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Abstract. We investigate multi-hump spatial solitary waves and multi-soliton patterns
generated by an incoherent interaction of two optical beams in a medium with saturable (e.g.
photorefractive) nonlinearity. Applying a bifurcation analysis and numerical relaxation
technique, we reveal different scenarios of creating the multi-hump solitons and find the
families of solitary waves composed of two mutually coupled components. We analyse the
stability of these solitons to propagation and find that the evolution of a soliton is governed by
its modal structure.
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1. Introduction

Spatial optical solitons (orself-guided optical beams) [1]
have attracted a great deal of attention because of their
potential application in ultrafast all-optical switching. When
a spatial soliton is composed of more than one beam or
polarization component, its structure becomes complex and
the soliton intensity profile may display several peaks.
These are the so-calledmulti-hump optical solitons, which
were recently observed experimentally in a photorefractive
medium [2].

Multi-hump soliton states can be created in two ways.
The first way, already demonstrated experimentally [2], is
when a fundamental (one-hump) soliton created by one beam,
is coupled to one (or more) higher-order guided modes of
the effective waveguide it induces in a nonlinear medium†.
For this to be possible, the power of the fundamental soliton
should exceed a certain threshold value defined by the cutoff
of the corresponding higher-order mode. The amplitude
of the fundamental soliton unambiguously determines the
number of guided modes which can be supported by the
self-induced soliton waveguide, and therefore, the possible
modal structure of a multi-hump soliton. The second way
of creating multi-hump solitons is to form a bound state of
two (or more) fundamental solitons, again viewed as several
guided modes trapped by the soliton waveguides [4]. In our
work we show that whenever the formation of the multi-hump
solitons follows the latter scenario, it inevitably leads to a
structural instability of the resulting beams, even without
perturbation. We use the term ‘structural instability’ in a
sense earlier introduced in [5], which implies a change in
the shape of the transverse profile of the beam, without the
collapse or decay usually associated with linear instability

† For an excellent overview of the soliton-induced waveguides in a
photorefractive medium, see [3].

of one-component solitons [6, 7]. If losses are negligible,
the structural instability conserves the total power of the
soliton beam. For example, a two-hump soliton formed by
a fundamental soliton in one component and a first-order
mode in the other component is structurally stable when the
amplitude of the second component is small enough. In
the case where the corresponding amplitude is no longer
small (and therefore the beam is no longer weak), the
nonlinear coupling causes deformation of the soliton-induced
waveguide. This leads to the fundamental soliton itself
acquiring two humps in the intensity profile and being treated
as a bound state of two fundamental solitons. The two
corresponding waveguides can, in turn, support a number
of guided modes. Such a transition from a two-component
soliton to a bound state of two solitons was first described
for the case of the Kerr-like nonlinearity in [8]. In this paper,
we demonstrate that much richer classes of two-component
solitons and their bifurcations exist in a saturable medium,
such as that used in the experiment [2].

Multi-hump bound states of bright solitons are
structurally unstable. Nevertheless, it is the instability that
can be employed in a variety of schemes for all-optical
switching, provided the intensity and polarization dynamics
of the solitons is fairly predictable. In this paper we
demonstrate several types of the instability-induced soliton
dynamics potentially useful for soliton switching.

2. Renormalized equations

We consider incoherent interaction between two linearly-
polarized optical beams in a biased photorefractive medium.
The model equations for the normalized amplitudes of the
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beams are [9]:
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Hereρ = I∞/Id , andβ = (k0x0)
2n4
er33E0/2, whereI∞

stands for the total power density away from the beam,Id is
the so-called dark irradiance,k0 is the propagation constant,
x0 is the spatial width of the beam, andn4

er33E0 is a correction
to the refractive index due to the external field applied to a
crystal along the transverseX-direction [10].

In the case of negative nonlinearity,β < 0, the system
of coupled nonlinear equations (1) possesses families of two-
parameter bright solitary waves. To find these solutions, we
measure the spatial coordinatesZ andX in units of [β(1 +
ρ)]−1 and [β(1+ρ)]−1/2, respectively, and look for the soliton
solutions in the form: U(X,Z) = u(q1, q2;X,Z)eiq1Z,
W(X,Z) = w(q1, q2;X,Z)eiq2Z. The task of searching
for stationary solutions can be simplified by adopting the
following renormalization:s = 1−q1, u = √su,w = √su,
λ = (1− q2)/s, x = √sX, z = sZ. Normalized functions
u andw then satisfy the following equations:
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(2)

whereλ is asoliton parameter, and the strength of the mutual
coupling of the two components is defined by thesaturation
parameters.

Stationary solutions of system (2) exist for{s, λ} 6
1. Moreover, in the limits → 0, system (2) reduces
to the exactly solvableManakov modelfor the solitons
in Kerr-type nonlinear media with equal cross- and self-
phase modulation coefficients [11]. This limiting case was
thoroughly investigated in [5, 12].

3. Bifurcation analysis and stationary solutions

Stationary solutions are given by real,z-independent
functionsu(x; λ, s) andw(x; λ, s) satisfying equations (2).
In the general cases 6= 0, equations (2) possess no
analytic solutions. However, some progress can be made
by employing a perturbation approach.

First, by setting the amplitude of one of the components
equal to zero, we can obtain the simplest one-component
solutions of equations (2) defined by a system of decoupled
ordinary differential equations foru andw. This system can
be integrated once to yield:

du0

dx
= ±
√

2

s

√
log(1 + su2

0)− s(1− s)u2
0

and w ≡ 0,

or (3)

dw0

dx
= ±
√

2

s

√
log(1 + sw2

0)− s(λ− s)w2
0

and u ≡ 0,

from which the fundamental (one-hump, no-nodes) solitons,
u0(x) andw0(x), can be found numerically [13]. We use
the term ‘multi-hump solitons’ to describe stationary two-
component solutions(u,w) of the system (2) that have
more than one maximum in the transverse intensity profile.
They can be found by analysing the possible bifurcations
of the fundamental solutionu0(x), when a new solution
with both non-zeroth components(u,w) emerges. This
solution consists of a mutually coupled fundamental soliton
and a higher-order mode of the effective waveguide it
induces. The resulting soliton thus has two components
and, correspondingly,two modes. To find such solitons, we
assume that one of the components is extremely small, i.e.
w/u ∼ ε � 1. To first order inε, the first equation of system
(2) produces the fundamental solution,u0(x). The second
equation transforms into a self-consistent,linear Schr̈odinger
equation:

d2w

dx2
+ 2{W(x)− λ}w = 0, (4)

where the effective potential is defined asW(x) ≡ u2
0(x)/[1+

su2
0(x)]. The eigenfunctions of the eigenvalue problem (4)

generate a set of ‘modes’ of the waveguideW(x) created by
the fundamental soliton of theu-component. The modes are
conventionally identified by the number of nodes,n. The
ground state, orzeroth-order mode, of this waveguide has
no nodes,n = 0. A fundamental soliton can therefore
be considered as a zeroth-order mode of the waveguide it
induces [4]. The cutoff valuesλ(0)n for thenth-order modes
correspond to bifurcation points for the fundamental soliton,
since at any of these points in the space of parameters{λ, s},
a new two-component soliton, consisting of the mutually
coupled fundamental (zeroth-order) and one of the higher-
order modes, appears.

We should be careful not to extend the concept of the
induced waveguide and its linear modes too far. Indeed, the
linearized equation (4) is only applicable near the bifurcation
points, where thew-component is small compared to theu-
component. It is erroneous to use the system of eigenmodes
of the linearized equation (4) for the purpose of modal
decomposition ofany two-component stationary solution.
As soon as the amplitude of a guided mode becomes
large enough the soliton waveguide itself deforms and the
transverse profiles of theu andw soliton components no
longer correspond to the initial zeroth- and higher-order
modes, even though they preserve the number of nodes. Such
a mutual action of the two soliton components isa purely
nonlinear effectwhich, as will be shown below, affects the
propagation dynamics of the solitons.

The discrete eigenvalues,{λn}, and corresponding
eigenfunctions,{wn}, of the problem (4) can be found
numerically. Additionally, some estimates for the bifurcation
points can be obtained using a kind of ‘semiclassical’
approximation [14]. Since equation (4) closely resembles an
eigenvalue equation of nonrelativistic quantum mechanics,
the number of localized states,n, should obey the Bohr–
Sommerfeld quantization rule:

J (λn) ≡
√

2
∫ x2

x1

√
W(x)− λn dx = π(n + 1

2), (5)
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Figure 1. Dependence of the phase integral,J (λ), defined by
equation (6), on the soliton parameterλ, for three values of the
saturation parameters. Intersection ofJ (λ) with the horizontal
line (n = 0, 1, 2, . . .) defines a cutoff for thenth-order mode of
the soliton-induced waveguide.

whereJ (λ) is the phase integral between the turning points,
x1 andx2. By changing the variables,y = u0(x), we obtain
thatλn(s) is given by the integral equation:

J (λn) ≡
∫ y2

y1

2s
√
y2 − λn(1 + sy2) dy√

(1 + sy2)[log(1 + sy2)− s(1− s)y2]

= π
(
n +

1

2

)
, (6)

wherey1 ≡ u0(x1) =
√
λn/(1− λns), andy2 corresponds to

a global minimum of the potentialW(x) given by a positive
root of the equation: log(1 + sy2

2)− s(1− s)y2
2 = 0.

We then solve the integral equation (6) numerically to
find the points of intersection of the functionJ (λ) with
the constantsπ(n + 1

2). Each such intersection defines
the approximate cut-off value of thenth mode λ(0)n or,
in terms of the primary problem, the bifurcation point of
the fundamental solution. The corresponding examples
are presented in figure 1, for three different values of the
saturation parameters. As can be seen from figure 1,
the effective potential created by a fundamental soliton can
support a larger number of modes at larger values ofs

(see also [3]). We confirmed, by solving equations (2)
numerically, that a two-component soliton consisting of a
fundamental soliton (in theu-component) and a zeroth-order
mode of its effective waveguide (in thew-component), exists
only atλ = 1.

To quantify the validity of the bifurcation analysis we
compare the cutoff of the first-order (n = 1) mode deduced
from equation (6) with that obtained by solving model
equations (2) numerically in order to find their stationary
localized solutions. The corresponding results are presented
in figure 2 by the curves A and B. Some discrepancy between
our theory (curve A) and numerics (curve B) stems from
the fact that the semiiclassical approximation becomes less
accurate fors � 1.

4. Modal structure of multi-hump solitons

Bifurcations of the fundamental solitons originally created
in theu-component give birth to families of stationary two-
mode solitons consisting of zeroth andnth modes. Such
solitons appear at bifurcation pointsλ(0)n (s) and exist only for
λ(s) > λ(0)n (s). Different types of two-component solitons
can be conveniently presented on a bifurcation diagram using
the total soliton power, an invariant of the model (2). Soliton
powerP is defined as

P =
∫ ∞
−∞
{|u(x)|2 + |w(x)|2} dx, (7)

and, for a fixed value of the saturation parameters, it depends
only on the dimensionless soliton parameterλ.

As has been discussed in the previous section, the linear
analysis developed in the vicinity of the bifurcation points
for a fundamental soliton (u-component) cannot be applied
in the case of the large amplitude of a coupled higher-order
mode (w-component), i.e. atλ(s) � λ(0)n (s). However,
the whole family of two-mode solitons, characterized by a
certain functional dependenceP(λ), can be found by the
numerical relaxation technique. The results of our numerical
calculations are presented in figure 3 for different types of
multi-hump solitons found ats = 0.5.

Importantly, the number of maxima in the total intensity
profile of a two-mode solitondoes not uniquely define its
modal structure. In other words, there are various scenarios
leading to the formation of multi-hump solitons in the model
(2).

For example, figure 3 presents a branch of a two-
mode soliton solution, originating at the bifurcation point
Q, and consisting of a zeroth(u) and a first-order(w)mode.
Amplitude profiles of the two components corresponding to
three different points on the soliton branch are presented in
figures 2(a)–(c). As can be seen from figures 2(a)–(c), the
initial modes deform greatly as we move along the branch
of the soliton solutions, away from the point Q. In fact,
at any value ofs, a two-component soliton consisting of
fundamental and first-order modes undergoes deformation
of the intensity profile with increasingλ. Critical phases of
the deformation are indicated in figure 2 by curves C and
D. Close to a bifurcation threshold (curve B) the soliton
is single-humped as in figure 2(a). The intensity profile
becomestwo-humpedat a considerable distance from the
bifurcation point, on the curve C. Increasingλ even further,
leads to the increasing intensity of the first-order mode,
until it starts deforming theu-mode itself. Mode profiles
of figure 2(b) are characteristic for the threshold curve D
where theu-component becomes two-humped. And, finally,
at the limit λ → 1, the intensity humps become largely
separated, and the initial waveguide becomesW -shaped, as
shown in figure 2(c). In this limit, the soliton can no longer be
described as a two-mode structure. Instead, it is conventional
to consider bothu- andw-components as bound states of two
fundamental solitons, in- and out-of-phase, correspondingly
[15, 16].

In a similar manner, we can find families of solitons
composed of a zeroth- and second-order mode that originate
at the second bifurcation point, when the soliton-induced
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Figure 2. Threshold for the existence of two-component solitons composed of fundamental and first-order modes. Broken curve A:
analytical estimates based on equation (6), full curve B: numerical calculations. Dotted curves: a threshold for two humps in the total
intensity (curve C) and in the intensity of theu-component (curve D). (a)–(c) Amplitude (full curves) and total intensity (broken curves)
profiles corresponding to the points a, b, and c ats = 0.5.

waveguide is wide enough to guide a two-node mode.
However, even in the case when the linear bifurcation theory
predicts that the soliton waveguide can only support a first-
order mode, soliton solutions combining a zeroth-order mode
in the u-component and asecond-ordermode in thew-
component can still be found. They originate from more
complex bifurcations described in [8] for the case of Kerr-
like nonlinearity. The family of such solutions in our model
is shown in figure 3, branch A-B-C.

Alternatively, multi-hump solitons can be formed as
bound states ofn solitons, when an effective waveguide
supporting higher-order modes is created byn slightly
overlapping fundamental solitons, with the total powern
times greater than that of a single fundamental soliton. For
instance, families of multi-hump solitons formed as bound
states ofn fundamental and first-order modes, resulting in
(2n− 1)-nodes amplitude profile of thew-component, exist
in our model of the saturable nonlinearity even when the
soliton-induced waveguide does not support a(2n − 1)th
mode. To demonstrate this effect ofsoliton multiplication
(the term used in [8]) in a saturable medium, we numerically
investigated the process of formation of bound states for
different values ofs. Figure 3 illustrates the soliton
multiplication fors = 0.5 where, according to the bifurcation
analysis, the effective waveguide created by the fundamental
u-soliton admits only one, first-order, guided mode, as can
be seen from figure 1. A family of the solitons with three

nodes in thew-component (branch G-H-J in figure 3) appears
at a soliton power greater than that of two independent,
fundamental solitons. Such solitons, at small values ofλ,
are alsotwo-humped. However, asλ approaches its limiting
value, these solutions developfour humpsin the intensity
profile, as a result of deformation of the soliton waveguide
created by theu-component, figure 3(J).

Following the soliton multiplication scenario, a family
of the solitons with five nodes in thew-component (branch
K-L-M in figure 3) appears at a soliton power greater than
that of three independent, fundamental solitons. In the limit
λ→ 1 this solution exhibits six humps in the intensity profile.

So far, we have discussed families of stationary solutions
that have no nodes in theu-component profile. However,
the model under consideration also admits soliton solutions
composed ofn bound, out-of-phase, solitons, ‘glued’
together by the first-order guided modes. Such solutions have
(n − 1) nodes in theu-component transverse profile andn
nodes in thew-component. An example of such a soliton is
given in figure 3, branch D-E-F, for the casen = 2. With
growingλ, these solitons evolve from havingtwo humpsin
the intensity profile, similar to the low-power solutions of
the branch G-H-J, to a three-humped shape, resembling the
high-power solitons of the branch A-B-C.

The general conclusion that can be drawn from our
analysis of the multi-soliton patterns formed by two
interacting beams is that similar intensity distributions can
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Figure 3. Examples of multi-hump soliton families ats = 0.5. Horizontal full line—fundamental soliton of theu-component bifurcating at
the point Q. Heavy curve—solitons composed of fundamental and first-order modes. Branch A-B-C—solitons composed of fundamental
and second-order modes. Solutions originating from a bound state of two (branch G-H-J) and three (branch K-L-M) in-phase fundamental
solitons, each guiding a first-order mode in thew-component. Branch D-E-F—solutions originating from a bound state of two out-of-phase,
fundamental solitons. Broken lines—total powers of two and three independent, fundamental solitons. Below: amplitude profiles of theu-
andw-components corresponding to the points marked on the diagram.
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Figure 4. Examples of the propagation dynamics of two-component solitons ats = 0.3: (a) stable propagation atλ = 0.2, (b) propagation
atλ = 0.9, and (c) unstable propagation atλ = 0.95. Initial solitons are members of the soliton family composed of fundamental (u) and
first-order (w) modes shown in figures 2(a)–(c).

Figure 5. Examples of unstable propagation and modal structure of three-hump solitons at (a) s = 0.5, λ = 0.64, and (b) s = 0.8,
λ = 0.72. Below: corresponding initial solitons atz = 0. Full light curves—amplitude of theu-component. Bold curves—amplitude of the
w-component. Broken curves—total intensity profile.

be formed by different combinations of modes. According
to the different modal structure, stationary solutions with the
same number of humps exhibit totally different propagation
dynamics, as we discuss below.

5. Propagation dynamics and soliton switching

We have investigated the dynamics of two-mode soliton states
by solving the original evolution equations (2) numerically,
using the split-step Fourier method. Since increasingλmeans
increasing the amplitude of the higher-order mode guided by
a soliton-induced waveguide, we have analysed the effect
of changingλ on the dynamics of the two-mode solitons.
In this paper we are mainly concerned with the question of

structural stability of multi-hump solitons and therefore we
did not apply any perturbations to the initial conditions, which
are taken as the exact stationary solutions of system (2) and
evolve under action of numerical noise.

For the solitons composed of the zeroth and first-order
modes (see figure 2), at low amplitudes of the antisymmetric
component (λ→ λ

(0)
1 ), an initial one-hump soliton exhibits

stable propagation. At higher amplitudes (λ → 1), the
initial two-hump soliton splits into two one-hump solitons.
An example of the evolution of the intensity profiles for
the members of the soliton family (a)-(b)-(c) in figure 2 is
shown in figure 4. The soliton splitting occurs when the
initial separation between the soliton humps is large enough.
However, if a ‘two-hump’ soliton is formed as a bound state of
two fundamental solitons both guiding the first-order modes
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(branch G-H-J in figure 3), they appear structurally unstable
for any value ofλ. The reason for this is quite simple: such
solitons are formed with a separation between the humps
already of the order that the soliton of the family (a)-(b)-(c)
attains only at the limit of the existence domain,λ→ 1.

To illustrate the conclusion of the previous section, we
compare propagation of two types ofthree-humpsolitons.
One of them is a member of a family A-B-C in figure 3,
consisting of a zeroth and second-order modes and existing
at low saturation,s = 0.5. Another one, at higher saturation
s = 0.8, is formed from a bound state of three out-of-
phase fundamental solitons, each of them guiding a first-
order mode. The scenarios of the structural instability,
developing as the two multi-hump solitons propagate through
the medium, are drastically different. Depending on the
structure of the two soliton components, the initial beam
either splits into three single soliton-like beams, figure 5(b),
or it exhibits a symmetry breaking instability, figure 5(a).
The latter effect is similar to that earlier reported in [17] for
the multi-hump solitons in quadratic media.

It seems to be a general feature of the multi-hump
solitons to be structurally unstable to propagation, which
opens up a possibility of using them in all-optical soliton
switching. The two-component solitons with one-hump
intensity profile, in contrast, exhibit seemingly steady
propagation, as shown in figure 4(a), regardless of the
complexity of their modal structure.

6. Conclusions

We have presented a theory of multi-hump solitary waves
generated by incoherent interaction of two beams in a
saturable optical medium. Families of the fundamental and
multi-hump solitons have been found analytically, by means
of the bifurcation analysis developed near a one-component
soliton, and also numerically, using the relaxation technique.
We have described several scenarios leading to the creation
of multi-hump solitary waves which give birth to various
spatially localized soliton patterns. We have also reported

preliminary results on the structural instability of multi-hump
solitary waves. A rigorous stability analysis of these solitons
will be published elsewhere.
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