Abstract
We consider the impact of thermal inflation—a short, secondary period of inflation that can arise in supersymmetric scenarios—on the stochastic gravitational wave background. We show that while the primordial inflationary gravitational wave background is essentially unchanged at cosmic microwave background scales, it is massively diluted at solar system scales and would be unobservable by a Big Bang Observer (BBO) style experiment. Conversely, bubble collisions at the end of thermal inflation can generate a new stochastic background. We calculate the likely properties of the bubbles created during this phase transition, and show that the expected amplitude and frequency of this signal would fall within the BBO range.