in CMB:

δT

T
∼ vO = ḋO , (A.25)

where the proper radial distance, dO, of the observer is given by

dO =

∫ rO

0

dr
R′

√

1 + 2(M̄r)2k(r)

Now, in our profile k(r) remains almost a constant for almost the entire underdense region.
Assuming we are living in this “constant” underdense region, we have

dO =
2π(cosh u − 1)

3kmax

∫ rO

0

dr
√

1 + 2(M̄r)2kmax
=

2π(cosh u − 1) sinh−1(M̄
√

2kmaxrO)

3kmaxM̄
√

2kmax

(The simplification occurs because u and hence R′ becomes only a function of time.) Further,
since M̄rO is expected to be very small, we have

dO =
2π(cosh u − 1)rO

3kmax
. (A.26)

Taking the time derivative and simplifying we find

˙dO =
dOHout

4

u3
0 sinhu

(cosh u − 1)2
. (A.27)

We now note that u(u0) is a known function eq. (A.9), in turn u0 is known in terms
of δ0 via the function f(u2

0), see eq. (A.23). Thus, in principle, the second term in the right
hand side of eq. (A.27) is determined in terms of the central underdensity contrast. Also,
since the measured value of the CMB dipole moment ∼ 10−3, naturalness arguments suggest
˙dO to be of the same order, and thus we have (after some simplifications):

dOHout ∼ 10−3

√
2(1 + f0)

2

√

u2
0(1 + f0)2 + 2(1 + f0)

. (A.28)

For voids of around 200/h Mpc, and central underdensity contrasts between 40% and 50%,
the dipole constraint eq. (A.28) typically imply that “we” have to be located within 10% of
the void radius.
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A.6 Analytic expression for the DL − z curve

In this subsection we wish to provide the reader a self-consistent summary of all the equations
which are needed to plot the DL − z curve, in an analytic form. Following this, a fit of any
experimental dataset can easily be performed. Here is the set of equations, which give DL

and z as a function of the radial coordinate r (therefore implicitly DL − z). First of all one
needs to define the function f(u2

0), implicitly given by:

f ≡
3
√

2(cosh(u) − 1)

32/3(sinh(u) − u)2/3
− 1 (A.29)

u0 = 61/3(sinh(u) − u)1/3 . (A.30)

Then, one can use this function in the following equations:

τ(r) = τ0 −
π

9
γ2M̄r[1 + f(γ2τ2

0 k(r))] , (A.31)

1 + z(r) =

(

τ0

τ(r)

)2

exp

[

4πγ2M̄r

9
f(γ2τ2

0 k(r))

]

(A.32)

DL(r) =
π

3
γ2rτ(r)2[1 + f(γ2τ2

0 k(r))][1 + z(r)]2 (A.33)

τ0 =

(

2M̄

3Hout

)1/3

(A.34)

γ =

(

9
√

2

π

)1/3

(A.35)

The above formulas are completely general for any LTB profile, but we now focus into
our specific one given by

k(r) = kmax

[

1 −
( r

L

)4
]2

. (A.36)

Then one has to choose appropriate values for H0, and for the length units for the coordinate
r (given by M̄). A simple choice is to set:

√

8π

3
M̄ = Hout = hout/3000 , (A.37)

where we have chosen, in this way, the units Mpc=1 (which turns out to be a convenient
choice for the problem). Once this is done the physical parameter L (the radius of the patch)
is approximately given already in Mpc. The comparison between the obtained curve and the
fully numerical curve is shown in figure 6.

Finally the reader may play with the two parameters: the size L and kmax (which sets
the amplitude of the density contrast). We also recall that the density profile is given by
eq. (2.1) and that kmax can be directly related to the density contrast δ0 at the center of the
void at the present time, via the following equation:

δ0 = [1 + f(γ2τ2
0 kmax)]

−3 − 1 . (A.38)
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Figure 6. Comparison between analytic and numerical DL − z curves. The numerical curve is the
blue solid line, the analytic approximation is the black short-dashed line. We have plotted also the
EdS curve (red long-dashed line) and the Λ CDM, with ΩΛ = 0.7 (green dotted line). We have used
the value L = 400, with the units given in eq. (A.37), and kmax = 2.2 (which corresponds to a density
contrast at the center δ0 = −0.25).
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