Journal of Optics B: Quantum and Semiclassical Optics

You may also like

Multi-hump optical solitons in a saturable medium  faierorer noninear Schvadinger

equation in optical fibers
Yan Jiang and Bo Tian

To cite this article: Elena A Ostrovskaya and Yuri S Kivshar 1999 J. Opt. B: Quantum Semiclass. Opt. ) )
177 - Optical Solitons
Peter D Drummond, Marc Haelterman and

R Vilaseca

- Gap solitons in guasi-1D Bose—Einstein
condensate with three-body interactions

View the article online for updates and enhancements. under PT symmetry
- P Jinping Ma, Qingging Wang, Pu Tu et al.

This content was downloaded from IP address 18.118.144.69 on 28/04/2024 at 23:06


https://doi.org/10.1088/1464-4266/1/1/015
https://iopscience.iop.org/article/10.1209/0295-5075/102/10010
https://iopscience.iop.org/article/10.1209/0295-5075/102/10010
https://iopscience.iop.org/article/10.1209/0295-5075/102/10010
https://iopscience.iop.org/article/10.1088/1464-4266/6/5/E01
https://iopscience.iop.org/article/10.1088/1402-4896/ad347f
https://iopscience.iop.org/article/10.1088/1402-4896/ad347f
https://iopscience.iop.org/article/10.1088/1402-4896/ad347f

J. Opt. B: Quantum Semiclass. Opt(1999) 77—-83. Printed in the UK Pll: S1464-4266(99)96016-0

Multi-hump optical solitons in a
saturable medium

Elena A Ostrovskaya and Yuri S Kivshar

Optical Sciences Centre, Research School of Physical Sciences and Engineering, Australian
National University, Canberra 0200, ACT, Australia

Received 17 July 1998, in final form 4 November 1998

Abstract. We investigate multi-hump spatial solitary waves and multi-soliton patterns
generated by an incoherent interaction of two optical beams in a medium with saturable (e.g.
photorefractive) nonlinearity. Applying a bifurcation analysis and numerical relaxation
technique, we reveal different scenarios of creating the multi-hump solitons and find the
families of solitary waves composed of two mutually coupled components. We analyse the
stability of these solitons to propagation and find that the evolution of a soliton is governed by
its modal structure.
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1. Introduction of one-component solitons [6, 7]. If losses are negligible,
_ _ _ _ _ the structural instability conserves the total power of the

Spatial optical solitons (oself-guided optical bearng1] soliton beam. For example, a two-hump soliton formed by

have attracted a great deal of attention because of theira fyndamental soliton in one component and a first-order
potential application in ultrafast all-optical switching. When  qqe in the other component is structurally stable when the
a Sp?‘“a'_ soliton is composed of more than one beam Of amplitude of the second component is small enough. In
Fhogagéﬁ:fnn ic,?tgf;{]em,’;}ﬁesmwrgifﬁgomfjvgf’;pli);f;dthe case where the corresponding amplitude is no longer

y P y display P " small (and therefore the beam is no longer weak), the

These are the so-calledulti-hump optical solitonswhich . . . o
were recently observed experimentally in a photorefractive nonlinear coupling causes deformation of the soliton-induced
waveguide. This leads to the fundamental soliton itself

medium [2]. A ) ; ) . s
Multi-hump soliton states can be created in two ways. 2c9uiring two humps in the intensity profile and being treated

The first way, already demonstrated experimentally [2], is 8S @ bound state of two fundamental solitons. The two
when afundamental (one-hump) soliton created by one beamcorresponding waveguides can, in turn, support a number
is coupled to one (or more) higher-order guided modes of of guided modes. Such a transition from a two-component
the effective waveguide it induces in a nonlinear mediumt. soliton to a bound state of two solitons was first described
For this to be possible, the power of the fundamental soliton for the case of the Kerr-like nonlinearity in [8]. In this paper,
should exceed a certain threshold value defined by the cutoffwe demonstrate that much richer classes of two-component
of the corresponding higher-order mode. The amplitude solitons and their bifurcations exist in a saturable medium,
of the fundamental soliton unambiguously determines the such as that used in the experiment [2].

number of guided modes which can be supported by the
self-induced soliton waveguide, and therefore, the possible
modal structure of a multi-hump soliton. The second way
of creating multi-hump solitons is to form a bound state of
two (or more) fundamental solitons, again viewed as several h . . . .
guided modes trapped by the soliton waveguides [4]. In our of the solitons is fairly predlctaple. In ﬂ_“s paper we
work we show that whenever the formation of the multi-hump demon_strate sev_eral types of the _|nstab|I'|ty-|_nduced soliton
solitons follows the latter scenario, it inevitably leads to a dynamics potentially useful for soliton switching.

structural instability of the resulting beams, even without

perturbation. We use the terrstfuctural instability in a

sense earlier introduced in [5], which implies a change in 2. Renormalized equations

the shape of the transverse profile of the beam, without the

collapse or decay usually associated with linear instability we consider incoherent interaction between two linearly-
+ For an excellent overview of the soliton-induced waveguides in a Polarized optical beams in a biased photorefractive medium.
photorefractive medium, see [3]. The model equations for the normalized amplitudes of the

Multi-hump bound states of bright solitons are
structurally unstable. Nevertheless, it is the instability that
can be employed in a variety of schemes for all-optical
switching, provided the intensity and polarization dynamics
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beams are [9]: from which the fundamental (one-hump, no-nodes) solitons,
) uo(x) and wo(x), can be found numerically [13]. We use
i87U + 19°U B(L+p) v - the term multi-hump soliton'sto describe stationary two-
0Z  209X2 1+ UPR+Wi2 7 1) component solutiongu, w) of the system (2) that have
9w 192 more than one maximum in the transverse intensity profile.
57 + >9x2 B1 +P)W =0. They can be found by analysing the possible bifurcations
of the fundamental solutiomy(x), when a new solution
Herep = Io/1s, andp = (koxo)’n’rssEo/2, wherel,, with both non-zeroth components, w) emerges. This
stands for the total power density away from the begnis solution consists of a mutually coupled fundamental soliton

the so-called dark irradianck, is the propagation constant, and a higher-order mode of the effective waveguide it

xois the spatial width of the beam, anft33E, is a correction induces. The resulting soliton thus has two components

to the refractive index due to the external field applied to a and, correspondinglywo modes To find such solitons, we

crystal along the transversé-direction [10]. assume that one of the components is extremely small, i.e.
In the case of negative nonlinearify,< 0O, the system  w/u ~ ¢ « 1. Tofirstorder ire, the first equation of system

of coupled nonlinear equations (1) possesses families of two-(2) produces the fundamental solutiony(x). The second

parameter bright solitary waves. To find these solutions, we equation transforms into a self-consistdingar Schiodinger

measure the spatial coordinatésand X in units of [8(1 + equation:
p)]~*and [B(1+p)]~*/2, respectively, and look for the soliton a2
solutions in the form: U(X, Z) = u(qu, g2; X, Z)&97, a2 +2{Wx) = Aw =0, “4)

W(X,Z) = w(qi, g2; X, Z)€9%. The task of searching
for stationary solutions can be simplified by adopting the Where the effective potential is definediéigx) = ug(x)/[1+

following renormalizations = 1— g1, u = /su, w = /su, su3(x)]. The eigenfunctions of the eigenvalue problem (4)
A= (1—qp)/s,x = /35X, z = sZ. Normalized functions  9enerate a set of modes’ of the waveguléiéx) created by
u andw then satisfy the following equations: the fundamental soliton of thecomponent. The modes are
conventionally identified by the number of nodes, The
ial + 10%u . u(ui>+wP) 4=0 ground state, ozeroth-order modeof this waveguide has
9z 20x2 l+s(ul?2+|wl?) ’ no nodes,n = 0. A fundamental soliton can therefore
Jw  19%w w(lu2 + [w]?) ) pe considered as a zeroth-order mode of the waveguide it
i + =0 induces [4]. The cutoff values® for the nth-order modes

9, 2 9.2 2 2y ) . ) )
9z 20x%  1Hs(ul*+|wl?) correspond to bifurcation points for the fundamental soliton,

wherej is asoliton parameterand the strength of the mutual ~ Since at any of these points in the space of paramétess,
coupling of the two components is defined by fia¢uration & new two-component soliton, consisting of the mutually

parameters. coupled fundamental (zeroth-order) and one of the higher-
Stationary solutions of system (2) exist for, A} < order modes, appears.
1. Moreover, in the limits — 0, system (2) reduces We should be careful not to extend the concept of the

to the exactly solvableManakov modelfor the solitons induced waveguide and its linear modes too far. Indeed, the
in Kerr-type nonlinear media with equal cross- and self- linearized equation (4) is only applicable near the bifurcation
phase modulation coefficients [11]. This limiting case was points, where thev-component is small compared to the
thoroughly investigated in [5, 12]. component. Itis erroneous to use the system of eigenmodes
of the linearized equation (4) for the purpose of modal
decomposition ofany two-component stationary solution
As soon as the amplitude of a guided mode becomes
Stationary solutions are given by reak-independent large enough the soliton waveguide itself deforms and the
functionsu(x; A, s) andw(x; A, s) satisfying equations (2).  transverse profiles of the and w soliton components no
In the general case # 0, equations (2) possess no longer correspond to the initial zeroth- and higher-order
analytic solutions. However, some progress can be mademodes, even though they preserve the number of nodes. Such
by employing a perturbation approach. a mutual action of the two soliton componentsipurely
First, by setting the amplitude of one of the components nonlinear effectwhich, as will be shown below, affects the
equal to zero, we can obtain the simplest one-componentpropagation dynamics of the solitons.
solutions of equations (2) defined by a system of decoupled The discrete eigenvalues,}, and corresponding
ordinary differential equations farandw. This system can  eigenfunctions,{w,}, of the problem (4) can be found

3. Bifurcation analysis and stationary solutions

be integrated once to yield: numerically. Additionally, some estimates for the bifurcation

duo points can be obtained using a kind of ‘semiclassical’

e i—\/log(l +sud) — s(1— s)u? approximation [14]. Since equation (4) closely resembles an
X

eigenvalue equation of nonrelativistic quantum mechanics,

e v=o the number of localized states, should obey the Bohr-
o (3) Sommerfeld quantization rule:
dwo V2
=+""/log(l +swd) —s(h — s)w? -
dx d \/ . 0 0 J(Ay) = \/éf mdx =7+ %)’ ®)
an u =0, a
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4. Modal structure of multi-hump solitons

Bifurcations of the fundamental solitons originally created
in the u-component give birth to families of stationary two-

2 mode solitons consisting of zeroth anth modes. Such
solitons appear at bifurcation poirits’ (s) and exist only for
A(s) = 19(s). Different types of two-component solitons
can be conveniently presented on a bifurcation diagram using
the total soliton power, an invariant of the model (2). Soliton
power P is defined as

(o))

gt: 0.5

v?\\

2 [o¢]
P =/ {lu)? + [w(x)]?) dx, ™
N -
05 i 15 > and, for afixed value of the saturation parameférdepends
only on the dimensionless soliton parameter
A As has been discussed in the previous section, the linear

analysis developed in the vicinity of the bifurcation points
for a fundamental solitorufcomponent) cannot be applied
in the case of the large amplitude of a coupled higher-order
mode (v-component), i.e. ak(s) > A?(s). However,
the whole family of two-mode solitons, characterized by a
certain functional dependenade(i), can be found by the
numerical relaxation technique. The results of our numerical
calculations are presented in figure 3 for different types of
multi-hump solitons found at = 0.5.

Importantly, the number of maxima in the total intensity

Figure 1. Dependence of the phase integtai}.), defined by
equation (6), on the soliton parameteifor three values of the
saturation parameter Intersection of/ (1) with the horizontal
line(n =0,1,2,...) defines a cutoff for thath-order mode of
the soliton-induced waveguide.

whereJ (1) is the phase integral between the turning points,
x1 andx,. By changing the variables, = uo(x), we obtain
thata, (s) is given by the integral equation:

2 25,/y2 — 1, (1 +sy?)dy

profile of a two-mode solitordoes not uniquely define its

J() = 2 > > modal structure In other words, there are various scenarios
n V@ +sy?)log(L+sy?) —s(1—s)y?] leading to the formation of multi-hump solitons in the model
1
=n|ln+=), (6) 2). ]
2 For example, figure 3 presents a branch of a two-

mode soliton solution, originating at the bifurcation point
whereyy = uo(x1) = +/4,/(1 — 4,5), andy, correspondsto  Q, and consisting of a zeroth) and a first-ordetw) mode.

a global minimum of the potentia¥ (x) given by a positive  Amplitude profiles of the two components corresponding to
root of the equation: lod. +sy,?) — s(1 — s)y2* = 0. three different points on the soliton branch are presented in
We then solve the integral equation (6) numerically to figures 2&)—(c). As can be seen from figuresa}¢(c), the
find the points of intersection of the functiah(}) with initial modes deform greatly as we move along the branch

the constantst(n + ). Each such intersection defines of the soliton solutions, away from the point Q. In fact,
the approximate cut-off value of theth mode )\‘;0) or, at any value ofs, a two-component soliton Consisting of
in terms of the primary problem, the bifurcation point of fundamental and first-order modes undergoes deformation
the fundamental solution. The corresponding examples Of the intensity profile with increasing. Critical phases of
are presented in figure 1, for three different values of the the deformation are indicated in figure 2 by curves C and
saturation parameter. As can be seen from figure 1, D. Close to a bifurcation threshold (curve B) the soliton

the effective potential created by a fundamental soliton can:s single-humhped a?j;n figure 2_2( -LTe (i;tensity fprofileh
support a larger number of modes at larger values of ecomestwo-humpedat a considerable distance from the

(see also [3]). We confirmed, by solving equations (2) bifurcation p0|_nt, on the cyrve C Increasmgaven further,
. . L leads to the increasing intensity of the first-order mode,
numerically, that a two-component soliton consisting of a o . . )
. . until it starts deforming the:-mode itself. Mode profiles
fundamental soliton (in the-component) and a zeroth-order

de of its effect ide (in the " st of figure 2p) are characteristic for the threshold curve D
E)nnolthok '_Si ective waveguide (in the.component), exists where tha:-component becomes two-humped. And, finally,

at the limit A — 1, the intensity humps become largely
To quantify the validity of the bifurcation analysis we separated, and the initial waveguide becoeshaped, as
compare the cutoff of the first-order & 1) mode deduced  shown in figure 2¢). In this limit, the soliton can no longer be
from equation (6) with that obtained by solving model described as a two-mode structure. Instead, itis conventional
equations (2) numerically in order to find their stationary to consider both- andw-components as bound states of two
localized solutions. The corresponding results are presentedundamental solitons, in- and out-of-phase, correspondingly
in figure 2 by the curves A and B. Some discrepancy between[15, 16].
our theory (curve A) and numerics (curve B) stems from In a similar manner, we can find families of solitons
the fact that the semiiclassical approximation becomes lesscomposed of a zeroth- and second-order mode that originate
accurate fos <« 1. at the second bifurcation point, when the soliton-induced
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Figure 2. Threshold for the existence of two-component solitons composed of fundamental and first-order modes. Broken curve A:
analytical estimates based on equation (6), full curve B: numerical calculations. Dotted curves: a threshold for two humps in the total
intensity (curve C) and in the intensity of thecomponent (curve D)aj—(c) Amplitude (full curves) and total intensity (broken curves)
profiles corresponding to the points a, b, and ¢ 2t0.5.

waveguide is wide enough to guide a two-node mode. nodes inthev-component (branch G-H-J in figure 3) appears
However, even in the case when the linear bifurcation theory at a soliton power greater than that of two independent,
predicts that the soliton waveguide can only support a first- fundamental solitons. Such solitons, at small valueg,of
order mode, soliton solutions combining a zeroth-order mode are alsawo-humped However, as. approaches its limiting
in the u-component and &econd-ordermode in thew- value, these solutions develdpur humpsin the intensity
component can still be found. They originate from more profile, as a result of deformation of the soliton waveguide
complex bifurcations described in [8] for the case of Kerr- created by the-component, figure 3(J).
like nonlinearity. The family of such solutions in our model Following the soliton multiplication scenario, a family
is shown in figure 3, branch A-B-C. of the solitons with five nodes in the-component (branch
Alternatively, multi-hump solitons can be formed as K-L-M in figure 3) appears at a soliton power greater than
bound states of: solitons, when an effective waveguide that of three independent, fundamental solitons. In the limit
supporting higher-order modes is created byslightly A — 1this solution exhibits six humps in the intensity profile.
overlapping fundamental solitons, with the total power So far, we have discussed families of stationary solutions
times greater than that of a single fundamental soliton. For that have no nodes in thecomponent profile. However,
instance, families of multi-hump solitons formed as bound the model under consideration also admits soliton solutions
states ofr fundamental and first-order modes, resulting in composed ofn bound, out-of-phase, solitons, ‘glued’
(2n — 1)-nodes amplitude profile of the-component, exist  together by the first-order guided modes. Such solutions have
in our model of the saturable nonlinearity even when the (r» — 1) nodes in the:-component transverse profile and
soliton-induced waveguide does not suppor2a — 1)th nodes in thev-component. An example of such a soliton is
mode. To demonstrate this effect @bliton multiplication given in figure 3, branch D-E-F, for the cagse= 2. With
(the term used in [8]) in a saturable medium, we numerically growing A, these solitons evolve from havitigyo humpsn
investigated the process of formation of bound states for the intensity profile, similar to the low-power solutions of
different values ofs. Figure 3 illustrates the soliton the branch G-H-J, to a three-humped shape, resembling the
multiplication fors = 0.5 where, according to the bifurcation high-power solitons of the branch A-B-C.
analysis, the effective waveguide created by the fundamental ~ The general conclusion that can be drawn from our
u-soliton admits only one, first-order, guided mode, as can analysis of the multi-soliton patterns formed by two
be seen from figure 1. A family of the solitons with three interacting beams is that similar intensity distributions can
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Figure 3. Examples of multi-hump soliton families at= 0.5. Horizontal full line—fundamental soliton of thecomponent bifurcating at

the point Q. Heavy curve—solitons composed of fundamental and first-order modes. Branch A-B-C—solitons composed of fundamental
and second-order modes. Solutions originating from a bound state of two (branch G-H-J) and three (branch K-L-M) in-phase fundamental
solitons, each guiding a first-order mode in the&eomponent. Branch D-E-F—solutions originating from a bound state of two out-of-phase,
fundamental solitons. Broken lines—total powers of two and three independent, fundamental solitons. Below: amplitude profiles of the
andw-components corresponding to the points marked on the diagram.
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Figure 4. Examples of the propagation dynamics of two-component solitons=a.3: (a) stable propagation at= 0.2, (b) propagation
ati = 0.9, and €) unstable propagation at= 0.95. Initial solitons are members of the soliton family composed of fundamentah@
first-order ) modes shown in figures &(c).

200 [ 200 [

160 | 160 |

120 | 120 |

80 80:

X X

Figure 5. Examples of unstable propagation and modal structure of three-hump solita)is at 0.5, . = 0.64, and b) s = 0.8,
A = 0.72. Below: corresponding initial solitons at= 0. Full light curves—amplitude of the-component. Bold curves—amplitude of the
w-component. Broken curves—total intensity profile.

be formed by different combinations of modes. According structural stability of multi-hump solitons and therefore we
to the different modal structure, stationary solutions with the did notapply any perturbations to the initial conditions, which
same number of humps exhibit totally different propagation are taken as the exact stationary solutions of system (2) and
dynamics, as we discuss below. evolve under action of numerical noise.
For the solitons composed of the zeroth and first-order

modes (see figure 2), at low amplitudes of the antisymmetric
5. Propagation dynamics and soliton switching component) — A{”), an initial one-hump soliton exhibits

stable propagation. At higher amplitudes ( 1), the
We have investigated the dynamics of two-mode soliton statesinjtial two-hump soliton splits into two one-hump solitons.
by solving the original evolution equations (2) numerically, An example of the evolution of the intensity profiles for
using the split-step Fourier method. Since increasimgans the members of the soliton family)-(b)-(c) in figure 2 is
increasing the amplitude of the higher-order mode guided by shown in figure 4. The soliton splitting occurs when the
a soliton-induced waveguide, we have analysed the effectinitial separation between the soliton humps is large enough.
of changingA on the dynamics of the two-mode solitons. However, if a ‘two-hump’ solitonis formed as a bound state of
In this paper we are mainly concerned with the question of two fundamental solitons both guiding the first-order modes
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(branch G-H-J in figure 3), they appear structurally unstable preliminary results on the structural instability of multi-hump
for any value ofr. The reason for this is quite simple: such solitary waves. A rigorous stability analysis of these solitons
solitons are formed with a separation between the humpswill be published elsewhere.

already of the order that the soliton of the famig)-(b)-(c)

attains only at the limit of the existence domain,> 1. Acknowledgments
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