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Abstract

We examine information loss, resource costs, and run time from practical application of quantum
data compression. Compressing quantum data to fewer qubits enables efficient use of resources, as
well as applications for quantum communication and denoising. In this context, we provide a
description of the quantum and classical components of the hybrid quantum autoencoder algorithm,
implemented using IBMs Qiskit language. Utilizing our own data sets, we encode bitmap images as
quantum superposition states, which correspond to linearly independent vectors with density
matrices of discrete values. We successfully compress this data with near-lossless compression using
simulation, and then run our algorithm on an IBMQ quantum chip. We describe conditions and run
times for training and compressing our data on quantum devices, and relate trainability to specific
characteristics and performance metrics of our parametric quantum circuits.

1. Introduction

In the Information Age [1], data compression has become a powerful tool for dealing with datasets large in
number, volume, and variability. Reducing the dimensionality of large datasets allows for efficient use of
resources, as well as extraction of useful features. Classical autoencoders are a type of artificial neural network
used extensively for feature extraction [2, 3], denoising [4, 5], and data compression or dimensionality reduction
[6-8].

Classical autoencoders, as well as variational autoencoders [9], can be utilized to help mitigate some of the
limitations we find in quantum computing [10]. With small numbers of noisy qubits in current quantum chips,
implementation of quantum algorithms can benefit greatly from efficient use of qubits for data encoding and
computation. Quantum data compression has been studied extensively as a means to efficiently use qubits [11],
denoising quantum states[12], as well as image-related autoencoders for classification and anomaly detection
[13—15]. We can also utilize quantum data compression in the field of quantum communication. Compressed
quantum data can be sent between two parties on a public channel, with a private key used to compress or
decompress the data, similar to sending classical compressed data over a network [16].

The theoretical limit to losslessly compressing quantum information down to a latent space requires the
number of maximum linearly independent vectors from the input state to not exceed the size of the latent space
[17]. In practice however, even if we meet this criteria, we find that the performance and efficiency of quantum
data compression is limited by the choice of parametric circuit, the classical optimizer, and the gate depth of the
circuit.

In this study, we investigate information loss in application of quantum data compression utilizing the
quantum autoencoder as formulated in Romero et al (2017) [18]. We study the data compression performance
of three parametric circuits on a quantum simulator, and compare the times required to train the network. We
thenlook at a simpler quantum data compression scheme to implement on real qubits that can yield a
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Figure 1. The classical autoencoder schematic broken into 5 major components; we start with 4 nodes, compress down to 2 nodes, and
decompress back to 4 nodes.

reasonable training time, with results subject to noise from the quantum devices. Because of long training times
necessary for quantum data compression, results from a real device face considerable information loss from
noise when compared to simulations. Thus, reduction of gate depth can help mitigate expensive resource costs.
We test the parameterized circuits on an IBMQ quantum device [19] in order to understand the running time of
the data compression training network when compared to simulations.

In total, we study three parameterized circuits, and compare their performance against measures of
expressibility and entangling capability as described in Sim et al (2019) [20]. Our simulations demonstrate near-
lossless compression of quantum data using an image dataset, where each image is encoded as a unique
superposition state, using a scheme similar to [21], described in section 3. Complex datasets incorporating color
pixels have been encoded to qubits using flexible representation of quantum images (FRQI) [22—24]. In general,
when using simulators, complex data sets can be encoded using translation transforms [22], or using enhanced
dataloading, which encode feature vectors that characterize a model [13]. These data encoding procedures rely
on the ideal conditions provided by simulators. In order to utilize NISQ-era quantum chips, we are constrained
by limited connectivity, and a need for small gate-depths. Hence, our dataset was constructed to easily encode
simple images using one to three applications of CNOT and CZ gates, described in section 3. Our results gauge
the efficacy of modern quantum hardware in compressing quantum data, and aim to improve our
understanding of quantum autoencoders on NISQ devices.

The layout of this paper is as follows: section 2 covers the data compression method, which includes the
general Quantum Autoencoder framework, the parameterized quantum circuits, and the optimizer we use for
this study. Section 3 covers our dataset and data encoding for the simulation and quantum chip. Section 4 covers
results from all our simulations and experiments, and discusses the results. In section 5 we summarize the paper
and provide future prospects for this research.

2. Method

2.1. Classical autoencoder

An autoencoder is an artificial neural network that is used to learn the representation (or features) of an
unlabeled dataset. The encoder improves and validates the representation by regenerating the input. Itisa
dimensionality reduction algorithm that takes in data and compresses it to a latent space. We can think of the
latent space as containing the ‘essence’ of the input data - a compressed representation where similar data points
are closer together in space. The decoding network then extracts features from the latent space and reconstructs
the image, ideally without any noise or unwanted artifacts. A full autoencoder network consists of an encoding
neural network, a latent space, and a decoding network, as shown in figure 1.

2.2. Quantum autoencoder

The quantum autoencoder (QAE) is a hybrid algorithm, where the encoding and decoding neural networks of a
classical autoencoder are replaced by quantum subroutines that use quantum data, utilizing parameterized
unitary gates and entanglement. The circuit’s aim is to compress information from an input state | ) to a mixed
compressed state pg, labeled in figure 2(A) as B. With optimal parameters 6, we can getlossless compression,
where all the information from | ) is compressed down into state pg. The remaining ‘trash’ state is an empty
state (|0)*"), shown as A in figure 2(A). To do this, the overlap between the trash state and a reference |0) " state
is computed, shown as |1} in figure 2(A). Extracting the trash state A requires taking the partial trace on the
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Figure 2. (A): the QAE schematic with the quantum component on the left containing the input state, PQC, and the overlap. The
classical component is on the right containing the computation of the cost function and the optimizer. (B): The Qiskit circuit for the
quantum subroutine, showing the Swap Test to compute the overlap. (C): Decompressing the compressed quantum state by bringing
in a new qubit, and using optimal parameters for lossless decompression.

mixed state UpU" with respect to B, where U'is our parameterized circuit, and p = |¢)(|. The overlap,

(Y| T (UpUT) |1)), is a measure of fidelity between |¢)) and A. The maximum of this fidelity measure is 1, which
ensures that the trash state is empty, and the compression is lossless. So the task of the classical optimizer is to
minimize the cost function J(U), defined as

J(U) =1 = (Y T(UpUN ). )]

Within the quantum circuit, the overlap between the reference (|¢)) and trash (A) states is computed using the
Swap Test [25], as shown in figure 2(B). The Swap Test is a quantum operation that measures the difference
between two quantum states. From figure 2(B), we measure out the ancilla qubit, which computes the overlap
between the two states, reference and trash, using a control-swap gate. If the two states are orthogonal, then the
probability of the ancilla qubit measured as |0) is 1/2 (J(U) = 1/2), while if the two states are the same, the
probability of measuring the ancillaas |0} is 1 (J(U) = 0) [26].

Once the training circuit minimizes the cost function, we get the final set of parameters 6 that compresses
the dataset as efficiently as the parameterized quantum circuit (PQC) allows. The performance of the PQC s
measured by two circuit descriptors, entangling capability and expressibility [20], discussed in the next section.
The success of the algorithm is gauged by using new qubits to decompress the latent space back to the original
state. Since we are gauging the efficiency of the compression, the decompression circuit is not a training network,
unlike a classical decoding network. In our case, we simply use the optimal set of parameters to implement U’ on
the qubits, as shown in figure 2(C), thereby avoiding a second training network. The optimal parameters take in
new qubits and the compressed state pp, and decompresses the data back to the original input state |©). For this
study, we measure the fidelity between the original input and the final decompressed output to understand
information loss and compression efficiency.

2.3.Parameterized quantum circuit

In order to efficiently compress our images into fewer qubits, we quantitatively describe certain properties of the
PQC such as performance and resource costs. Using these properties aids us in constructing our circuit with
optimal gate sets, which in turn minimize the cost function of the training circuit while limiting computational
complexity. First, we look at two circuit descriptors, expressibility and entangling capability, as defined in Sim
etal (2019) [20]. The authors show expressibility and entangling capability measures for 19 PQCs in their paper
[20], one of which we use for our simulations (figure 3(A) Circuit 2).

After encoding the data as quantum states (a step we will cover in the following section), we apply the
parameterized circuit that best ensures that the data encoding preserves all features of the original data. Thus, an
ideal PQC must have the ability to generate states that are well representative of the full Hilbert space. For a single
qubit, this means that the PQC must have the ability to explore the full Bloch Sphere. The quantity that measures
this property is called the expressibility € of a circuit [20]. Expressibility is measured by generating a sampled
distribution of state fidelities of the parameterized circuit, and a sampled distribution using Haar random states
(uniform distribution of random states) [27]. We then measure the Kullback-Leibler (KL) divergence [28]
between the two distributions, given by equation (2). The KL divergence, or relative entropy, measures how two
probability distributions, P and Q, differ from one another, given by equation (3). A divergence measure of
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Figure 3. (A): the 3 Parameterized Quantum Circuits (PQCs) we use for our simulated data compression schemes. The circuits are
named Circuit 1, Circuit 2 (from [20]), and Circuit 3, indicated by the label on the bottom right of each circuit. (B): PQC for 3 qubits
based on Circuit 1, used for implementing 3 to 2 qubit data compression on an IBMQ device.

Dy = 0 implies the two distributions are the same. Hence, the smaller the KL divergence, or ¢, the more
expressible the parameterized circuit.

In equation (2), Ppoc(F; 0) is the probability distribution from fidelities resulting from sampling states from
the parameterized circuit; Fis the fidelity, calculated using sampled parameters 6. Pra0,(F) is the probability
distribution from fidelities resulting from sampling states from Haar random states.

€ = Di1(Ppac(F; 0)||Praar (F)). @)
P(x)
Q)

Dk (P|Q) = ) P(x) log, (3)

For the entangling capability measurement, the Meyer-Wallach (MW) measure [29] is used, a single scalar
measurement for pure-state entanglement [30]. The entanglement of each individual qubit is measured with the
remaining qubits in the system. One limitation with this version of entanglement measure is that it cannot
distinguish between entangled states that are fully inseparable, and entangled states that can be separated into
subsystems. This is in contrast to bipartite entanglement measures such as concurrence [30]. However, in this
study, we are measuring the global entanglement of the PQCs, and the ease of computation and scalability [20] of
the MW measure makes it fitting for our experiments. The following derivation of entangling capability relies on
the MW measure. In the Brennen form [31], this distance measure is written as

Q) = %Z 201 - Tripd), @)
k=1

where Tr [ pi] traces out all but the one-qubit reduced density matrix of the kth qubit. For set S of sampled
circuit parameters 6;, the entangling capability E [20], derived from the MW measure, is then given by:

= LS Qqua. )

E =
Isl 0;€S

For this study, we examine three different PQCs to implement into the quantum subroutine. Note that in
principle it is possible to build an arbitrarily complex PQC capable of achieving lossless or near-lossless
compression. However, complex PQCs with large gate depths are detrimental to quantum data compression in
the Noisy Intermediate Scale Quantum (NISQ) era [32]. Hence, we aim to build PQCs with certain
characteristics in mind that make quantum data compression more achievable.

In principle, one can generalize a relationship of PQC performance to a metric like expressibility in the
context of device architecture and trainability. In this case, we can perhaps conjecture in advance whether a PQC
is trainable on specific hardware, and how that scales with problem size. Studies on quantum neural network
training landscapes show how randomized PQCs can be detrimental to trainability as number of qubits
increases[33]. Generalizing these relationships can be difficult with experimental realization due to hardware
and data specific challenges, and is outside the scope of our study. Using architecture-agnostic simulators, we
statistically estimate measures of expressibility and entangling capability similar to the more general studies of
PQCs by [20]. Our study numerically verifies the relation between expressibility to the performance of PQCs in
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Table 1. Circuit costs.

Number of Number of two Circuit
Circuit parameters qubit gates depth
1 n(L + 1) nL n+1)
L+1
2 4(n— 1)L (n— 1L 6L
3 3nL nL (n+3)L

Table 2. PQC descriptors.

Circuit Expressibility (Dgr) Entangling Capability
1(n=4,L=3) 0.130 0.800
2 =4,L=3) 0.008 0.743
3(n=4,L=23) 0.005 0.826

the context of compressing quantum data. Our results empirically verify that in an ideal simulator (lossless all-
to-all connectivity), the more expressible the circuit, the better the efficiency of quantum data compression.

Along with expressibility and entangling capability, we describe the performance of our circuits by
examining the resource costs for each run. Figure 3(A) shows the three PQCs used for simulations in this study,
each composed of 4 qubits; initial parameters are chosen randomly from full range of theta values. Table 1 shows
the resource costs per circuit for the general case of n qubits and L layers for each of the three circuits. Table 2
shows the expressibility and entangling capability of each PQC studied in this paper with layers L = 3.
Intuitively, increasing the number of layers L of a PQC should improve the performance of the compression,
consequently also requiring more computational time while training the circuit. However, for expressibility and
entangling capability, the circuits can reach a saturation point, whereby increasing the number of layers of the
PQC does not improve the metrics or the PQC’s performance. In this study, we look at PQCs constructed using
the metrics mentioned above, as well as ease of implementation using IBM’s Qiskit programming language. The
differences between the PQCs is further discussed in the results section of the paper. Two of our PQCs are more
resource intensive and better suited for simulations (PQCs 2 and 3 in figure 3(A)), and one PQC that can be
applicable on NISQ devices for small input sizes (PQC 1 in figure 3(A)). figure 3(B) shows this implementation
for 3 qubits, run on an IBMQ device [19].

2.4. Classical optimizer
Itis important to understand how a classical optimizer works in order to compute the run time of our algorithm.
We calculate the number of times our circuit runs per epoch by examining the Analytical Quantum Gradient
Descent (AQGD), an IBM Qiskit component that performs gradient descent optimization [34—36]. One epoch
involves running every image in the training dataset once through the compression circuit. After an image is run,
the optimizer takes the output observable, (B), and separately conducts two more runs of the circuit for each
parameter in order to calculate the gradient. We employ the parameter shift rule, where for each parameter 6,
the circuit is run once with a positive shift 6; +- A6, giving the output <]§>]+, and another run with a negative shift
t; — ABj, giving the output <1§)]_ 5 A0 = 0;- /2. A schematic of this procedure is shown in figure 1 of [35]. The
gradient of the observable (B) is then given by equation (6):

a(B) (B — (By

00; - 2 ' ©®

(B) = (B) —n- V(B). @)

Calculating equation (6) for all parameters gives us the total gradient V (B). We calculate the next step in the
gradient descent with equation (7), where (B) is the new observable, (B) is the current observable, and 7 is the
learning rate. The learning rate is the coefficient of the gradient update, whereby increasing its value results in
larger step sizes for the gradient optimization. Once the new observable (B) is found, gradient descent is used to
find new adjusted parameters ¢;’ used for the next iteration of training, i.e. 6,1 — 6, o —nV (B)'[37]. In this
study, (l§> is the expectation value of the measured ancilla qubit (from the SWAP test), as shown in figure 2(B).

The total number of times a circuit is run per image involves 1 run of the original circuit, and 2 runs of the
circuit per parameter to calculate 9 (B) / 00;. This operation can be performed for many iterations of the
optimizer, adjustable by an AQGD hyper-parameter. So for the full training dataset, the number of times we run
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Figure 4. A (for simulations): 6 sample images from our 4 X 4 pixelated image dataset. The rows and columns are labeled by {00, 10,
01, 11}, and |(¢c), c2), (1, 12)) indicates the pixel label by the two column (row) bits ¢; ¢, (11 12). B (for device): 6 sample images from
the 2 x 4 bar-and-stripe pattern dataset. Here, |(c}, ¢,), ;) indicates the pixel label by the two column bits ¢; ¢,, and single row bit 7.

the circuit per epoch is given by:

A’jobs = ((2 ' Nparams + 1) ' I\]images) : Mtery (8)

where Njg, is the maximum number of iterations of the optimizer, Njmages is the number of images in the training
dataset that the training circuit goes through in one epoch, and Np,rams is the total number of parameters in the
PQC. Here, Ny, is equivalent to number of shots (circuit runs + measurement) the optimizer takes to calculate
the average cost function in equation (1). For all simulations in this paper, the maximum number of iterations,
Njter, Wwas set to 10.

3. Data encoding

3.1. Data for simulations

In order to train the network to efficiently compress quantum data, we use a data set consisting of black and
white pixelated images following specific rules. For the simulations, we use 4 x 4 pixel images where all squares
touching the border are either black or white, creating a ‘frame’ around the 4 central squares, thereby
functioning as a single pixel. The number of arrangements in the full dataset is then dependent on the central 4
squares and the frame, yielding a total 2° variations. Figure 4(A) shows 6 examples out of 32 total images. Using
4 x 41images (16 pixels) allows us to represent each image as an equal superposition state of 4 qubits, giving us 16
total states for the 16 pixels. The phases on each state encode the different images by the following sign
convention: phases on the superposition states go as (—1)", where n = 0 for a black pixel (positive phase), and

n = 1 for a white pixel (negative phase). Phases on the pixels are assigned left to right, and top to bottom,
following the convention in Tacchino et al (2019) [21]. This encoding of pixels creates a dataset of unique
linearly independent vectors encoded using 4 qubits, which we then compress down to 3,2 and 1 qubitin our
simulations. The border rule on the dataset ensures a specific pattern for the images, and limits the dataset to size
2° instead of 2'°. The density matrices generated from the quantum states are discrete, and allow for efficient
and lossless compression to a more continuous latent space. In figure 4(A), the top-right image would have the
following associated superposition state: —0.25/0000) — 0.25/1000) — 0.25/0100) — 0.25|1100) — 0.25|

0010) -+ 0.25/1010) -+ 0.25]0110) — 0.25|1110) — 0.25]0001) — 0.25|1001) -+ 0.25/0101) — 0.25|1101) — 0.25)|
0011) — 0.25[1011) — 0.25/0111) — 0.25[1111).

Having established our dataset and our methodology for distinguishing different quantum states for each
image, we now utilize IBM’s Qiskit programming language to produce these states for the simulator. Qiskit’s
simulator includes a built-in function for complex amplitude initialization, called Initialize [36]. This Initialize
function first takes the desired initialized quantum state to the zero state [0)“” in the computational basis. The
gate sequence that accomplishes this is then implemented backwards after resetting the qubits, taking the |0)*”
quantum state to the desired initialized state. Hence, Initialize is not a unitary gate, but a resource intensive
Qiskit instruction that iteratively disentangles qubits from the register one by one. Since manually assigning
control-not and control-phase gates to get the desired state for each 4-qubit image can become cumbersome, we
opted for using the Initialize function for our 4-qubit simulations.

Encoding of complex image datasets has been studied extensively [22—24], as well as using QRAM as a future
prospect for algorithm implementation (QRAM currently hasn’t been physically realized) [38, 39]. Generally
speaking, for any arbitrarily large or complicated dataset, exp(n) operations would be necessary to encode the
information into n qubits. Our focus for this paper is studying the efficiency in training and compressing
quantum data using not only Qiskit’s simulator, but IBMQ’s quantum chips as well; efficiency in dataloading via
simulation has been studied by [13]. Hence, for our experimental realization, we opted for a dataset that is easily
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implementable on a quantum chip with encoding via just a few CNOT and CZ gates, as discussed in the next
section.

With a total 32 images, we split our dataset with 14 images for training, and 18 images for testing. We
augmented the training images by duplicating the dataset, shuffling the list, and picking a small batch of images
atatime to train, thereby enabling the training network to train on each image multiple times through one
epoch. In total, we trained the network using 42 images with batch size of 7. All simulations were run for 40
epochs with a fixed learning rate of 0.05.

3.2. Quantum device implementation
Due to limitations in quantum hardware (number of qubits and qubit connectivity), we created a smaller 2 x 4
pixel image dataset for compression when working with IBMQ. This involved encoding 8 pixels into a 3-qubit
superposition state, using the same phase encoding scheme as done for the 4-qubit images. The dataset consists
of 10 training images with bar and stripe patterns, where the black/white pixels form horizontal bars, or vertical
stripes, but never both. Sample of 6 images are shown in figure 4(B). The top-right image would have the
following associated superposition state: 0.35355|000) — 0.35355|100) + 0.35355|010) — 0.35355|
110) + 0.35355|001) — 0.35355|101) + 0.35355|011) — 0.35355|111). Similar to the 4 x 4 image dataset, we
augmented this dataset to 20 total training images. We used the PQC shown in figure 3(B), and compressed the
3-qubit superposition state down to 2 qubits. For comparison, this image dataset was compressed with a
simulator as well, using the same optimizer and training network hyper-parameters as for the quantum device.
For this study, we used the IBMQ ‘Casablanca’ chip, which is one of the IBM Quantum Falcon Processors [19].
Unlike ideal simulators, we are constrained by limited connectivity and noisy qubits on real devices. Hence,
experimental realization for QAE meant that generalizing data encoding for arbitrary image data sets was outside
the scope of this paper. Similar to[21], we opted to tailor a specific data set whose images could be individually
encoded via one to three applications of CNOT and CPHASE gates. To maximize the efficiency of the training
network, the data encoding initialization circuit (our combination of CNOT and CPHASE gates), and the
parameterized quantum circuit, were transpiled first before training the network on the quantum chip using
Qiskit’s Transpiler[36].

4, Results

Results from our simulations and device experiments are split into two subsections. The first covers the
performance and run time of the compression algorithm for the simulated runs. The second subsection goes
over the performance and run times of the algorithm for the IBMQ experiment.

4.1. Simulations

4.1.1. Compression efficiency

Visualizing an image undergoing compression and decompression allows us to gauge the performance of our
compression algorithm. The original input image and the latent space are visualized via density matrices to show
the discrete or continuous nature of the Hilbert space. For the 3 PQCs outlined in figure 3(A), each one was
trained with the Qiskit simulator using layer values of L = 3, 5, 7, along with three compression ratios (4 qubits
compressed to 3, 2, 1 qubit(s), where the ratio is defined as #iigial/ compressed)» giving a total of 27 full training
simulations. We cover all experimental results when discussing figure 7 later on. Figure 5 illustrates sample of
our simulation results for a single test image, shown as density matrices. The leftmost column shows the example
4 x 41image and the associated density matrix visualized asa 16 x 16 matrix (p = Y.;p;|¢) (¢|). The density
matrices take on values in the range { —0.0625, 0.0625}, with pj,isia taking discrete values 1/16. Similar to the
original QAE paper [18], we only show the real component of the latent and decompressed density matrices in
order to compare to the original, which has no complex components to begin with. For our purpose, this
visualization should work with the complex components as well.

The top third section of figure 5 shows the simulation results for Circuit 1. The six cells display the latent
space and the decompressed density matrix of the example image for two different compression ratios and PQCs
atdepth of 7 layers. The size of the latent space corresponds with the compression ratio; for the 4 to 3 qubit
compression, the latent space is an 8 x 8 matrix. In general, the latent spaceis 2" x 2™, where m is the number of
compressed qubits. The forms of the latent space differ for each PQC, regardless of achieving a high fidelity
compression. In each case, we decompress back toa 16 x 16 density matrix, with the aim of recreating the
original density matrix shown in the leftmost column. The latent space is continuous, while the 16 x 16 density
matrices is discrete. The discrete nature in the initial density matrix is what allows for data compression down to
a continuous mixed state, potentially without losing information. Theoretically, the data meets the criteria for
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Figure 5. Simulations: density Matrices for single test image through different compression ratios and PQCs. We show a sample of six
results from all our experiments, showing a visualization of the latent space, and the subsequent decompressed image via the real
components of their density matrices.
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Figure 6. Simulations: loss curves from simulations for Circuit 3 with the three compression ratios, and layers L = 3,7. We minimize
the cost function to approximately 0.02 for 4-to-3 qubit compression with 7 layers.

lossless compression even for the 1 qubit compression since we would have one linearly independent vector
compressed down to a latent space size 2.

Hence theoretically, there should be no information loss across each compression ratio. In practice, figure 5
shows that the greater the compression ratio, the worse the compression algorithm performs We show later in
figure 7 that conversely, increasing the number of layers of the PQC decreases loss of information, and improves
compression efficiency. Figure 5 shows results from 7 layers of each PQC, where Circuit 3, the circuit with the
best measurements for expressibility and entangling capability, performs best across different compression
ratios for this image. Ultimately, for any image in the dataset, information loss is proportional to increase in
compression, and inversely proportional to number of PQClayers.

This relationship can be seen more clearly in figure 6 for Circuit 3. The cost function relates to the amount of
information lost from data compression via equation (1). Hence, minimizing the cost function is directly related
to minimizing information loss, and true lossless compression would see the cost function go down to zero.
Figure 6 shows loss curves from simulation of Circuit 3 for the full dataset. At the end of 40 epochs the smallest
compression ratio (4 to 3 qubits), with 7 PQClayers, yields the least information loss, minimizing the cost
function to 0.02.

While figure 5 visualizes density matrices for a single image, and provides an insight into how the
compression algorithm performs across a sample of the 27 simulations, figure 7 gives further insight by
quantitatively describing how well the PQCs performed on the full test dataset across all experiments. Figure 7
plots the fidelity between the original and decompressed images from the full test dataset. Here, we compare the
direct results of compression efficiency from simulation per each test image. The box plots show the spread in
fidelity measurements across the dataset, with the box containing 50% of the data, and the horizontal black bar
as the median value. The highest fidelity measure across all simulations is 0.98, while the lowest is 0.65. For the
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Figure 7. Simulations: fidelity measurements between the original and decompressed density matrices of the full test dataset for the 27
simulations. A score of 1.00 indicates that the original and decompressed image are identical. We show the spread in fidelity scores
across the test dataset for each compression ratio, PQC, and number of layers. The circled dots in some of the box plots are marked as
outliers (outside 1.5 times the interquartile range above the upper quartile and below the lower quartile).

original density matrix of an image p, and the decompressed density matrix o, the fidelity is calculated using
equation (9) [40]. The maximum fidelity of 1 means the final and initial image is identical, and the compression
is lossless.

F(p, 0) = Tr(yp/?op'/?). ©9)

In figure 7, the general trend for PQCs with 3 layers (the leftmost column) shows Circuit 3 performing
slightly better than the other two. Since the entangling capability and expressibility measures for Circuits 2 and
3 are more favorable compared to Circuit 1 (table 2), we see this reflected in the fidelity measures, where Circuit
2 and 3 generally outperform Circuit 1. This can clearly be seen in the simplest case of 4 to 3 qubit compression
with 3 layers of PQC (top left of figure 7). This result agrees with Hubregtsen et al (2021), who found a strong
correlation between classification accuracy of their circuit with expressibility of the circuit [41]. Even in the
general case, Circuit 3 performs slightly better than the other two circuits given that its median fidelity measure is
the highest or near highest in all cases. Additionally, aside from the simulation with the smallest compression
ratio and the most number of PQC layers (top right of figure 7), Circuit 1 has the largest spread in fidelity
measures. Increase in spread of fidelity measures generally corresponds with increase in compression ratios, but
not with increase in number of layers, even if the median fidelity score improves with number of PQC layers.

While the increase in number of layers can improve the compression efficiency, each PQC behaves
differently to this increase, as evident in figure 8. The overall compression efficiency of Circuit 1 is most
susceptible to change with number of layers, shown as red lines in the plot. Increasing the number of layers for
Circuit 2 and 3 (blue and green lines, respectively) does not significantly change the compression efficiency of the
algorithm using the simulator on the full test data set, albeit increasing the running time.

4.1.2. Run time

One major focus of this study was to successfully compress quantum data near-losslessly, and quantify how
changing the training network hyper-parameters affect information loss and compression efficiency. However,
in practice, one must also take into account the running time of the algorithm in question when working with
real data. In figure 9, for the 4 to 3 qubit compression, we compare simulation data for the total time taken to
train the three PQCs across 40 epochs, with 10 iterations of the optimizer. Circuit 1 is the most practical of the
three, taking the least time to train and minimize the cost function. It also has the least spread in training time
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Figure 8. Simulations: loss curves from simulations for all three circuits for the 4-to-3 qubit compression, with layers L = 3,5, 7. The
spread in the loss curve is largest with Circuit 1 (red), where increasing the number of layers has the largest effect in minimizing the
cost function.
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Figure 9. Simulations: total time (in hours) across 40 epochs for the 4-to-3 qubit compression with the 3 PQCs. Circuit 1 has the
smallest spread. Circuit 3 with 3 layers is has a faster training time than Circuit 1 with 7 layers, while Circuit 2 is slowest overall.

Table 3. Simulations: avg. total time per epoch (Hours).

Circuit 1 Circuit 2 Circuit 3
3 Layers 0.37 0.91 £ 0.01 0.79
5 Layers 0.67 £ 0.03 1.98 £ 0.15 1.76 £ 0.01
7 Layers 0.87 £ 0.01 3.40 3.22

when increasing layers. These characteristics are attributed to its shallow gate depth, which is also reflected in
poorer entanglement and expressibility scores. Conversely, Circuit 2 is the slowest circuit across all layers, with
the slowest iteration of Circuit 1 being faster than the fastest iteration of Circuit 2.

To study the applicability between the other two circuits, 1 and 3, we examine two competing aspects
between the two PQCs: speed versus performance. The median fidelity measure for Circuit 3 in the the top left
box (3 layers) of figure 7 is 0.92, while the median fidelity measure for Circuit 1 in the top right box (7 layers) is
0.98. That is approximately a 6% improvement in the median fidelity for Circuit 1. Consequently, the average
time per epoch between these two circuits, shown in table 3, shows Circuit 3 (3 layers) is approximately 9% faster
than Circuit 1 (7 layers). So for simulated quantum data compression, to minimize the run time while
maximizing performance, Circuit 3 with fewer layers is more favorable. Generally, PQCs with better
expressibility and entangling capability measures, like Circuit 3, tend to have higher gate depths, and are only
suited to simulated data compression. Provided a 6% increase in information loss can be tolerated by a particular
dataset or problem, simulating a more complex PQC with few layers becomes useful. Training networks run on
quantum devices, however, requires both faster run times and shallower gate depths, with a preference for
overall shallower gate depth over number of layers implemented. Hence, Circuit 1’s design (shown in
figure 3(B)) was chosen to run data compression on the IBMQ quantum device.
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Figure 10. Top: loss curves from IBMQ Device and simulator for 3-to-2 qubit compression with 1 iteration of the optimizer, learning
rate of 0.05, and 3 layers of PQC in figure 3(B). Bottom: fidelity measures from IBMQ Device and simulator of test dataset with
parameters from cost function minima at the end of 20 epochs.

4.2.IBMQ device

4.2.1. Compression efficiency

Due to the longer training time on the quantum device - primarily due to Queue Time - the network was trained
on the device for 20 epochs. Figure 10 (top) shows the loss curves for the device and simulator, with the vertical
line at 20 epochs. We compare the two to show the difference in compression efficiency between the latest
superconducting quantum hardware and a simulator. At the end of 20 epochs, the minima of the cost function
for the device was over 3 times higher than the cost function for the simulator. The simulator trained the
network out to 40 epochs, whereby the cost function was minimized to 0.04, indicating that the 3-to-2 qubit
compression of this 2 x 4 dataset is indeed near-lossless with this particular set of hyper-parameters. Figure 10
(bottom) shows the fidelity measurements after training with the simulator and the device for 20 epochs. The
median fidelity for the IBMQ device is 0.37, while the median fidelity for the simulator is 0.68, around 1.84 times
the value.

4.2.2. Run time

For our experiment on IBMQ, we have to calculate the time cost in more detail. This requires a closer look at the
number of jobs the training network sends to the device. In our case, three layers of the circuit from figure 3(B)
means Nparams = 12, and from the training dataset, Nimages = 20. So number of jobs sent to device is given by
equation (8) as:

Nj=(2-12 4 1) - 20) - Nier = 500 - Nicer. (10)

So for the simplest PQC with 3 layers, as well as our simple image data set compressing 3 qubits down to 2, the
number of jobs with just one iteration of the optimizer means 500 jobs were sent to the device per epoch. For 40
epochs, that is 20,000 total jobs sent to the device. Each job is one run of the entire circuit for a set amount of
shots (set to a maximum of 8192 shots). The time per job for the training network run on the device, with one
iteration of the optimizer, is broken up into several processes, shown in table 4. Omitting the queue time for the
job sent to the device, since it can vary greatly depending on number of users on the device, the average time per
job is then 22.18 seconds. For comparison, we ran this dataset through the compression algorithm using a
simulator with 1 iteration of the optimizer. The simulator took an average of 7.46 seconds per job (one run of the
circuit with 8192 shots). Therefore, the device takes roughly 3 times longer per job compared to the simulator for
the same dataset, PQC, and hyper-parameters.
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Table 4. IBMQ quantum chip: avg. job time (seconds).

Create time Queue time Run time Total time

0.66 46.09 20.28 68.27

5. Summary and conclusion

In the Noisy Intermediate Scale Quantum (NISQ) era, qubits are expensive resources, and multi-qubit
operations are fragile. By leveraging classical dimensional reduction techniques such as autoencoders, quantum
data can be compressed to fewer qubits. Reducing the dimensionality of this problem can allow us to utilize
fewer qubits, aiding in more efficient use of resources. However, quantum autoencoders face challenges in
efficient data compression even if data sets match the theoretical limit for lossless compression [17]. Application
of quantum data compression needs to address consequences from choice of data, parameterized quantum
circuits, and optimizer. In this paper, we successfully demonstrate near-lossless quantum data compression
using a simulator. We chose datasets with linearly independent vectors following specific patterns, visualized as
black-and-white pixel images. Wavefunctions generated from encoding these images create density matrices
with discrete values, allowing for efficient compression down to continuous latent spaces. Three PQCs were
tested on the quantum autoencoder framework [ 18], using Qiskit’s Analytical Quantum Gradient Descent
optimizer. The PQCs were chosen for different gate depths, number of parameters, number of two-qubit gates,
and their performance quantified using expressibility and entangling capability measures [20].

While in principle one can make a direct connection between real-device trainability and expressibility,
thereby allowing for more general predictions in PQC performance[33], we found that hardware-specific
challenges tailored the scope of our paper to studying trainable PQCs on IBMQ’s quantum chips. For our
experimental realization, we found that contrary to simulations, complex, more expressible circuits tended to do
poorly due to larger gate depth. Hence on IBMQ chips, it became balancing act of designing a circuit that had
high enough expressibility, but low gate depth. For our experimental studies, we don’t discuss in detail
predictability in compression efficiency as a function of expressibility, since gate depth of the PQCs ended up
being far more important than any other metric. We therefore don’t make a direct connection between real-
device trainability and expressibility, but instead connect trainability to circuit depth, compression ratio, and
choice of classical optimizer. Our results show that experimentally, these end up being more influential metrics
for data compression for the specific architecture of IBMQ devices.

The summary of our compression results is as follows: our results show that while all three PQCs manage to
efficiently compress the test data set with near-lossless compression using a simulator, their performance
depended on the compression ratio, number oflayers, and running time. For example, Circuit 3 with 3 layers
had a 6% higher cost function minimum compared Circuit 1 with 7 layers, but was 9% faster in training time.
Only if a 6% increase in information loss can be tolerated, does a more complex PQC with few layers becomes
useful, since the speed-up in training can be beneficial. However, for a fixed number of layers, training on a
quantum device finds a faster circuit more useful than an efficient one. So although circuits with higher
expressibility and entangling capability, like Circuits 2 and 3, generally perform better with larger compression
ratios, their complexity leads to noise washing out our results. For devices with limited qubits and connectivity, a
simple circuit with smaller gate depth, like Circuit 1, is more NISQ-friendly.

The summary for run times is as follows: run times and training performance between an IBMQ quantum
device and the simulator was done using the 3-qubit version of Circuit 1 for the PQC, shown in figure 3(B).
Using a simulator with this PQC on our smaller data set, and one iteration of the optimizer, we compressed from
3 to 2 qubits near-losslessly by minimizing the cost function to 0.04, as seen in figure 10 (top). When run on an
IBMQ device, the loss curve minima was a little over 3 times larger than the minima for the simulator after 20
epochs. Additionally, the device took three times longer per job compared to the simulator, when omitting
queue time. Ideally, increase in total run time due to the job queue can be mitigated by reserving time on the
device. Weare still at a stage in the NISQ era where not only the noise and limited connectivity affect quantum
algorithms, but processes within classical optimizers and data encoding as well.

In conclusion, efficient compression of quantum data on a quantum device will require careful construction
of PQCs based on parameters examined in this paper, as well as choice of classical optimizer. In this paper, we
examined the performance of our compression algorithm for different PQCs, and IBMQ’s Analytical Quantum
Gradient Descent optimizer.

Future work will involve integrating other gradient descent optimizers into Qiskit that promise a faster
convergence, such as the Quantum Natural Gradient proposed by Stokes et al (2019) [37]. Upon compressing
quantum data efficiently, future work will also involve decompressing latent states into any desired output state
by implementing a parameterized circuit for decompression as well. If these compressed states have missing
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information from the original input, any operation performed using the latent space would compound
inaccuracies in the final result. It is essential that we understand how quantum autoencoders operate on NISQ
devices, specifically in terms of run times, and compression efficiency, as shown by our experimental results.
Hence, the goal of this paper to practically achieve lossless compression is important for future practical
applications of quantum data compression.
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