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Abstract
We present a rigorous approach to the propagation of a fully vectorial
nonparaxial ultrashort pulsed beam in free space. By using the Fourier
transform and the vectorial angular-spectrum formalism, we derive an exact
fully vectorial integral solution of Maxwell’s equations for an ultrashort
pulsed beam whose pulse duration is as short as a single optical oscillation
period. From this general expression we develop a Taylor expansion of
electric field, and obtain all-order corrections to the paraxial pulsed beam
solution, which is assumed to be known. Furthermore, the influence of
vectorial nature on nonparaxial pulsed beam propagation is analysed and the
vectorial nonparaxial correction is given in this paper.

Keywords: Vectorial nonparaxial corrections, paraxial approximation,
ultrashort pulsed beam

1. Introduction

With the experimental production of extremely short
few-cycle, single-cycle, even half-cycle electromagnetic
pulses [1, 2], it is nowadays well established that the
propagation of ultrashort pulses can differ significantly from
that of the quasi-monochromatic light. A great deal of research
has been carried out on some new phenomena related to the
spatiotemporal coupling during the pulsed beam propagation
in free space or in a linear medium, such as time-dependent
diffraction patterns, the time-derivative effect, decrease of the
optical period along the beam axis, pulse time delay and red-
shift toward the beam periphery [3–12], etc. The above-
mentioned studies are all based on the scalar paraxial theory,
which is able to give an accurate description of the ultrashort
pulsed beam propagation when the divergence angle is small
and the beam width or diffraction length is much larger than
the wavelength for each frequency. However, there do exist
ultrashort pulsed beams with large divergence angles or with
ultra-narrow waists, for which the scalar paraxial theory is
invalid. Therefore the nonparaxial effect and the vectorial
effect ought to be taken into account.

1 Author to whom any correspondence should be addressed.

To deal with nonparaxial propagation of the monochro-
matic beam, Lax et al [13] developed a perturbation method
to obtain corrections to the paraxial beam propagation by the
use of a small dimensionless parameter 1/(kw0), where k is
the wavenumber in free space and w0 is the waist width of the
beam. Cao et al [14, 15] also proposed a related truncated op-
erator to correct the paraxial beam solution. However, a theory
of nonparaxial propagation should be vectorial and cannot be
based on the scale Helmholtz equation [16, 17]. As for the
ultrashort pulsed beam, Fu et al [18, 19] considered separately
the nonparaxial and vectorial correction to the paraxial solu-
tion based on Cao’s technique. In this paper, we employ the
Fourier transform to deal with the full vectorial nonparaxial
propagation of a ultrashort pulsed beam whose scalar paraxial
solution is known. On the basis of a suitable angular spectrum
and vectorial analysis, we develop a relatively simple trans-
form from the scalar paraxial solution of the ultrashort pulsed
beam to a correspondingly exact solution of the vectorial non-
paraxial wave equation on condition that the evanescent wave
is ignored. It is shown that the vectorial effect contributes
much to the correction of the scalar paraxial solution.

This paper is organized as follows: in section 2, the
equations governing the evolution of the transverse and
longitudinal components are derived and the coupling relation
between them is given in the frequency domain. In section 3,
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the rigorous integral solution of vectorial nonparaxial pulsed
beams is presented. In section 4, the influence of vectorial
effect on nonparaxial propagation is analysed. In section 5,
we obtain a vectorial nonparaxial correction to an arbitrary
scalar paraxial solution of an ultrashort pulsed beam. Finally,
we come to a conclusion in section 6.

2. The vectorial nonparaxial propagation of the
ultrashort pulsed beam

The propagation of an electromagnetic field �E(�r , z, t) in free
space is governed by the vectorial wave equation

(
∇2 − 1

c2

∂2

∂t2

)
�E(�r , z, t) = 0, (1)

where �r = xêx + yêy are the transverse coordinates and êx , êy

are the united vectors in the x and y directions, respectively.
To derive equation (1), we have used

∇ · �E(�r , z, t) = 0. (2)

Equation (2) should work together with (1) to obtain a self-
consistent solution of the vector field. As usual, we introduce
the local variables t ′ = t − z/c, z′ = z to extract from �E its
rapid variation along z that is due to the pulse transport as a
whole at velocity c. In this wave, any dependence of �E on the
new variable z′ represents diffraction changes on propagation
that are to the finite transverse extent of the wave. Employing
the Fourier transform on both equations (1) and (2) yields

[
∇2

⊥ + 2ik(ω)
∂

∂z′ +
∂2

∂z′2

]
��(�r , z′, ω) = 0, (3)

and

ik(ω)�z′(�r , z′, ω) +
∂

∂z′ �z′(�r , z′, ω) + ∇⊥ · ��⊥(�r , z′, ω) = 0,

(4)
where ∇2

⊥ = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian,
∇⊥ = êx∂/∂x + êy∂/∂y. The Fourier transform of the electric
field is represented as

�E(�r , z′, t ′) = 1

(2π)1/2

∫
��(�r , z′, ω) exp[−iωt ′] dω,

= 1

(2π)1/2

∫
[ ��⊥(�r , z′, ω)

+ êz′�z′(�r , z′, ω)] exp[−iωt ′] dω, (5)

where ��⊥(�r , z′, ω) = êx�x(�r , z′, ω) + êy�y(�r , z′, ω) is the
transverse components of a vector field in the frequency
domain and êz′ is the unit vector in the z′ direction.

Equation (3) is a nonparaxial propagation equation for
each vectorial component of the electric field at every
frequency. In addition equation (4) manifests the coupling
relation between the transverse and longitudinal components.
Regarding a practical propagation problem, we will first
solve equation (3) under a certain initial value condition,
i.e. �E(�r , 0, t ′), to get the transverse components and then
evaluate the longitudinal component from equation (4).

If the paraxial approximation (PA)in frequency domain is
valid, i.e.∣∣∣∣ ∂

∂z′ � j (�r , z′, ω)

∣∣∣∣ � |k(ω)� j(�r , z′, ω)|,∣∣∣∣ ∂2

∂z′2 � j (�r , z′, ω)

∣∣∣∣ �
∣∣∣∣k(ω)

∂

∂z′ � j(�r , z′, ω)

∣∣∣∣, (6)

j = x, y, z,

which indicates that the PA condition is satisfied for each
component of the vectorial electric field at every frequency, the
paraxial propagation equation for the transverse components
in temporal-frequency domain yields[

∇2
⊥ + 2ik(ω)

∂

∂z′

]
��(p)

⊥ (�r , z′, ω) = 0. (7)

Furthermore, the coupling relation between the transverse and
longitudinal components is

�
(p)

z′ (�r , z′, ω) = i

k(ω)
∇⊥ · ��(p)

⊥ (�r , z′, ω). (8)

By the inverse Fourier transform, one gets(
∇2

⊥ − 2

c

∂2

∂z′∂t ′

)
�E (p)

⊥ (�r , z′, t ′) = 0, (9)

and
1

c

∂

∂t ′ E (p)

z′ (�r , z′, t ′) = ∇⊥ · �E (p)

⊥ (�r , z′, t ′). (10)

Equation (9) has received extensive attention [7–12] since it
allows one to extend the paraxial treatment of diffraction to
arbitrary ultrashort pulses. Some solutions of this equation,
such as the exact analytical solution called ultrashort pulse
Gaussian beam [10] or integral solution [9], have been reported
recently. In the following sections, we assume the scalar
paraxial solutions ��(p)

⊥ (�r , z′, ω) and �E (p)

⊥ (�r , z′, t ′) are known
and ��(�r , z′, ω) and �E(�r , z′, t ′) represent the exact solutions of
vectorial nonparaxial propagation (governed by equations (3)
and (4)) as the corrections to the paraxial solution.

3. Integral solution of vectorial nonparaxial pulsed
beam

If only the positive propagation is considered, by using
the angular-spectrum formalism, the integral solution of
equation (3) can be written as [16]

��(�r , z′, ω)

= 1

2π

∫
d2�k⊥ exp

[
i�k⊥ · �r + ikz

(√
1 − k2⊥/k2 − 1

)]

×
[

�A⊥(�k⊥, 0, ω) − êz
1

k
√

1 − k2
⊥/k2

�k⊥ · �A⊥(�k⊥, 0, ω)

]
,

(11)

where �k⊥ = kx êx +kyêy , and �A⊥(�k⊥, 0, ω) is the spatial Fourier
transform of the transverse electric field ��⊥(�r , 0, ω), that is

�A⊥(�k⊥, 0, ω) = 1

2π

∫
��⊥(�r , 0, ω)e−i�k⊥ ·�r d2�r .
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and

Az(�k⊥, 0, ω) = 1

2π

∫
�z(�r , 0, ω)e−i�k⊥ ·�r d2�r .

To derive equation (11), we have used the relation

Az(�k⊥, z′, ω) = − 1

k
√

1 − k2⊥/k2

�k⊥ · �A⊥(�k⊥, z′, ω), (12)

which is deduced from equations (3) and (4) through the
bidimensional spatial Fourier transform method.

The solution equation (11) satisfies equations (3) and (4),
simultaneously, for half-space z > 0. We can get the integral
solution of electric field �E(�r , z′, t ′) in time domain by inverse
Fourier transform, i.e. equation (5). Though it is difficult to
work out the analytical solution directly from equation (11), it
is possible for us to develop a Taylor expansion of electric field
so as to obtain all-order corrections to the paraxial solution if
the scalar paraxial solution �E (p)

⊥ (�r , z′, t ′) is known.
When the PA condition is met, from equation (7) comes

the relation

|∇2
⊥� j(�r , z′, ω)| ∼

∣∣∣∣k(ω)
∂

∂z′ � j(�r , z′, ω)

∣∣∣∣
� |k2(ω)� j(�r , z′, ω)|,

where j = x, y, z. In the angular-spectrum domain this
relation can be presented as η2 ≡ |�k⊥/k|2 � 1. From a
mathematical point of view, the evaluation of vectorial and
nonparaxial terms can be obtained by Taylor expanding the
integral of equation (11) up to any order in the parameter
η = |�k⊥/k|.

Let us first recover the standard paraxial results from
equation (11). Under the PA, i.e. η2 � 1, and using√

1 − k2⊥/k2 ∼= 1 − 1
2 (k2⊥/k2), we obtain the transverse

components of the electric field from equation (11) as

��(p)

⊥ (�r , z′, ω) = 1

2π

∫
�A⊥(�k⊥, 0, ω)ei�k⊥ ·�r−izk2

⊥/(2k) d2�k⊥, (13)

= 1

2π

k(ω)

iz′

∫
��⊥(�r ′, 0, ω) exp

[
i
k(ω)

2z′ (�r − �r ′)2

]
d2 �r ′. (14)

Equation (13) is the standard solution of the paraxial equation,
i.e. equation (7), and equation (14) is the Fresnel diffraction
integral for each frequency. After inverse time Fourier
transforming, the integral solution for the paraxial pulsed beam
in free space yields

�E (p)

⊥ (�r , t ′, z′) = 1√
2π zc

∫
∂

∂τ
�E⊥(�r ′, 0, τ) d2 �r ′, (15)

where τ = t ′ − (�r − �r ′)2/(2cz′) is the reduced time and
�E⊥(�r ′, 0, t ′) is the electric field at the initial plane (z = 0).
From this equation, the pulsed beam solution can be deduced
for any initial value condition, whereas the analytical solution
can only be derived for some specific case, such as an ultrashort
pulsed Gaussian beam [10].

4. Influence of vectorial effect on nonparaxial
propagation of pulsed beam

It is noticed that in the paraxial solution equation (15) we have
completely neglected the longitudinal component of the field.

However, the relation η � 1 is not determinately satisfied
when the PA condition, i.e., η2 � 1, is valid. In fact, under
this condition, the longitudinal field can be obtained from
equation (8) as

��z′(�r , z′, ω) = 1

2π

∫
1

k
�k⊥ · �A⊥(�k⊥, 0, ω)ei�k⊥ ·�r−izk2

⊥/(2k) d2�k⊥,

(16)
which is, due to the factor of �k⊥/k, the first order in η (while
the paraxial transverse one is zero order). This solution can
also be derived from equation (12) by using the approximation

1

k
√

1 − k2
⊥/k2

∼= 1

k
.

It is obvious that, when the PA condition is only weakly
satisfied, i.e. the relation η � 1 is not well satisfied,
the longitudinal component cannot be neglected. In other
words, when we weaken the PA condition, i.e. η2 � 1,
the beam is no longer completely paraxial and the first-order
correction is the appearance of a longitudinal component stated
in equation (16). Consequently, a theory of nonparaxial
ultrashort pulsed beam propagation should be intrinsically
vectorial and cannot be based on the scalar Helmholtz equation
alone [16, 17].

By using equation (13),we can rewrite equation (16) as

�z′(�r , z′, ω) = i

2πk
∇⊥ ·

∫
�A⊥(�k⊥, 0, ω)ei�k⊥ ·�r−izk2⊥/(2k) d2�k⊥,

(17)

= i

k
∇⊥ · ��(p)

⊥ (�r , z′, ω) (18)

and the total vectorial electric field in frequency domain is

��(�r , z′, ω) =
(

1 + êz′
i

k
∇⊥

)
· ��(p)

⊥ (�r , z′, ω) (19)

By means of the inverse Fourier transform of equation (5), we
obtain the vector field in time domain as

�E(�r , z′, t ′) = �E (p)

⊥ (�r , z′, t ′)

− c

√
π

2
sign(t ′) ∗ [∇⊥ · �E (p)

⊥ (�r , z′, t ′)]êz

=
[

1 − êzc

√
π

2
sign(t ′) ∗ ∇⊥

]
· �E (p)

⊥ (�r , z′, t ′). (20)

where

sign(x) =




1, x > 0

0, x = 0

−1, x < 0

is the signal function and ∗ stand for the Fourier convolution.
Equation (20) is valid under the condition that the PA η2 � 1
is weakly satisfied whereas η � 1 is not satisfied.

5. The vectorial nonparaxial correction of ultrashort
pulsed beams

When the PA condition η2 � 1 is weakened, we ought to
further refine the description of nonparaxial propagation, and
to keep the next significant order in η2 in the Taylor expansion
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of equation (11). Thus the transverse component of the electric
field becomes

��⊥(�r , z′, ω) = 1

2π

∫
d2�k⊥ei�k⊥ ·�r−iz′k2⊥/(2k)

× exp[−iz′k4
⊥/(8k3)] �A⊥(�k⊥, 0, ω). (21)

By using the approximation exp[−iz′k4
⊥/(8k3)] ∼= 1 −

iz′k4⊥/(8k3), equation (21) yields

��⊥(�r , z′, ω) = 1

2π

∫
d2�k⊥ei�k⊥ ·�r−iz′k2

⊥/(2k)

× [1 − iz′k4
⊥/(8k3)] �A⊥(�k⊥, 0, ω), (22)

which is equivalent to

��⊥(�r , z′, ω) =
[

1 − ikz′ 1
8

(∇2⊥
k2

)2]
��(p)

⊥ (�r , z′, ω). (23)

By using equation (7), we can simplify equation (23) to

��⊥(�r , z′, ω) =
(

1 +
iz′

2k

∂2

∂z′2

)
��(p)

⊥ (�r , z′, ω). (24)

Through inverse time Fourier transforming, the nonparaxial
correction to an ultrashort pulsed beam in the temporal domain
is presented as

�E⊥(�r , z′, t ′) =
[

1 − cz′

2

√
π

2
sign(t ′) ∗ ∂2

∂z′2

]
�E (p)

⊥ (�r , z′, t ′).

(25)
As for the longitudinal component of the field, we make

a Taylor expansion of the term 1√
1−k2⊥/k2

∼= 1 + k2
⊥/(2k2) in

equation (12) and truncate it to the order of η2, yielding

�z′(�r , z′, ω) =
(

1 − 1

2k2
∇2

⊥

)
i

k
∇⊥ · ��⊥(�r , z′, ω). (26)

Substitute equation (24) into (26), and truncate the expansion
to the third order of η since the next significant term is fifth
order while equation (24) is fourth order. Hence

�z′(�r , z′, ω) =
(

1 +
i

k

∂

∂z′

)
i

k
∇⊥ · ��(p)

⊥ (�r , z′, ω), (27)

where we have taken the advantage of equation (7). With
application of inverse Fourier transform equation (5), the
longitudinal components in the temporal domain Ez are given
as

Ez(�r , z′, t ′) = c2

√
π

2
[t ′sign(t ′)] ∗ ∂

∂z′ ∇⊥ · �E (p)

⊥ (�r , z′, t ′)

− c

√
π

2
sign(t ′) ∗ ∇⊥ · �E (p)

⊥ (�r , z′, t ′). (28)

Finally we can write the corrected nonparaxial vectorial
electric field as

�E(�r , z′, t ′) =
[

�E (p)

⊥ − cz′

2

√
π

2
sign(t ′) ∗ ∂2 �E (p)

⊥
∂z′2

]
+ êz′ c2

√
π

2

×
{

[t ′sign(t ′)] ∗ ∇⊥ ·
∂ �E (p)

⊥
∂z′ − sign(t ′)

c
∗ ∇⊥ · �E (p)

⊥

}
.

(29)

The expansion in equations (26) and (22) are truncated to
the order of η4. It is confirmed that equation (29) is qualified to

describe the propagation of the ultra-short nonparaxial pulsed
beams, even when the beam width of the pulsed beam is of the
order of the wavelength. With our approach, it is fairly easy
to deduce the higher-order correction to the pulsed beam to
improve the precise of the description of the ultra-short pulsed
beam propagation.

6. Conclusion

We present in this paper a rigorous approach to the propagation
of a fully vectorial nonparaxial ultrashort pulsed beam in
free space. By using the Fourier transform and the vectorial
angular-spectrum formalism, we obtain an exact fully vectorial
integral solution of Maxwell’s equations for an ultrashort
pulsed beam. From this general expression, we further
develop a relatively simple transform from the scalar paraxial
solution of the ultrashort pulsed beam, which is assumed to be
known, to a corresponding correction solution of the vectorial
nonparaxial wave equation. With this approach, one can
easily deduce the higher-order correction to the pulsed beam
to improve the precision of the description of the ultra-short
pulsed beam propagation. The influence of vectorial effect on
nonparaxial pulsed beam propagation are clearly analysed and
the first-order vectorial nonparaxial corrections are obtained as
well. It is proved that the vectorial effect contributes much to
the correction of the scalar paraxial solution and vector effect
should be taken in account for a nonparaxial propagation. In
addition, our treatment allows us to deal with a fully vectorial
situation in the presence of arbitrary boundary condition.
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