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Abstract
Weexamine information loss, resource costs, and run time frompractical application of quantum
data compression. Compressing quantumdata to fewer qubits enables efficient use of resources, as
well as applications for quantum communication and denoising. In this context, we provide a
description of the quantum and classical components of the hybrid quantum autoencoder algorithm,
implemented using IBMsQiskit language. Utilizing our owndata sets, we encode bitmap images as
quantum superposition states, which correspond to linearly independent vectors with density
matrices of discrete values.We successfully compress this datawith near-lossless compression using
simulation, and then run our algorithmon an IBMQquantum chip.We describe conditions and run
times for training and compressing our data on quantumdevices, and relate trainability to specific
characteristics and performancemetrics of our parametric quantum circuits.

1. Introduction

In the Information Age [1], data compression has become a powerful tool for dealingwith datasets large in
number, volume, and variability. Reducing the dimensionality of large datasets allows for efficient use of
resources, as well as extraction of useful features. Classical autoencoders are a type of artificial neural network
used extensively for feature extraction [2, 3], denoising [4, 5], and data compression or dimensionality reduction
[6–8].

Classical autoencoders, as well as variational autoencoders [9], can be utilized to helpmitigate some of the
limitationswefind in quantum computing [10].With small numbers of noisy qubits in current quantum chips,
implementation of quantumalgorithms can benefit greatly from efficient use of qubits for data encoding and
computation.Quantumdata compression has been studied extensively as ameans to efficiently use qubits [11],
denoising quantum states[12], as well as image-related autoencoders for classification and anomaly detection
[13–15].We can also utilize quantumdata compression in the field of quantum communication. Compressed
quantumdata can be sent between two parties on a public channel, with a private key used to compress or
decompress the data, similar to sending classical compressed data over a network [16].

The theoretical limit to losslessly compressing quantum information down to a latent space requires the
number ofmaximum linearly independent vectors from the input state to not exceed the size of the latent space
[17]. In practice however, even if wemeet this criteria, wefind that the performance and efficiency of quantum
data compression is limited by the choice of parametric circuit, the classical optimizer, and the gate depth of the
circuit.

In this study, we investigate information loss in application of quantumdata compression utilizing the
quantumautoencoder as formulated in Romero et al (2017) [18].We study the data compression performance
of three parametric circuits on a quantum simulator, and compare the times required to train the network.We
then look at a simpler quantumdata compression scheme to implement on real qubits that can yield a
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reasonable training time, with results subject to noise from the quantumdevices. Because of long training times
necessary for quantumdata compression, results from a real device face considerable information loss from
noisewhen compared to simulations. Thus, reduction of gate depth can helpmitigate expensive resource costs.
We test the parameterized circuits on an IBMQquantumdevice [19] in order to understand the running time of
the data compression training networkwhen compared to simulations.

In total, we study three parameterized circuits, and compare their performance againstmeasures of
expressibility and entangling capability as described in Sim et al (2019) [20]. Our simulations demonstrate near-
lossless compression of quantumdata using an image dataset, where each image is encoded as a unique
superposition state, using a scheme similar to [21], described in section 3. Complex datasets incorporating color
pixels have been encoded to qubits using flexible representation of quantum images (FRQI) [22–24]. In general,
when using simulators, complex data sets can be encoded using translation transforms [22], or using enhanced
data loading, which encode feature vectors that characterize amodel [13]. These data encoding procedures rely
on the ideal conditions provided by simulators. In order to utilizeNISQ-era quantum chips, we are constrained
by limited connectivity, and a need for small gate-depths. Hence, our dataset was constructed to easily encode
simple images using one to three applications of CNOTandCZ gates, described in section 3.Our results gauge
the efficacy ofmodern quantumhardware in compressing quantumdata, and aim to improve our
understanding of quantumautoencoders onNISQdevices.

The layout of this paper is as follows: section 2 covers the data compressionmethod, which includes the
generalQuantumAutoencoder framework, the parameterized quantum circuits, and the optimizer we use for
this study. Section 3 covers our dataset and data encoding for the simulation and quantum chip. Section 4 covers
results from all our simulations and experiments, and discusses the results. In section 5we summarize the paper
and provide future prospects for this research.

2.Method

2.1. Classical autoencoder
An autoencoder is an artificial neural network that is used to learn the representation (or features) of an
unlabeled dataset. The encoder improves and validates the representation by regenerating the input. It is a
dimensionality reduction algorithm that takes in data and compresses it to a latent space.We can think of the
latent space as containing the ‘essence’ of the input data - a compressed representationwhere similar data points
are closer together in space. The decoding network then extracts features from the latent space and reconstructs
the image, ideally without any noise or unwanted artifacts. A full autoencoder network consists of an encoding
neural network, a latent space, and a decoding network, as shown infigure 1.

2.2.Quantumautoencoder
The quantumautoencoder (QAE) is a hybrid algorithm, where the encoding and decoding neural networks of a
classical autoencoder are replaced by quantum subroutines that use quantumdata, utilizing parameterized
unitary gates and entanglement. The circuit’s aim is to compress information from an input state |j〉 to amixed

compressed state ρB, labeled infigure 2(A) asB.With optimal parameters

q, we can get lossless compression,

where all the information from |j〉 is compressed down into state ρB. The remaining ‘trash’ state is an empty
state (|0〉⊗n), shown asA infigure 2(A). To do this, the overlap between the trash state and a reference |0〉⊗n state
is computed, shown as |ψ〉 infigure 2(A). Extracting the trash stateA requires taking the partial trace on the

Figure 1.The classical autoencoder schematic broken into 5major components; we start with 4 nodes, compress down to 2 nodes, and
decompress back to 4 nodes.
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mixed stateUρU†with respect toB, whereU is our parameterized circuit, and ρ= |j〉〈j|. The overlap,
∣ ( )∣†y r yá ñTr U UB , is ameasure offidelity between |ψ〉 andA. Themaximumof this fidelitymeasure is 1, which

ensures that the trash state is empty, and the compression is lossless. So the task of the classical optimizer is to
minimize the cost function J(U), defined as

( ) ∣ ( )∣ ( )†y r y= - á ñJ U Tr U U1 . 1B

Within the quantum circuit, the overlap between the reference (|ψ〉) and trash (A) states is computed using the
SwapTest [25], as shown infigure 2(B). The SwapTest is a quantumoperation thatmeasures the difference
between two quantum states. Fromfigure 2(B), wemeasure out the ancilla qubit, which computes the overlap
between the two states, reference and trash, using a control-swap gate. If the two states are orthogonal, then the
probability of the ancilla qubitmeasured as |0〉 is 1/2 (J(U)= 1/2), while if the two states are the same, the
probability ofmeasuring the ancilla as |0〉 is 1 (J(U)= 0) [26].

Once the training circuitminimizes the cost function, we get thefinal set of parameters

q that compresses

the dataset as efficiently as the parameterized quantum circuit (PQC) allows. The performance of the PQC is
measured by two circuit descriptors, entangling capability and expressibility [20], discussed in the next section.
The success of the algorithm is gauged by using newqubits to decompress the latent space back to the original
state. Sincewe are gauging the efficiency of the compression, the decompression circuit is not a training network,
unlike a classical decoding network. In our case, we simply use the optimal set of parameters to implementU† on
the qubits, as shown infigure 2(C), thereby avoiding a second training network. The optimal parameters take in
newqubits and the compressed state ρB, and decompresses the data back to the original input state |j〉. For this
study, wemeasure the fidelity between the original input and the final decompressed output to understand
information loss and compression efficiency.

2.3. Parameterized quantum circuit
In order to efficiently compress our images into fewer qubits, we quantitatively describe certain properties of the
PQC such as performance and resource costs. Using these properties aids us in constructing our circuit with
optimal gate sets, which in turnminimize the cost function of the training circuit while limiting computational
complexity. First, we look at two circuit descriptors, expressibility and entangling capability, as defined in Sim
et al (2019) [20]. The authors show expressibility and entangling capabilitymeasures for 19 PQCs in their paper
[20], one of whichwe use for our simulations (figure 3(A)Circuit 2).

After encoding the data as quantum states (a stepwewill cover in the following section), we apply the
parameterized circuit that best ensures that the data encoding preserves all features of the original data. Thus, an
ideal PQCmust have the ability to generate states that are well representative of the full Hilbert space. For a single
qubit, thismeans that the PQCmust have the ability to explore the full Bloch Sphere. The quantity thatmeasures
this property is called the expressibility ò of a circuit [20]. Expressibility ismeasured by generating a sampled
distribution of state fidelities of the parameterized circuit, and a sampled distribution usingHaar random states
(uniformdistribution of random states) [27].We thenmeasure theKullback-Leibler (KL)divergence [28]
between the two distributions, given by equation (2). TheKL divergence, or relative entropy,measures how two
probability distributions, P andQ, differ fromone another, given by equation (3). A divergencemeasure of

Figure 2. (A): theQAE schematic with the quantum component on the left containing the input state, PQC, and the overlap. The
classical component is on the right containing the computation of the cost function and the optimizer. (B): TheQiskit circuit for the
quantum subroutine, showing the SwapTest to compute the overlap. (C): Decompressing the compressed quantum state by bringing
in a new qubit, and using optimal parameters for lossless decompression.
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DKL= 0 implies the two distributions are the same.Hence, the smaller the KL divergence, or ò, themore
expressible the parameterized circuit.

In equation (2),PPQC(F; θ) is the probability distribution from fidelities resulting from sampling states from

the parameterized circuit; F is the fidelity, calculated using sampled parameters

q.PHaar(F) is the probability

distribution from fidelities resulting from sampling states fromHaar random states.

( ( )∣∣ ( )) ( )q= D P F P F; . 2KL PQC Haar

( ∣∣ ) ( ) ( )
( )

( )å=D P Q P x log
P x

Q x
. 3KL

x
2

For the entangling capabilitymeasurement, theMeyer-Wallach (MW)measure [29] is used, a single scalar
measurement for pure-state entanglement [30]. The entanglement of each individual qubit ismeasuredwith the
remaining qubits in the system.One limitationwith this version of entanglementmeasure is that it cannot
distinguish between entangled states that are fully inseparable, and entangled states that can be separated into
subsystems. This is in contrast to bipartite entanglementmeasures such as concurrence [30]. However, in this
study, we aremeasuring the global entanglement of the PQCs, and the ease of computation and scalability [20] of
theMWmeasuremakes itfitting for our experiments. The following derivation of entangling capability relies on
theMWmeasure. In the Brennen form [31], this distancemeasure is written as

(∣ ) ( [ ]) ( )åy rñ = -
=

Q
n

Tr
1

2 1 , 4
k

n

k
1

2

where [ ]rTr k
2 traces out all but the one-qubit reduced densitymatrix of the kth qubit. For set S of sampled

circuit parameters θi, the entangling capability E [20], derived from theMWmeasure, is then given by:

∣ ∣
(∣ ) ( )å y= ñ

q
q

Î

E
S

Q
1

. 5
Si

i

For this study, we examine three different PQCs to implement into the quantum subroutine. Note that in
principle it is possible to build an arbitrarily complex PQC capable of achieving lossless or near-lossless
compression.However, complex PQCswith large gate depths are detrimental to quantumdata compression in
theNoisy Intermediate ScaleQuantum (NISQ) era [32]. Hence, we aim to build PQCswith certain
characteristics inmind thatmake quantumdata compressionmore achievable.

In principle, one can generalize a relationship of PQCperformance to ametric like expressibility in the
context of device architecture and trainability. In this case, we can perhaps conjecture in advancewhether a PQC
is trainable on specific hardware, and how that scales with problem size. Studies on quantumneural network
training landscapes showhow randomized PQCs can be detrimental to trainability as number of qubits
increases[33]. Generalizing these relationships can be difficult with experimental realization due to hardware
and data specific challenges, and is outside the scope of our study. Using architecture-agnostic simulators, we
statistically estimatemeasures of expressibility and entangling capability similar to themore general studies of
PQCs by [20]. Our study numerically verifies the relation between expressibility to the performance of PQCs in

Figure 3. (A): the 3 ParameterizedQuantumCircuits (PQCs)weuse for our simulated data compression schemes. The circuits are
namedCircuit 1, Circuit 2 (from [20]), andCircuit 3, indicated by the label on the bottom right of each circuit. (B): PQC for 3 qubits
based onCircuit 1, used for implementing 3 to 2 qubit data compression on an IBMQdevice.
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the context of compressing quantumdata. Our results empirically verify that in an ideal simulator (lossless all-
to-all connectivity), themore expressible the circuit, the better the efficiency of quantumdata compression.

Alongwith expressibility and entangling capability, we describe the performance of our circuits by
examining the resource costs for each run. Figure 3(A) shows the three PQCs used for simulations in this study,
each composed of 4 qubits; initial parameters are chosen randomly from full range of theta values. Table 1 shows
the resource costs per circuit for the general case of n qubits and L layers for each of the three circuits. Table 2
shows the expressibility and entangling capability of each PQC studied in this paper with layers L= 3.
Intuitively, increasing the number of layers L of a PQC should improve the performance of the compression,
consequently also requiringmore computational timewhile training the circuit. However, for expressibility and
entangling capability, the circuits can reach a saturation point, whereby increasing the number of layers of the
PQCdoes not improve themetrics or the PQC’s performance. In this study, we look at PQCs constructed using
themetricsmentioned above, as well as ease of implementation using IBM’sQiskit programming language. The
differences between the PQCs is further discussed in the results section of the paper. Two of our PQCs aremore
resource intensive and better suited for simulations (PQCs 2 and 3 infigure 3(A)), and one PQC that can be
applicable onNISQdevices for small input sizes (PQC1 infigure 3(A)).figure 3(B) shows this implementation
for 3 qubits, run on an IBMQdevice [19].

2.4. Classical optimizer
It is important to understand how a classical optimizer works in order to compute the run time of our algorithm.
We calculate the number of times our circuit runs per epoch by examining theAnalytical QuantumGradient
Descent (AQGD), an IBMQiskit component that performs gradient descent optimization [34–36]. One epoch
involves running every image in the training dataset once through the compression circuit. After an image is run,
the optimizer takes the output observable, ˆá ñB , and separately conducts twomore runs of the circuit for each
parameter in order to calculate the gradient.We employ the parameter shift rule, where for each parameter θj,
the circuit is run oncewith a positive shift θj+Δθj, giving the output ˆá ñ+B j , and another runwith a negative shift

θj−Δθj, giving the output ˆá ñ-B ;j Δθ= θj · π/2. A schematic of this procedure is shown infigure 1 of [35]. The

gradient of the observable ˆá ñB is then given by equation (6):

ˆ ˆ ˆ
( )

q
¶á ñ
¶

=
á ñ - á ñ+ -

B B B

2
. 6

j

j j

ˆ ˆ · ˆ ( )há ñ¢ = á ñ - á ñB B B . 7

Calculating equation (6) for all parameters gives us the total gradient ˆá ñB .We calculate the next step in the

gradient descent with equation (7), where ˆá ñ¢B is the newobservable, ˆá ñB is the current observable, and η is the
learning rate. The learning rate is the coefficient of the gradient update, whereby increasing its value results in
larger step sizes for the gradient optimization. Once the new observable ˆá ñ¢B is found, gradient descent is used to

find new adjusted parameters q ¢j used for the next iteration of training, i.e. ˆq q h- µ - á ñ¢+ Bt t1 [37]. In this
study, ˆá ñB is the expectation value of themeasured ancilla qubit (from the SWAP test), as shown in figure 2(B).

The total number of times a circuit is run per image involves 1 run of the original circuit, and 2 runs of the
circuit per parameter to calculate ˆ q¶á ñ ¶B j. This operation can be performed formany iterations of the
optimizer, adjustable by anAQGDhyper-parameter. So for the full training dataset, the number of timeswe run

Table 1.Circuit costs.

Circuit

Number of

parameters

Number of two

qubit gates

Circuit

depth

1 n(L + 1) nL (n + 1)
L + 1

2 4(n − 1)L (n − 1)L 6L

3 3nL nL (n + 3)L

Table 2.PQCdescriptors.

Circuit Expressibility (DKL) Entangling Capability

1 (n = 4, L = 3) 0.130 0.800

2 (n = 4, L = 3) 0.008 0.743

3 (n = 4, L = 3) 0.005 0.826
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the circuit per epoch is given by:

(( · ) · ) · ( )= +N N N N2 1 , 8jobs params images iter

whereNiter is themaximumnumber of iterations of the optimizer,Nimages is the number of images in the training
dataset that the training circuit goes through in one epoch, andNparams is the total number of parameters in the
PQC.Here,Niter is equivalent to number of shots (circuit runs+measurement) the optimizer takes to calculate
the average cost function in equation (1). For all simulations in this paper, themaximumnumber of iterations,
Niter, was set to 10.

3.Data encoding

3.1.Data for simulations
In order to train the network to efficiently compress quantumdata, we use a data set consisting of black and
white pixelated images following specific rules. For the simulations, we use 4× 4 pixel imageswhere all squares
touching the border are either black orwhite, creating a ‘frame’ around the 4 central squares, thereby
functioning as a single pixel. The number of arrangements in the full dataset is then dependent on the central 4
squares and the frame, yielding a total 25 variations. Figure 4(A) shows 6 examples out of 32 total images. Using
4× 4 images (16 pixels) allows us to represent each image as an equal superposition state of 4 qubits, giving us 16
total states for the 16 pixels. The phases on each state encode the different images by the following sign
convention: phases on the superposition states go as (−1)n, where n= 0 for a black pixel (positive phase), and
n= 1 for a white pixel (negative phase). Phases on the pixels are assigned left to right, and top to bottom,
following the convention in Tacchino et al (2019) [21]. This encoding of pixels creates a dataset of unique
linearly independent vectors encoded using 4 qubits, whichwe then compress down to 3, 2 and 1 qubit in our
simulations. The border rule on the dataset ensures a specific pattern for the images, and limits the dataset to size
25, instead of 216. The densitymatrices generated from the quantum states are discrete, and allow for efficient
and lossless compression to amore continuous latent space. Infigure 4(A), the top-right imagewould have the
following associated superposition state:−0.25|0000〉− 0.25|1000〉− 0.25|0100〉− 0.25|1100〉− 0.25|
0010〉+ 0.25|1010〉+ 0.25|0110〉− 0.25|1110〉− 0.25|0001〉− 0.25|1001〉+ 0.25|0101〉− 0.25|1101〉− 0.25|
0011〉− 0.25|1011〉− 0.25|0111〉− 0.25|1111〉.

Having established our dataset and ourmethodology for distinguishing different quantum states for each
image, we nowutilize IBM’sQiskit programming language to produce these states for the simulator. Qiskit’s
simulator includes a built-in function for complex amplitude initialization, called Initialize [36]. This Initialize
function first takes the desired initialized quantum state to the zero state |0〉⊗n in the computational basis. The
gate sequence that accomplishes this is then implemented backwards after resetting the qubits, taking the |0〉⊗n

quantum state to the desired initialized state. Hence, Initialize is not a unitary gate, but a resource intensive
Qiskit instruction that iteratively disentangles qubits from the register one by one. Sincemanually assigning
control-not and control-phase gates to get the desired state for each 4-qubit image can become cumbersome, we
opted for using the Initialize function for our 4-qubit simulations.

Encoding of complex image datasets has been studied extensively [22–24], as well as usingQRAMas a future
prospect for algorithm implementation (QRAMcurrently hasn’t been physically realized) [38, 39]. Generally
speaking, for any arbitrarily large or complicated dataset, exp(n) operations would be necessary to encode the
information into n qubits. Our focus for this paper is studying the efficiency in training and compressing
quantumdata using not onlyQiskit’s simulator, but IBMQ’s quantum chips aswell; efficiency in data loading via
simulation has been studied by [13]. Hence, for our experimental realization, we opted for a dataset that is easily

Figure 4. A (for simulations): 6 sample images fromour 4 × 4 pixelated image dataset. The rows and columns are labeled by {00, 10,
01, 11}, and |(c1, c2), (r1, r2)〉 indicates the pixel label by the two column (row) bits c1 c2, (r1 r2).B (for device): 6 sample images from
the 2 × 4 bar-and-stripe pattern dataset.Here, |(c1, c2), r1〉 indicates the pixel label by the two columnbits c1 c2, and single row bit r1.
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implementable on a quantum chipwith encoding via just a fewCNOTandCZ gates, as discussed in the next
section.

With a total 32 images, we split our dataset with 14 images for training, and 18 images for testing.We
augmented the training images by duplicating the dataset, shuffling the list, and picking a small batch of images
at a time to train, thereby enabling the training network to train on each imagemultiple times through one
epoch. In total, we trained the network using 42 images with batch size of 7. All simulationswere run for 40
epochswith a fixed learning rate of 0.05.

3.2.Quantumdevice implementation
Due to limitations in quantumhardware (number of qubits and qubit connectivity), we created a smaller 2× 4
pixel image dataset for compressionwhenworkingwith IBMQ. This involved encoding 8 pixels into a 3-qubit
superposition state, using the same phase encoding scheme as done for the 4-qubit images. The dataset consists
of 10 training images with bar and stripe patterns, where the black/white pixels formhorizontal bars, or vertical
stripes, but never both. Sample of 6 images are shown infigure 4(B). The top-right imagewould have the
following associated superposition state: 0.35355|000〉− 0.35355|100〉+ 0.35355|010〉− 0.35355|
110〉+ 0.35355|001〉− 0.35355|101〉+ 0.35355|011〉− 0.35355|111〉. Similar to the 4× 4 image dataset, we
augmented this dataset to 20 total training images.We used the PQC shown infigure 3(B), and compressed the
3-qubit superposition state down to 2 qubits. For comparison, this image dataset was compressedwith a
simulator aswell, using the same optimizer and training network hyper-parameters as for the quantumdevice.
For this study, we used the IBMQ ‘Casablanca’ chip, which is one of the IBMQuantumFalcon Processors [19].

Unlike ideal simulators, we are constrained by limited connectivity and noisy qubits on real devices. Hence,
experimental realization forQAEmeant that generalizing data encoding for arbitrary image data sets was outside
the scope of this paper. Similar to[21], we opted to tailor a specific data set whose images could be individually
encoded via one to three applications of CNOT andCPHASE gates. Tomaximize the efficiency of the training
network, the data encoding initialization circuit (our combination of CNOTandCPHASE gates), and the
parameterized quantum circuit, were transpiled first before training the network on the quantum chip using
Qiskit’s Transpiler[36].

4. Results

Results fromour simulations and device experiments are split into two subsections. The first covers the
performance and run time of the compression algorithm for the simulated runs. The second subsection goes
over the performance and run times of the algorithm for the IBMQexperiment.

4.1. Simulations
4.1.1. Compression efficiency
Visualizing an image undergoing compression and decompression allows us to gauge the performance of our
compression algorithm. The original input image and the latent space are visualized via densitymatrices to show
the discrete or continuous nature of theHilbert space. For the 3 PQCs outlined infigure 3(A), each onewas
trainedwith theQiskit simulator using layer values of L= 3, 5, 7, alongwith three compression ratios (4 qubits
compressed to 3, 2, 1 qubit(s), where the ratio is defined as ninitial/ncompressed), giving a total of 27 full training
simulations.We cover all experimental results when discussing figure 7 later on. Figure 5 illustrates sample of
our simulation results for a single test image, shown as densitymatrices. The leftmost column shows the example
4× 4 image and the associated densitymatrix visualized as a 16× 16matrix (ρ=∑ipi|ψ〉〈ψ|). The density
matrices take on values in the range {−0.0625, 0.0625}, with ρinitial taking discrete values±1/16. Similar to the
originalQAEpaper [18], we only show the real component of the latent and decompressed densitymatrices in
order to compare to the original, which has no complex components to beginwith. For our purpose, this
visualization shouldworkwith the complex components aswell.

The top third section offigure 5 shows the simulation results for Circuit 1. The six cells display the latent
space and the decompressed densitymatrix of the example image for two different compression ratios and PQCs
at depth of 7 layers. The size of the latent space corresponds with the compression ratio; for the 4 to 3 qubit
compression, the latent space is an 8× 8matrix. In general, the latent space is 2m× 2m, wherem is the number of
compressed qubits. The forms of the latent space differ for each PQC, regardless of achieving a highfidelity
compression. In each case, we decompress back to a 16× 16 densitymatrix, with the aimof recreating the
original densitymatrix shown in the leftmost column. The latent space is continuous, while the 16× 16 density
matrices is discrete. The discrete nature in the initial densitymatrix is what allows for data compression down to
a continuousmixed state, potentially without losing information. Theoretically, the datameets the criteria for
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lossless compression even for the 1 qubit compression sincewewould have one linearly independent vector
compressed down to a latent space size 2.

Hence theoretically, there should be no information loss across each compression ratio. In practice, figure 5
shows that the greater the compression ratio, theworse the compression algorithmperformsWe show later in
figure 7 that conversely, increasing the number of layers of the PQCdecreases loss of information, and improves
compression efficiency. Figure 5 shows results from7 layers of each PQC,where Circuit 3, the circuit with the
bestmeasurements for expressibility and entangling capability, performs best across different compression
ratios for this image. Ultimately, for any image in the dataset, information loss is proportional to increase in
compression, and inversely proportional to number of PQC layers.

This relationship can be seenmore clearly infigure 6 for Circuit 3. The cost function relates to the amount of
information lost fromdata compression via equation (1). Hence,minimizing the cost function is directly related
tominimizing information loss, and true lossless compressionwould see the cost function go down to zero.
Figure 6 shows loss curves from simulation of Circuit 3 for the full dataset. At the end of 40 epochs the smallest
compression ratio (4 to 3 qubits), with 7 PQC layers, yields the least information loss,minimizing the cost
function to 0.02.

Whilefigure 5 visualizes densitymatrices for a single image, and provides an insight into how the
compression algorithmperforms across a sample of the 27 simulations, figure 7 gives further insight by
quantitatively describing howwell the PQCs performed on the full test dataset across all experiments. Figure 7
plots the fidelity between the original and decompressed images from the full test dataset. Here, we compare the
direct results of compression efficiency from simulation per each test image. The box plots show the spread in
fidelitymeasurements across the dataset, with the box containing 50%of the data, and the horizontal black bar
as themedian value. The highest fidelitymeasure across all simulations is 0.98, while the lowest is 0.65. For the

Figure 5. Simulations: densityMatrices for single test image through different compression ratios and PQCs.We show a sample of six
results from all our experiments, showing a visualization of the latent space, and the subsequent decompressed image via the real
components of their densitymatrices.

Figure 6. Simulations: loss curves from simulations for Circuit 3with the three compression ratios, and layers L = 3,7.Weminimize
the cost function to approximately 0.02 for 4-to-3 qubit compressionwith 7 layers.
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original densitymatrix of an image ρ, and the decompressed densitymatrixσ, thefidelity is calculated using
equation (9) [40]. Themaximumfidelity of 1means thefinal and initial image is identical, and the compression
is lossless.

( ) ( ) ( )r s r srºF Tr, . 91 2 1 2

Infigure 7, the general trend for PQCswith 3 layers (the leftmost column) showsCircuit 3 performing
slightly better than the other two. Since the entangling capability and expressibilitymeasures for Circuits 2 and
3 aremore favorable compared toCircuit 1 (table 2), we see this reflected in thefidelitymeasures, where Circuit
2 and 3 generally outperformCircuit 1. This can clearly be seen in the simplest case of 4 to 3 qubit compression
with 3 layers of PQC (top left offigure 7). This result agrees withHubregtsen et al (2021), who found a strong
correlation between classification accuracy of their circuit with expressibility of the circuit [41]. Even in the
general case, Circuit 3 performs slightly better than the other two circuits given that itsmedianfidelitymeasure is
the highest or near highest in all cases. Additionally, aside from the simulationwith the smallest compression
ratio and themost number of PQC layers (top right offigure 7), Circuit 1 has the largest spread infidelity
measures. Increase in spread offidelitymeasures generally corresponds with increase in compression ratios, but
notwith increase in number of layers, even if themedianfidelity score improves with number of PQC layers.

While the increase in number of layers can improve the compression efficiency, each PQCbehaves
differently to this increase, as evident infigure 8. The overall compression efficiency of Circuit 1 ismost
susceptible to changewith number of layers, shown as red lines in the plot. Increasing the number of layers for
Circuit 2 and 3 (blue and green lines, respectively) does not significantly change the compression efficiency of the
algorithmusing the simulator on the full test data set, albeit increasing the running time.

4.1.2. Run time
Onemajor focus of this studywas to successfully compress quantumdata near-losslessly, and quantify how
changing the training network hyper-parameters affect information loss and compression efficiency.However,
in practice, onemust also take into account the running time of the algorithm in questionwhenworkingwith
real data. Infigure 9, for the 4 to 3 qubit compression, we compare simulation data for the total time taken to
train the three PQCs across 40 epochs, with 10 iterations of the optimizer. Circuit 1 is themost practical of the
three, taking the least time to train andminimize the cost function. It also has the least spread in training time

Figure 7. Simulations: fidelitymeasurements between the original and decompressed densitymatrices of the full test dataset for the 27
simulations. A score of 1.00 indicates that the original and decompressed image are identical.We show the spread infidelity scores
across the test dataset for each compression ratio, PQC, and number of layers. The circled dots in some of the box plots aremarked as
outliers (outside 1.5 times the interquartile range above the upper quartile and below the lower quartile).
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when increasing layers. These characteristics are attributed to its shallow gate depth, which is also reflected in
poorer entanglement and expressibility scores. Conversely, Circuit 2 is the slowest circuit across all layers, with
the slowest iteration of Circuit 1 being faster than the fastest iteration of Circuit 2.

To study the applicability between the other two circuits, 1 and 3, we examine two competing aspects
between the two PQCs: speed versus performance. Themedianfidelitymeasure for Circuit 3 in the the top left
box (3 layers) offigure 7 is 0.92, while themedian fidelitymeasure for Circuit 1 in the top right box (7 layers) is
0.98. That is approximately a 6% improvement in themedianfidelity for Circuit 1. Consequently, the average
time per epoch between these two circuits, shown in table 3, showsCircuit 3 (3 layers) is approximately 9% faster
thanCircuit 1 (7 layers). So for simulated quantumdata compression, tominimize the run timewhile
maximizing performance, Circuit 3with fewer layers ismore favorable. Generally, PQCswith better
expressibility and entangling capabilitymeasures, like Circuit 3, tend to have higher gate depths, and are only
suited to simulated data compression. Provided a 6% increase in information loss can be tolerated by a particular
dataset or problem, simulating amore complex PQCwith few layers becomes useful. Training networks run on
quantumdevices, however, requires both faster run times and shallower gate depths, with a preference for
overall shallower gate depth over number of layers implemented.Hence, Circuit 1ʼs design (shown in
figure 3(B))was chosen to run data compression on the IBMQquantumdevice.

Figure 8. Simulations: loss curves from simulations for all three circuits for the 4-to-3 qubit compression, with layers L = 3, 5, 7. The
spread in the loss curve is largest withCircuit 1 (red), where increasing the number of layers has the largest effect inminimizing the
cost function.

Figure 9. Simulations: total time (in hours) across 40 epochs for the 4-to-3 qubit compressionwith the 3 PQCs. Circuit 1 has the
smallest spread. Circuit 3with 3 layers is has a faster training time thanCircuit 1with 7 layers, while Circuit 2 is slowest overall.

Table 3. Simulations: avg. total time per epoch (Hours).

Circuit 1 Circuit 2 Circuit 3

3 Layers 0.37 0.91 ± 0.01 0.79

5 Layers 0.67 ± 0.03 1.98 ± 0.15 1.76 ± 0.01

7 Layers 0.87 ± 0.01 3.40 3.22
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4.2. IBMQdevice
4.2.1. Compression efficiency
Due to the longer training time on the quantumdevice - primarily due toQueue Time - the networkwas trained
on the device for 20 epochs. Figure 10 (top) shows the loss curves for the device and simulator, with the vertical
line at 20 epochs.We compare the two to show the difference in compression efficiency between the latest
superconducting quantumhardware and a simulator. At the end of 20 epochs, theminima of the cost function
for the devicewas over 3 times higher than the cost function for the simulator. The simulator trained the
network out to 40 epochs, whereby the cost functionwasminimized to 0.04, indicating that the 3-to-2 qubit
compression of this 2× 4 dataset is indeed near-lossless with this particular set of hyper-parameters. Figure 10
(bottom) shows thefidelitymeasurements after trainingwith the simulator and the device for 20 epochs. The
medianfidelity for the IBMQdevice is 0.37, while themedianfidelity for the simulator is 0.68, around 1.84 times
the value.

4.2.2. Run time
For our experiment on IBMQ,we have to calculate the time cost inmore detail. This requires a closer look at the
number of jobs the training network sends to the device. In our case, three layers of the circuit from figure 3(B)
meansNparams= 12, and from the training dataset,Nimages= 20. So number of jobs sent to device is given by
equation (8) as:

(( · ) · ) · · ( )= + =N N N2 12 1 20 500 . 10j iter iter

So for the simplest PQCwith 3 layers, as well as our simple image data set compressing 3 qubits down to 2, the
number of jobs with just one iteration of the optimizermeans 500 jobswere sent to the device per epoch. For 40
epochs, that is 20,000 total jobs sent to the device. Each job is one run of the entire circuit for a set amount of
shots (set to amaximumof 8192 shots). The time per job for the training network run on the device, with one
iteration of the optimizer, is broken up into several processes, shown in table 4. Omitting the queue time for the
job sent to the device, since it can vary greatly depending on number of users on the device, the average time per
job is then 22.18 seconds. For comparison, we ran this dataset through the compression algorithmusing a
simulator with 1 iteration of the optimizer. The simulator took an average of 7.46 seconds per job (one run of the
circuit with 8192 shots). Therefore, the device takes roughly 3 times longer per job compared to the simulator for
the same dataset, PQC, and hyper-parameters.

Figure 10.Top: loss curves from IBMQDevice and simulator for 3-to-2 qubit compressionwith 1 iteration of the optimizer, learning
rate of 0.05, and 3 layers of PQC infigure 3(B). Bottom:fidelitymeasures from IBMQDevice and simulator of test dataset with
parameters from cost functionminima at the end of 20 epochs.
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5. Summary and conclusion

In theNoisy Intermediate ScaleQuantum (NISQ) era, qubits are expensive resources, andmulti-qubit
operations are fragile. By leveraging classical dimensional reduction techniques such as autoencoders, quantum
data can be compressed to fewer qubits. Reducing the dimensionality of this problem can allowus to utilize
fewer qubits, aiding inmore efficient use of resources. However, quantum autoencoders face challenges in
efficient data compression even if data setsmatch the theoretical limit for lossless compression [17]. Application
of quantumdata compression needs to address consequences from choice of data, parameterized quantum
circuits, and optimizer. In this paper, we successfully demonstrate near-lossless quantumdata compression
using a simulator.We chose datasets with linearly independent vectors following specific patterns, visualized as
black-and-white pixel images.Wavefunctions generated from encoding these images create densitymatrices
with discrete values, allowing for efficient compression down to continuous latent spaces. Three PQCswere
tested on the quantumautoencoder framework [18], usingQiskit’s Analytical QuantumGradient Descent
optimizer. The PQCswere chosen for different gate depths, number of parameters, number of two-qubit gates,
and their performance quantified using expressibility and entangling capabilitymeasures [20].

While in principle one canmake a direct connection between real-device trainability and expressibility,
thereby allowing formore general predictions in PQCperformance[33], we found that hardware-specific
challenges tailored the scope of our paper to studying trainable PQCs on IBMQ’s quantum chips. For our
experimental realization, we found that contrary to simulations, complex,more expressible circuits tended to do
poorly due to larger gate depth.Hence on IBMQchips, it became balancing act of designing a circuit that had
high enough expressibility, but low gate depth. For our experimental studies, we don’t discuss in detail
predictability in compression efficiency as a function of expressibility, since gate depth of the PQCs ended up
being farmore important than any othermetric.We therefore don’tmake a direct connection between real-
device trainability and expressibility, but instead connect trainability to circuit depth, compression ratio, and
choice of classical optimizer. Our results show that experimentally, these end up beingmore influentialmetrics
for data compression for the specific architecture of IBMQdevices.

The summary of our compression results is as follows: our results show thatwhile all three PQCsmanage to
efficiently compress the test data set with near-lossless compression using a simulator, their performance
depended on the compression ratio, number of layers, and running time. For example, Circuit 3with 3 layers
had a 6%higher cost functionminimumcomparedCircuit 1with 7 layers, butwas 9% faster in training time.
Only if a 6% increase in information loss can be tolerated, does amore complex PQCwith few layers becomes
useful, since the speed-up in training can be beneficial. However, for afixed number of layers, training on a
quantumdevice finds a faster circuitmore useful than an efficient one. So although circuits with higher
expressibility and entangling capability, like Circuits 2 and 3, generally performbetter with larger compression
ratios, their complexity leads to noise washing out our results. For devices with limited qubits and connectivity, a
simple circuit with smaller gate depth, like Circuit 1, ismoreNISQ-friendly.

The summary for run times is as follows: run times and training performance between an IBMQquantum
device and the simulator was done using the 3-qubit version of Circuit 1 for the PQC, shown infigure 3(B).
Using a simulator with this PQCon our smaller data set, and one iteration of the optimizer, we compressed from
3 to 2 qubits near-losslessly byminimizing the cost function to 0.04, as seen infigure 10 (top).When run on an
IBMQdevice, the loss curveminimawas a little over 3 times larger than theminima for the simulator after 20
epochs. Additionally, the device took three times longer per job compared to the simulator, when omitting
queue time. Ideally, increase in total run time due to the job queue can bemitigated by reserving time on the
device.We are still at a stage in theNISQ erawhere not only the noise and limited connectivity affect quantum
algorithms, but processes within classical optimizers and data encoding as well.

In conclusion, efficient compression of quantumdata on a quantumdevicewill require careful construction
of PQCs based on parameters examined in this paper, as well as choice of classical optimizer. In this paper, we
examined the performance of our compression algorithm for different PQCs, and IBMQ’s Analytical Quantum
GradientDescent optimizer.

Futureworkwill involve integrating other gradient descent optimizers intoQiskit that promise a faster
convergence, such as theQuantumNatural Gradient proposed by Stokes et al (2019) [37]. Upon compressing
quantumdata efficiently, future workwill also involve decompressing latent states into any desired output state
by implementing a parameterized circuit for decompression as well. If these compressed states havemissing

Table 4. IBMQquantum chip: avg. job time (seconds).

Create time Queue time Run time Total time

0.66 46.09 20.28 68.27
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information from the original input, any operation performed using the latent spacewould compound
inaccuracies in the final result. It is essential that we understand howquantum autoencoders operate onNISQ
devices, specifically in terms of run times, and compression efficiency, as shownby our experimental results.
Hence, the goal of this paper to practically achieve lossless compression is important for future practical
applications of quantumdata compression.
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