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Abstract
A cylindrical lens of small aperture produces in its focal plane a row of wave
dislocations (phase singularities or optical vortices) as part of the Fraunhofer
diffraction pattern for a slit. On the other hand, when the aperture is large,
aberration produces a cusp caustic at the focus and its associated diffraction,
namely, the Pearcey pattern. Passing smoothly from one extreme to the
other shows that the Fraunhofer dislocations move to become the
dislocations outside the caustic while the dislocations inside the caustic are
created successively in pairs. The pairs are accompanied by phase saddles,
as expected from previous work. Similar sequences would be expected for
all the higher diffraction catastrophes. In this way the movement of the
structurally stable dislocations forms a link between the structurally unstable
line or point focus of engineering optics and the stable caustics of
catastrophe optics.

Keywords: Diffraction, cusp, caustic, Fraunhofer, Pearcey, wave
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1. Outline of the problem

The monochromatic diffraction pattern near the line focus of a
cylindrical lens of small aperture is the well-known Fraunhofer
pattern. On the other hand, if the aperture is large enough,
cylindrical aberration becomes apparent; in geometrical optics
this manifests itself as a cusp caustic, but on a finer scale
as a diffraction pattern. The diffraction pattern associated
with a cusp is described by the Pearcey integral of catastrophe
optics (figure 1) (Pearcey 1946, Berry et al 1979, Connor and
Farrelly 1981, Berry 1992, Nye 1999, NIST 2004). Thus,
as the aperture is increased one passes continuously from the
Fraunhofer to the Pearcey pattern. Singularity optics regards
such patterns as largely characterized by their arrangements of
phase singularities, or wave dislocations. Their topological
nature ensures that wave dislocations cannot be created or
destroyed, except in pairs. The purpose here is to trace how
the single row of wave dislocations in the Fraunhofer pattern
smoothly transforms itself into the rather more complicated
two-dimensional arrangement of the Pearcey pattern.

2. The model

Rather than examine all possible combinations of focal length,
aperture, aberration, and wavelength λ, we aim for a universal

sequence of diffraction patterns in terms of dimensionless
variables, evolving under the control of a single dimensionless
parameter. This is achieved by examining the limit λ → 0. In
this limit all the diffraction detail flows anisotropically towards
the focus, the point of the cusp. Therefore it is sufficient to
concentrate solely on the neighbourhood of the cusp point.

A model that contains the essence of the required evolution
is as follows. In figure 2, a monochromatic scalar wave
emerges from the aperture of a cylindrical lens system to
produce an approximation to a point focus (in two dimensions)
at the point F0. The focal length is F . We use coordinates ξ ′,
ζ ′ with origin at the centre of the aperture, and coordinates x ′,
z′ with origin at F0 for an observation point P; thus ξ ′ = x ′,
ζ ′ = F +z′. The emerging wave has uniform amplitude (unity)
across the aperture and its distribution of phase is specified as
−k f (ξ ′), where k = 2π/λ. The function f (ξ ′) is the height
of the initial wavefront at Q = (ξ ′, 0)measured parallel to QP,
whose direction is essentially that of QF0. The disturbance at
the point P is an integral of contributions (secondary cylindrical
wavelets) from elements dξ ′ of the aperture. Thus the complex
amplitude at P is

ψ(P) = C
∫ a′

−a′
ρ−1/2 exp[ik(ρ − f )] dξ ′ (1)
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(a)

(b)

Figure 1. The cusp diffraction pattern: (a) amplitude (black dots
mark the zeros), (b) phase. (Reproduced by permission from Berry
(1992).)

Figure 2. The observation point P receives contributions from
elements dξ ′ in the aperture, such as that at Q; the aperture extends
from ξ ′ = −a′ to +a′.

where kρ � 1, C = (k/2π i)1/2, ρ is the distance PQ, and
the aperture extends from ξ ′ = −a′ to a′. The value of C is
derived, for example, in Nye (1999, p 125).

We write the expression for ρ as ρ = {(ζ ′2 + (x ′ − ξ ′)2}1/2

and, because we are interested in the cusp, expand the square
root up to fourth powers, using the paraxial approximation,
x ′ − ξ ′ � ζ ′, to give

ρ = ζ ′ +
(x ′ − ξ ′)2

2ζ ′ − (x ′ − ξ ′)4

8ζ ′3 .

Figure 3. The Fraunhofer distribution of the amplitude in the focal
plane.

The exponent in the integral is now ik{− f (ξ ′) + ζ ′ + (x ′−ξ ′)2
2ζ ′

− (x ′−ξ ′)4
8ζ ′3 }. Whereas f (ξ ′) is the height of the emerging

wavefront relative to a straight line (ζ ′ = 0), we now define
g(ξ ′) as the height relative to a circle centred on F0, again
measured parallel to QP. Thus g(ξ ′) is a measure of the
aberration. Specifically, to fourth order, g(ξ ′) = f (ξ ′)− ξ ′2

2F +
ξ ′4

8F3 . If we write X = x ′
ζ ′ , Z = 1

2 (
1
F − 1

ζ ′ ), γ = − 1
8 (

1
F3 − 1

ζ ′3 ),

and the distance OP as R = (ζ ′2 + x ′2)1/2 ≈ ζ ′ + x ′2
2ζ ′ − x ′4

8ζ ′3 , the
exponent now takes the form

ik R − ik[g(ξ ′) + γ ξ ′4 + · · · + Zξ ′2 + Xξ ′].

The dots indicate higher-order terms that may be dropped
because ξ ′ � ζ ′ and x ′ � ζ ′; specifically, ξ ′(x ′/ζ ′)3 �
ξ ′(x ′/ζ ′), (ξ ′2/ζ ′)(x ′/ζ ′)2 � ξ ′2/ζ ′, and (ξ ′x ′/ζ ′)(ξ ′/ζ ′)2 �
(ξ ′x ′/ζ ′). The initial wave, which is determined by g(ξ ′), is
fixed and we will later take g(ξ ′) = βξ ′4 + higher terms in ξ ′.
Thus, while γ depends on the position of the observation point
P, g(ξ ′) does not. We have already noted that, as k → ∞, the
diffraction detail we are interested in becomes increasingly
concentrated near the focus, ζ ′ = F , where γ = 0. Thus
the term γ ξ ′4 becomes small compared with βξ ′4 and may
be dropped. Again, because we are concerned only with the
immediate neighbourhood of the focus, the factor ρ−1/2 in
equation (1) may be taken outside the integral as a constant
F−1/2 and the equation becomes

ψ(P) = C F−1/2eikR
∫ a′

−a′
e−ikφ dξ ′,

with
φ = g(ξ ′) + Zξ ′2 + Xξ ′. (2)

In terms of the coordinate z′ measured from the focus,
ζ ′ = F + z′ and z′ is small. Expanding the expression
for Z for small z′, we find Z = z′/2F2. Thus X and Z
are proportional to x ′ and z′ respectively, that is, Cartesian
coordinates for P with origin at F0. Notice, however, that
X and Z have different physical dimensions. Near enough
to the focus the phase factor eikR is simply the plane wave
eikζ ′ = eik(F+z′) ≈ eik(F+2F2 Z) = eikF eiκZ , where κ = 2F2k.
κ is a constant with dimensions of length. Equation (2) may
now be written for the neighbourhood of the focus as

ψ(X, Z) ∝ eiκZ
∫ a′

−a′
e−ikφ dξ ′. (3)

Essentially we have moved from coordinates x ′, z′ to X, Z and
replaced the circular wave eikR in the prefactor by the plane
wave eiκZ .

We now choose the function g(ξ ′), which specifies the
deviation of the emerging wavefront from the circular one that
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Figure 4. ((a)–(e)) Evolution of the pattern for the indicated values of a and K = 8. The left-hand half of each figure shows contours of
amplitude and the right-hand half shows contours of phase (phase = 0 is bold). The arrows show the direction of increasing phase; the black
dots mark zeros of the amplitude. The dislocations to the right of the caustic all have clockwise circulation; those to the left are
anticlockwise.

would focus at F0. Since we want to have a symmetrical cusp
we omit a cubic term and write g(ξ ′) = βξ ′4 + · · ·, where
the dots denote higher even-order terms in ξ ′. Thus, from
equation (2) φ = (βξ ′4 + · · ·) + Zξ ′2 + Xξ ′. The principle of
stationary phase tells us that, as we approach the limit k → ∞,

the range of ξ ′ contributing to the integral becomes more and
more concentrated around ξ ′ = 0. Thus the higher terms
represented by the dots can be ignored, but the term in ξ ′4
must be retained to obtain a cusp. The remaining terms are
recognized as the potential for a cusp in catastrophe theory.
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Figure 4. (Continued.)

The sign of β governs the sign of the aberration; β positive
represents a cusp extending towards the lens and β negative a
cusp extending away from the lens. We take β positive and
deal with β negative later.

So far all the quantities have had physical dimensions.
We now introduce dimensionless quantities, ξ , x , z, and make
scalings designed to remove the factor k and the coefficientβ in
the exponent under the integral. Let ξ ′ = ξ0ξ , X = x0x , Z =
z0z, and set ξ0 = (4kβ)−1/4, x0 = (kξ0)

−1, z0 = (2kξ 2
0 )

−1.
The exponent under the integral in (3) is then

− ikφ = −ik(βξ ′4 + Zξ ′2 + Xξ ′) = −i( 1
4ξ

4 + 1
2 zξ 2 + xξ).

k and β have been removed and all quantities are now
dimensionless. In terms of dimensionless K ,

K = κz0 = 2F2kz0 = F2ξ−2
0 = 2F2(kβ)1/2, (4)

the complex amplitude to be evaluated is

ψ(x, z) ∝ eiK z
∫ a

−a
exp[−i( 1

4 ξ
4 + 1

2 zξ 2 + xξ)] dξ, (5)

where a = a′/ξ0 measures the half-aperture in dimensionless
units. In the language of catastrophe theory, ξ is a state variable

while x, z are control variables. The only free parameters are
a and K . If the limits were −∞ to +∞, the integral would be
the complex conjugate P∗(x, z) of the Pearcey integral P(x, z)
as usually defined (Berry et al 1979, Berry 1992). Thus the
problem reduces to evaluating the truncated Pearcey integral,
which depends only on a, multiplied by a prefactor. The
prefactor has no effect on the pattern of amplitude, but it does
affect the phase pattern. At the same time, it is important to
note that the positions of the dislocations (phase singularities)
are identical, with and without the prefactor, because in both
cases they are zeros of the amplitude. Since K ∝ k1/2 by
relations (4), K → ∞ with k, and there will be an increasingly
large number of wavelengths between the focus and any given
feature of the pattern at given x, z. Therefore, to display
the phase pattern we must use a large but finite value of K .
The evolution of the amplitude pattern is universal, under the
control of a, but that of the phase pattern is not, because it
depends also on K .

Because of this universality we present results in (x, z)
space. The relation to physical space (x ′, z′) is

x ′ = 21/2 Fk−3/4β1/4x, z′ = 2F2k−1/2β1/2z.

As k → ∞ the whole pattern streams anisotropically towards
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Figure 5. Trajectories of the first dislocation pair. After their birth
on the axis they rapidly separate, following spiral paths to their final
destinations in the full Pearcey pattern. The labels are the values
of a.

the focus x ′ = z′ = 0, as dictated by the different indices of k
(the fringe indices) in the expressions for x ′ and z′.

There are two important limits to consider. The caustic of
geometrical optics (k → ∞) is found from the ray condition
φx = 0 together with the caustic conditionφxx = 0 (Nye 1999)
as

27x2 = −4z3.

When a is sufficiently small, ψ(x, z) becomes, apart from the
phase prefactor,

ψ(x, z) ∝
∫ a

−a
e−ixξ dξ = 2 sin(xa)

x
(6)

which is the standard Fraunhofer result for a narrow slit
(figure 3).

The full Pearcey integral with infinite limits is difficult
to compute (Berry 1992) because the integrand is highly
oscillatory, but there is no corresponding problem when the
integral is truncated at the modest values of a needed here.
Figure 4 shows the amplitude and phase of ψ(x, z) for a fixed
value K = 8 and a range of a. With a small (figure 4(a)) one
sees the central pair of an infinite row of wave dislocations
with equal spacings π/a (the Fraunhofer pattern). Each is
characterized by having zero amplitude and indeterminate
phase; moreover, each has a phase saddle on its outer side, and
on its inner side the beginning of an ‘extra wavefront’ which
extends to join up with its partner on the other side to form an
extra strip of wavefront. The rule for obtaining the position of
the extra wavefront is first to identify the sense of circulation
of the phase around the dislocation, for example, clockwise
for all the dislocations to the right of the focus in figure 4(d);
this sense is independent of the phase factor representing the
carrier wave. On one side of the dislocation the phase gradient
of the carrier wave will reinforce that close to the dislocation;
this is the side for the extra wavefront. On the other side the
phase gradients are opposed in sign; this is where the phase
saddle will be found.

As a is increased, the cusp caustic begins to form
and the Fraunhofer dislocations move inwards according to
equation (6). The ends of the caustic come from the edges
of the aperture. On further increase the caustic extends in
length and the dislocations move downwards (figures 4(b) and
(c)), eventually becoming the outer dislocations of the Pearcey

Figure 6. To show that the pattern for β negative is the same as for
β positive except that it involves the Pearcey integral rather than its
complex conjugate.

Figure 7. The sense of rotation for dislocations outside the caustic:
(a) β positive, (b) β = 0, (c) β negative. The wave is travelling
upwards throughout.

pattern (figures 4(d) and (e)). The caustic has a diffraction
precursor: in figures 4(b) and (c) there are the first signs of
what will ultimately be the row of maxima just inside the
caustic even though the caustic itself is not yet present at
these levels. The final Pearcey pattern contains additional
close pairs of dislocations inside the caustic. As a increases
these are created at places where the amplitude is small. The
first pair (figure 4(d)) forms when a = 2.262 381 at x = 0,
z = −4.308 110, to seven significant figures; they then rapidly
separate, as traced in figure 5, following spiral paths to reach
their eventual positions in the fully developed Pearcey pattern
at x = ±0.374, z = −4.378. While the first pair is separating,
higher pairs are created successively, until eventually the whole
Pearcey pattern is present. This outline of its evolution is the
main result of the paper.

Since a = a′/ξ0 = a′(4kβ)1/4, the patterns in figure 4
may be read either as a sequence with a fixed initial wavefront
aberration given by β and an increasing aperture a′, or as an
evolution with a fixed aperture and an increasing aberration.
Notice how, as a increases, the principal maximum, which is
centred on the focus for small a, moves to take up its position
in the Pearcey pattern below the cusp point.

All this was for positive values of β . The corresponding
result for negative values is readily seen through the diagrams
in figure 6. Figure 6(a) shows diagrammatically the result
for positive β , with the direction of increasing phase marked;
P∗(x, z) is involved. Now take the conjugate complex of the
whole ψ-pattern (figure 6(b)). This reverses all the phases
and, more importantly, their gradients. Figure 6(c) is the same
as 6(b) but inverted. It may be read as the same as the original
scheme, but with the cusp pointing towards the lens rather
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Figure 8. The symmetrical approach and annihilation of two dislocations of opposite sign with the saddles for phase initially, as in (a), on
the line joining the dislocations. The equiphase lines are at intervals of 1

4π (from Nye et al 1988).

Figure 9. P∗(x, z), without the prefactor, truncated at a = 3. Black dots mark zeros of amplitude.

than away from it, as would be given by negative β . Thus the
pattern for negative β is the same as for positive β , except that
it involves the Pearcey integral P(x, z) itself, rather than its
complex conjugate.

As an example of the rule for the positions of the phase
saddles and extra wavefronts, note that the first dislocation
on the right outside the caustic in figure 4(e) has a clockwise
circulation, also shown diagrammatically in figure 7(a). By
the principle of structural stability, the same is true for the first
dislocation on the right in the Fraunhofer pattern (figure 7(b)),
with its extra strip of wavefront to its left. Proceeding further
to negative β , this dislocation remains clockwise as shown in
figure 7(c), and the extra wavefront is still to its left. But it now
comes from P(x, z) rather than P∗(x, z), so its circulation
sense is reversed with respect to the caustic, as is seen in
the diagram.

3. Pair creation and phase saddles

The role of phase saddles in the creation of a pair of
wave dislocations deserves some attention. Two distinct
topological indices have to be conserved in any reaction
between dislocations. One is the Poincaré index n, which
refers to the change in direction of the equiphase lines on a
circuit around the point in question; for dislocations or maxima
or minima n = +1, and for saddles n = −1. The other is the
dislocation strength s, or topological charge; this takes the
values ±1, according to the sense of circulation of the phase.
It is shown in Nye et al (1988) that, in a two-dimensional
wavefield obeying the wave equation

∂2ψ

∂x ′2 +
∂2ψ

∂z′2 + k2ψ = 0, (7)

there can be no maxima or minima of phase. As a consequence,
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Figure 10. Close-ups of pair formation in the pattern of P∗(x, z) without the prefactor. (a) a = 2.2585, (b) a = 2.2624, (c) a = 2.27.

the only possible elementary reaction consistent with
conservation of both n and s is the birth of two dislocations
of opposite strength s = ±1, accompanied by the birth of two
saddles—and the reverse event. It was further shown that, in
the first stages of the creation event, the two associated saddles
have to lie on a circle whose diameter is the line joining the
two dislocations. This result ought to apply to the formation
of the first pair of dislocations on the axis of the full Pearcey

pattern (i.e. including the prefactor) under the control of the
parameter a. In fact the sequence is just that depicted in figure 4
of the above paper and reproduced here as figure 8. Increasing
a corresponds to passing through the diagrams from (f) to
(a) with the formation of a gap in the wavefronts. The two
associated saddles (small circles) at first separate in the vertical
direction and lie on the circle whose diameter joins the two
dislocations; they reach a maximum separation and then return
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to the horizontal axis, colliding to form a monkey saddle (b);
finally they separate along the horizontal axis, and this is, in
fact, their configuration in the limit of the full Pearcey pattern.

To verify that the saddles in the computed patterns do lie on
the circle when close to the creation event, their positions were
measured in the dimensionless variables (x, z) and transformed
to the true space variables (x ′, z′). The scaling relations give
for the ratio of intervals in x, z

�x

�z
= z0

x0

�X

�Z
= 1

2ξ0

�X

�Z
= F

ξ0

�x ′

�z′ = K 1/2�x ′

�z′

and K for the computed pattern is known. We have seen
that as k → ∞ there will be an increasingly large number
of wavelengths between any given feature of the pattern, say
the first pair, and the focus. On the other hand, for the circle
result, the separation of the pair must be small compared with
the wavelength. So the larger K is, the smaller must be the
separation for the circle result, and so the closer a must be to
the critical value for pair creation. The combinations K = 8,
a = 2.2642, and K = 16, a = 2.2642, and K = 16,
a = 2.2700 all give saddles in the predicted positions. The
main source of error in the computed positions arises from the
fact that normally no one of the computed phase lines passes
exactly through a saddle.

The right-hand side of equation (5) consists of two parts,
a phase prefactor followed by the complex conjugate of the
truncated Pearcey integral. Figure 9 shows the wavefunction
without the prefactor—choosing as an example a = 3,
corresponding to figure 4(e). Because the prefactor only affects
the phase, the positions of the phase singularities and the sense
of their circulations are the same and so is the whole amplitude
distribution. But the overall phase structure is quite different.
In particular, notice that the phase structure of the uppermost
dislocation pair on the axis is not at all the same as in figure 4(e).
In fact, the pair are born quite differently, as is shown in
figure 10. No saddles are involved; as a increases through
the critical value, close inspection reveals a maximum above
the creation point and a minimum below it (total Poincaré
index +2) coming together very fast and being replaced by
two dislocation points (each of index +1), so preserving the
total index. The total strength s remains zero throughout.

The reason for this difference in phase behaviour between
the complete wavefield and the truncated Pearcey integral is
as follows. The wavefield (1), from which (5) is derived,
obeys the wave equation (7), because it is a superposition of
cylindrical wavelets, each obeying the wave equation when
kρ � 1. The theorem about the saddle behaviour and the
approach to the circle depends on the fact that the wave
equation does not allow maxima or minima. Although the
truncated Pearcey integral happens to obey a certain paraxial
wave equation, it does not obey the full wave equation (7).
In consequence, maxima and minima are no longer prohibited
and pair creation can take place without the participation of
saddles.

4. Generalization

There is an important difference between the end-members
of the sequence in figure 4. By the principles of catastrophe
optics the cusp caustic is structurally stable. But the line
focus of a perfect lens is not; indeed it can unfold in an
infinite number of different ways, of which the cusp is just
the simplest. For example, it could alternatively unfold into
a butterfly catastrophe or a higher cuspoid. The same applies
to the perfect point focus, but here only a few of its more
symmetrical unfoldings have been explored, mainly in terms
of the singularity X9 (e.g. Nye 1999). All these unfoldings
in geometrical optics are accompanied by changes to the
corresponding diffraction patterns, which may be epitomized
by their changing patterns of dislocations. There are therefore
many different evolutionary paths to be explored for patterns of
dislocations, starting from the row of dislocations for the line
focus or from the circular Airy ring dislocations for the point
focus, and ending with the various diffraction catastrophes.
The elliptic umbilic diffraction catastrophe is studied from
this point of view in Nye (2003). Actually, the starting point
need not necessarily be the point focus; for example, for the
elliptic umbilic catastrophe it could be the Fraunhofer pattern
corresponding to a small triangular aperture, the parameter for
the evolution being the size of the aperture. Other shapes of
aperture would be appropriate for other catastrophes. Clearly
there is much new territory here that could be explored and
mapped.
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