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Abstract

We report the occurrence of bursting oscillations in a gyroscope oscillator driven by low-frequency
external period forcing. The bursting patterns arise when either the frequency or amplitude of the
excitation force is varied. They take the form of pulse-shaped explosions (PSEs) wherein periodic
attractors of lower periodicity disappear due to the loss of asymptotic stability of the equilibrium point
between resting and active states. The process involves the appearance of zero eigenvalues and the
creation of new attractors of higher periodicity. Both point-cycle and cycle-cycle bursting is seen. It is
accompanied by the birth of periodic attractors, ranging from period one to period four, depending
onan integer 7 in the frequency of the parametric driving force. The dynamics of the oscillator is
shown to exhibit a fold bifurcation related to critical escape transitions.

1. Introduction

The response of nonlinear systems to various forms of external driving force has been of interest in a wide range
of scientific investigations [ 1-8]. When the external driving force is a combination of a weak periodic signal and
noise, the phenomenon of stochastic resonance [ 1, 2] may arise. When the noise is replaced by a high frequency
field, one can realize vibrational resonance and, in this case, one of the frequencies is far higher than the other
[3,4]. However, when the two frequencies are both much less than 1 and the fast-slow dynamical characteristics
still remain in the system, a phenomenon known as bursting may arise [5, 6]. This phenomenon can occur in
dynamical systems whose variables evolve on two different time scales, and it has potential applications in
physics [9, 10], mechanics [11], biology [12, 13], chemistry [14, 15], neuroscience [5, 6], information encoding
and computation [16], and in engineering systems [ 17, 18]. The potential use of bursting in order to achieve
extremely rapid actuators was recently demonstrated [19] in electromechanical systems .

A general mechanism underpinning the occurrence of bursting oscillations was identified and described in
[20]. It is understood to arise when a dual-frequency-driven dynamical system consists of two coupled nonlinear
oscillators of different frequency, where the slower oscillator sequentially switches the faster one on and off [20].
More recently, bursting has also been linked to sharp bifurcation transitions in dynamical systems [21] due to
pulse-shaped explosions. Bursting involves the complex and multiple-timescale dynamics that has been
receiving much attention in a diversity of dynamical system such as neuronal oscillators [5, 22], delay systems
[23], biological systems with signal transduction [6, 24-26], and chemical oscillators [27]. A sharp transition
behaviour, referred to as the speed escape of attractors was reported recently [28]. This transition takes attractors
to infinity within a narrow interval of parameters near the critical escape (CE) condition. The result is bursting
with sharp, pulse-shaped, quantitative changes appearing at the equilibrium point and limit cycle—a process
referred to as a pulse-shaped explosion (PSE) [21].

Such complex bursting patterns have been investigated and reported in several classical paradigmatic
oscillators including the Duffing oscillator [29], Van der Pol oscillator [30], and Mathieu-van der Pol-Duffing
oscillator [31], when they are subjected to the action of two different slowly-varying sinusoidal excitations. It has
also been shown that, when incommensurate fractional-order singularly perturbed Van der Pol oscillators are
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Figure 1. Schematic diagram of the dual-frequency-driven gyroscope.

subjected to constant forcing, they too exhibit bursting oscillations [32, 33]. Recently, Han et al [34] reported two
novel bursting patterns: turnover-of-pitchfork-hysteresis-induced bursting and compound pitchfork-hysteresis
in a Duffing system with multiple excitations. The authors showed that the hysteretic behaviour between the
origin and non-zero equilibria of the fast subsystem resulted from a delayed pitchfork bifurcation. Also, in [21],a
novel route to bursting known as pulse-shaped explosion (PSE) was found for a paradigmatic class of nonlinear
oscillators. It was shown that an equilibrium and a limit cycle can display sharp, pulse-shaped, qualitative
changes as the system parameters are progressively adjusted. Very recently, Wei et al [35] analysed the route to
bursting by bistable PSE in a Rayleigh oscillator with multiple slow excitations and proved that the initial phase
difference of the excitations plays a significant role in transitions to different attractors and complex bursting
patterns. More recently, Ma et al [31], reported the occurrence of four complicated compound bursting patterns
as well as one relaxation oscillation in the Mathieu-van der Pol-Duffing.

In previous works, the focus was mostly on familiar paradigmatic models, such as the van der Pol or Duffing-
like oscillators. However, there exist a variety of dual-frequency-driven nonlinear systems with broader real life,
scientific and engineering applications, such as the driven gyroscope that we examine in this paper. Among its
several important applications, the gyroscope functions variously as a gyrocompass, an attitude heading
reference system, and an inertial measurement unit. It is used in inertial navigational aid systems. A recent
review [36] comprehensively outlined and classified a wide range of commercial gyroscope applications.
Supplementing the extensive body of knowledge about bursting in the literature cited above, and the references
therein, we report in this paper novel bursting patterns that have not to our knowledge been described
previously in relation to the driven gyroscope. This bursting is associated with the destruction of periodic
attractors due to the loss in asymptotic stability of the equilibrium point separating the resting and active states,
associated with the appearance of a zero eigenvalue. The process gives birth to another attractor of higher
periodicity when the parametric excitation is adjusted. We analyze this new PSE bursting that occurs when a
slowly-varying parametric excitation and a low frequency periodic excitation are applied to a gyroscope.

The rest of this paper is organized as follows: in section 2, we present and describe the gyroscope oscillator
model to be considered together with its stability analysis. Section 3 discusses the bursting patterns. Section 4
applies the fast-slow analysis to obtain equations for the fast and slow sub-systems and describes the dynamical
mechanisms underlying the bursting oscillations. Section 5 summarises our findings and conclusions.

2. Model description

The system to be considered is a driven gyroscope oscillator model [37] mounted on a vibrating base as
illustrated schematically in figure 1. The equations of motion for the system dynamics when driven by either a
single-frequency driving force [37], or a dual-frequency driving force [38], have been formulated using the
Lagrangian approach associated with the Eulerian angles, namely, with nutation (), precession (¢) and spin ().
In general, the Lagrangian of the model is written as:
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L= %11(02 + ¢*sin?0) + %k((b cosf + )2
— Mg (I + L sin(w;t))cos ) — Mgl, sin(w,t) (1)

where I; and I5 denote the gyroscope’s polar and equatorial moments of inertia, respectively. Mg s the force due
to gravity, /; is the amplitude of the external excitation, and w is the frequency of the external excitation. , is the
amplitude of the additive external forcing at frequency w,. ¢ and 1 are cyclic coordinates, since they do not
contribute to the Lagrangian function, which provides us with two first integrals of the motion expressing the
conjugate momenta. The momentum integrals are:

Py = Z—; = Lpsin?0 + L(¢ cos + )cosh = B
P‘—a—L—I(d)cosﬂ—Flb)—Iw—ﬂ 2)
w_6'1/)_3 — 3Wz — M

where w, is the spin velocity of the gyroscope. Using the Routh’s procedure and the definitions in equation (2),
the Routhian of the system becomes

R=L - B3¢ — Byth = %1192 — A, (3)

where the quantity A depends on the angle 6 as

(Bs — Bycost)? B
— 5, t =
2, sin% @ 21
+ Mg (I + lsin(wit))cos 0 + Mgl, sin(w, ). 4)

The system is thus treated as a single-degree-of-freedom oscillator so that its equation of motion can readily be
derived from the Euler—Lagrange equation
d(aR) oR _ o )

dar\oo) o0
In equation (5) Farises from all the external contributions, including the dissipative force F,; which for this
model is assumed to be in linear-plus-cubic form for the model and is written as,

E = —Dy0 — D,0°, (6)

where D, and D, are positive constants. The other components of F consist of the driving forces f; sinw; t and
fz sin wzbt, as shown in figure 1. Accordingly, it is easy to show that the equation governing the gyroscope motion
is given by

2 2
. 5 (1 — , . Mgl Mgl
0+ ﬂ—jw + &9 + &93 ~ 28 g = il sin(w; t)sin 6
I; sin® 6 I L L L
Mgl
+ 222 Gin(wnh). %
L
Redefining the variables and quantitiesas o = %, q= %, 6= %, 8= MTgl, fi= Mlgl‘ and f, = MTglz,
1 1 1 1 1
equation (7) can be rewritten in dimensionless differential equation form as
_ 2 . .
0+ az(%) — Bsinf + g0 + o = fsin(w,t), 8)
sin

where B = 3 4 a sin(w;t) is a parametric driving force of amplitude a and frequency w;. f sin(w,t)isan
additive external periodic driving force of amplitude fand frequency w,. ¢ 0 and ¢, 0’ are the linear and nonlinear
cubic damping terms, respectively, with coefficients ¢; and ¢,. Thus, the dual-frequency-driven gyroscope can be
considered as a switched-system of two coupled nonlinear oscillators with different frequencies, in which the
slower oscillator alternately switches the faster one on and off [20].
The potential of equation (8) in the absence of additive driving is given by:
a2
V(@) = —— + Bcosb, ©)
1 + cosf

where B = 3 + a sin(w;t). Depending on the values of the parameters «vand 3, V() can admit two types of
potential shapes: single- and double-wells. Witha =1, ¢; = 0.5, ¢, = 0.05, f; = f=0.05, w; =w =2and
t=t,(n=0,1,2,3,..00), V(0) shown in figure 2 is a single-well potential and the equilibrium point of the
unforced system (8) is located at the origin (9 = 0; & = 0), around which oscillatory motion of the periodically
driven system (8) occurs along the principal axis of the gyroscope, which coincides with its vertical axis.
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Figure 2. The potential of system (8) against f when the parameters are fixedata = 0.1, 5= —1,a = 1,¢; = 0.05,¢, = 0.5, = 5,
w, =0.01,n = 2,w; = nw,.

Equation (8) can be expressed as two coupled autonomous differential equations, in the form

do,
— =6
i
_ 2
49, = —a? (l_ﬂ + Bsinf) — g6, — 603 + f sin(w,t). (10)
dt sin® 6,
The equilibrium points of the system (10) are found by solving the system of equations:
92 = 0)
_ 2
—a? M + Bsinb, — g6, — 663 + f sin(w,t) = 0. (11)
sin® 6,

We solve equation (11) with parameter values « = 0.1, 6= —1,a = 1,¢, = 0.5, f= 0.05,w, = 0.01, ¢; = 0.05,
n=2,and w; = nw,. We consider two cases of equilibrium points: (a) when 8, = 0, and; (b) when 6, has a very
small value. The equilibrium point E,, , = (6, 6,) is calculated thus: when 0; = 0, it is obvious that the
equilibrium point E, = (0, 0) and here the system (8) is independent of the external forcing. When 6 is very
small (i.e. 0, ~ 0), then sin 6; ~ 6; and cos 6, ~ 1. The equilibrium point therefore becomes

E, = (%, O). Here, the system (8) is dependent on the external forcing. It is noteworthy, then, that the
1

equilibrium point of system (8) is affected when the external forcing acts on it (comparing E, and E;). The
Jacobian matrix of the system (11) at any § € R is given by

0 1
0) = ; 12
U o?K, + Beost, K, (12)
where K; = (360S Gl — cos O ;nsjge‘ [25in6, — sin(26)] ), and K; = —q — 360%and B = 3 + asinwt.
1 1
The stability of the equilibrium point can be obtained from the characteristic equation
MK\ — Ky — Beosf, = 0. (13)

From equation (13), one can deduce that, if K, < 0 and a’K; + B cos ) < 0, E,; is stable; and, if K; > 0, then
E, pis unstable. This accounts for the different patterns of bifurcation that emerge as the control (i.e. the forcing
amplitude a) is varied and leads to loss of stability of the equilibrium points E, ;.. If the constant term satisfies
a?K; + B cosf; = 0, fold bifurcation can take place, and jumping may occur between different equilibria.
Numerically, the eigenvalues of ], = J(E,) and J, = J,(Ep) at 1.0 x 10* <1< 1.15 x 10* were computed and we
found that they are complex conjugate eigenvalues with negative real parts. Thus, E, and Ej, are stable foci [39].
For example, for E, at t = 10000, the eigenvalues are: A; , = —0.0250 % 1.3685i; at t = 11000, the eigenvalues
are: \; , = —0.025 £ 0.95454; at 11 500, the eigenvalues are: \; , = —0.0250 £ 1.27101. Also, for E,,, at t = 10000,
the eigenvalues are: \; , = —0.0250 £ 1.36847; at t = 11000, the eigenvalues are: \; , = 0.0250 & 0.9544i and
finally at t = 11500, the eigenvalues are: A; , = —0.0250 £ 1.2710:.

Now, in the absence of the additive external periodic forcing f sin(w,t), the system (8), or its equivalent
autonomous version given by equation (10), exhibit some interesting dynamical features. Here, we illustrate the
basic dynamical properties using, for instance, the one-parameter bifurcation diagrams and the corresponding
Lyapunov exponent (LE) spectrum as functions of the amplitude a with the corresponding phase space
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Figure 3. (a) One-parameter bifurcation diagram computed based on forward (blue colour) and backward (red colour) propagations
and the corresponding Lyapunov (\) exponents spectrum (green colour) illustrating the period-doubling cascades to chaos. Subplots
(b) Periodic two attractor for a = 32.0 and (c) Chaotic attractor for a = 35.5. In (b) the red and blue lines represent the trajectories of
the upper and lower wing attractors, with their corresponding Poincaré points shown as open and closed black points. The other
parameters are: « = 10, 3 = 1.0, ¢, = 0.5, ¢, = 0.005, and w; = 2.0.

structures and Poincaré section in selected regimes as shown in figure 3. The bifurcation structure in figure 3(a)
was investigated earlier by Chen [37]. The bifurcation diagram and the corresponding Lyapunov exponent (LE)
spectrum in the regime of interest capture all the essential features in figure 3(a), setting o = 10, 3= 1,¢; = 0.5,
¢, = 0.005, and €2 = 2. Note that in [37], the upper wing bifurcation sequence shown in figure 3 was reported.
However, Dooren [40] conjectured that, by starting with a different set of initial conditions, a second bifurcation
sequence, occurring in the lower wing can be obtained. Thus, the upper and lower wing bifurcation cascades
when combined gives the complete bifurcation structure of the system as a function of the amplitude a—the
lower sequence coexisting with the upper one. The simulations in both papers show the manifestation of
extreme sensitivity to initial conditions which is a hallmark of nonlinear systems as well as indicating the existence
ofhidden attractors. In figure 3, we display the complete bifurcation structure using forward and backward
propagations of the amplitude a without intentional change in the variable’s initial conditions. In forward
propagation, the amplitude was increased such that a = a + da whereas in backward propagation, the amplitude
was decreased such that a = a — 6a, where da is the increment or decrement in a. This approach is effective in
capturing the salient features and the entire sequence of bifurcations, including all the hidden attractors.
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Figure 4. (a) Typical bursting pattern, and; (b) plot of trajectories in the phase plane (6, ) of the system (8) with n = 2. The other
parameters fixedata = 0.1, 5= —1,a = 1,¢, = 0.5,f = 0.05,w, = 0.01, ¢; = 0.05.

In addition, the images in figure 3 have certain features that are typical of damped-driven systems such as the
Duffing oscillator and pendulum reported by Szemplifiska-Stupnicka and Tyrkiel [41] and Parlitz [42] and by
many others. Specifically, prior to the critical period-doubling bifurcation point ata = a,,, where a,, ~ 32.9,
there are two coexisting resonant periodic attractors within a broad range of driving amplitudes g, located in the
upper and lower wings of the bifurcation curve [figure 3(b)]. Whena > a.the period-doubling cascade
continues and terminates in the stable chaotic domain occurring in the neighbourhood 0f 34.7 < a < 36.2
[figure 3(c)].

In the presence of the additive external periodic driving force f sin(w,t) the system (8) exhibited the
phenomenon of vibrational resonance, when one of the frequencies is much larger than the other, i.e. w, > w;
or w; >> wy, as reported in our recent paper [38]. Under these conditions, we showed that the response of the
driven gyroscope to the low frequency force can be optimised by the presence and properties of the high-
frequency component. In the present paper, we consider a different scenario where the frequencies w; and w, are
such that w; = nw,, i.e. commensurate frequencies— being a positive integer [43]. In general, w; , < 1
indicates the slowly-varying excitations which are a requirement for the occurrence of bursting [29, 30].
Consequently, the system (parametric excitation) changes n-times while the external inertia force changes once
per revolution. Parameter values in this study are takenas « = 0.1; = — 1;a = 1; ¢, = 0.5; f= 0.05; w, = 0.01
and ¢; = 0.05. Remarkably, the bursting phenomenon associated with system (8) is different from the
phenomenon of parametric vibrational resonance exhibited by this gyroscope model driven by dual frequency
forces w; and w,, such that w; > w, orw, > w;.

The simulations are carried out with initial conditions 8,(0) = 0.1, #,(0) = 0.2 (the initial condition is shown
by the black circle in figures 4(b), 5(b), 6(b) and 8(b)).

3. Bursting patterns

In order to provide a clear understanding of bursting phenomenon, we discuss several cases of bursting for
different values of n. In general, bursting appears for all integer values of #; however the bursting dynamics for
odd integer values is not distinct and bears no relation to the system’s periodicity. Thus, we focus mainly on the
occurrence of bursting for even integer values of nn. We first discuss a case when n = 2. Figure 4(a) shows a single
peak pulse-shaped explosion (PSE) when the other parameters are fixed as stated earlier. It is called a single PSE
because the peak values of 6 (up state and down state) have the same magnitude. It is similar to periodic spiking
in that its response to perturbation produces a single spike at a time [24]. The quiescent state is the rest state in-
between the spikes; however, it is characterized by a periodic attractor of period one, as seen in figure 4(b).
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1 1.05 ¢ 1.1 1.15><104

Figure 5. (a) Bursting pattern, and; (b) plot of trajectories in the phase plane (6, #) of the system (8) with nn = 4. The other parameters
fixedata = 0.1, = —1,a=1,¢, = 0.5,f = 0.05,w, = 0.01, ¢; = 0.05.

1 1.05 t 1.1 1.15 x 104

Figure 6. (a) Bursting pattern, and; (b) plot of trajectories in the phase plane (6, #) of system (8) with n = 8. The other parameters
fixedatae =0.1; 3= — 1l;a = 1; ¢, = 0.5; f = 0.05; w, = 0.01; ¢; = 0.05.

When the quiescent state is an equilibrium point and the spiking state is a limit cycle, the bursting type is
called point-cyclebursting [24]; but if the quiescent state is a small amplitude (sub-threshold) oscillation, then it
is called cycle-cycle bursting [24]. Due to the unstable quiescent state in cycle-cycle bursting, the fast variable
requires some time (i.e. slow passage) to diverge from the equilibrium. The slow passage can be shortened by

7
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1 1.05 ¢ 1.1 1.15><104

Figure 7. (a) Bursting pattern, and; (b) plot of trajectories in the phase plane (6, #) of system (8) with 11 = 10. The other parameters
fixedata = 0.1; 3= — ;a4 = 1; ¢, = 0.5; f = 0.05; w, = 0.01; ¢; = 0.05.
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1 105 11 1451 105 11 1.5
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D 0 0
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t o xi0f t xi0t

Figure 8. Complex bursting pattern in system (8) with the following parameters: (a) a = 2, (b)a = 4, (c)a = 8 and (d) a = 15. The
other parameters fixedata = 0.1, 5 = —1,¢, = 0.5,f = 0.05,w, = 0.01,n = 2,¢; = 0.05.

noise or weak input from other bursters, which provides a useful mechanism for instantaneous synchronization
of bursters whereby small perturbations from the other burster can cause an instant transition to the active state

even when they have essentially different interburst frequencies [24].

3.1. Bursting oscillation patterns withn > 2

We now consider higher values of # (i.e. n > 2). Figures 5-8 show that, with # > 4, a number of bursting pattern
containing multiple clusters can be observed in each cycle of bursting. Figure 5(a) has a few threshold oscillations
of diminishing amplitude in the quiescent state and, unlike figure 4(a), the spike has two peaks PSEs. This implies

that the value of n impacts on the number of peak PSEs that can occur. Notably, the bursting pattern observed

8
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Figure 9. The potential of system (8)against § with different values of a. Other parameters are fixed as follows: = 0.1, 3 = —1,n = 2,
¢, = 0.05,¢c, = 0.5, = 5,w, = 0.01, w; = nw,.

for n = 4is a period two orbit bursting as indicated in the phase trajectory shown in figure 5(b). Thus, we point
out that the PSE bursting noticed here is associated with period-doubling bifurcation sequences. For example,
the period one attractor observed in figure 4 when n = 2 undergoes a period-doubling bifurcation and gives birth
to new attractor of period two. Furthermore, we examined the bursting pattern when n = 8. The result is shown
in figure 6(a). In this case, the bursting pattern is characterised by more threshold oscillations in the quiescent
state than found figure 5(a) as well as more peak PSEs. In addition, we find the emergence of a period three orbit
in the phase space as shown in figure 6(b). Such a scenario is connected with a crisis-like bifurcation in which an
attractor collides with its basin boundaries and loses stability during the collision process—consequently, a new
attractor of different orbit is created. Indeed, as the value of the integer  increases the bursting pattern becomes
more complex with increased periodicity. With n = 10, as shown in figure 7(a), the threshold oscillations in the
quiescent state is more pronounced than when n = 8 and a period four bursting is depicted in figure 6(b). Hence,
as the integer n increases, the periodicity of the newly-created attractors increases. We therefore conjecture that,
as the integer # of excitation varies progressively, parametrically excited systems subjected to two commensurate
frequencies transit from one periodic state to another. Figures 6(a) and 7(a) depict a total cycle-cycle bursting
with small amplitude oscillation.

3.2. Impact of excitation amplitude

We now focus on the effect of the excitation amplitude on the bursting dynamics. First, we consider the effect of
the parametric excitation amplitude a on the bursting pattern. It can be seen in figure 8(a) that, when a = 2 and
the other parameters are taken as in figure 4, a new bursting oscillation pattern is formed. It is a complex bursting
pattern, similar to that described in [43]. However, the bursting observed in [43] was due to two
incommensurate excitation frequencies whereas, in the present paper, the bursting patterns observed are
associated with commensurate frequencies. Comparing figures 4(a) and 8(a), it can be seen that the spikes (up
and down) in figure 8(a) are characterized by rough edges, unlike figure 4(a) in which spikes have sharp edges. It
can be concluded that the amplitude a of the parametric excitation affects the reversal period (sharp/delayed) of
the spikes in the bursting pattern. The latter persists for other values of a (i.e. for a > 4). Figures 8(b)—(c) display
complex bursting patterns showing a decrease in the complexity of the threshold oscillations as the value of a
increases. Here, the complexity of the oscillations in the up state, the down state and the quiescent state decreases
as the value of a increases.

Also, considering equation (9), it can be seen that the potential of system (8) depends on the parametric
excitation amplitude, a. Figure 9 shows the impact of variations in a on the system’s potential structure. When a
istakenasa = 1,2, 4 or 8, it displays a single-well potential with its local minimum at § = 0; whereas when
a = 15, the potential is a double-well potential with its local maximum at # = 0 and two local minimalocated at
0 = £2.6 around which oscillatory motion takes place.

Next, considering the impact of the external driving force amplitude f, figure 10(a) shows the bursting
pattern formed when fis increased to 0.1 with the other parameters still fixed as in figure 4. The diminishing
amplitude threshold oscillation in the quiescent state is similar to those shown in figure 4, while the spikes in the
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Figure 10. Complex bursting pattern in system (8) for different values of the amplitude f: (a) f= 0.1, (b) f = 0.2, (¢) f = 0.3, and (d)
f= 0.4. The other parameters were fixed as follows: « = 0.1, 3 = —1,n = 2,¢, = 0.5,a = 1,w, = 0.01,¢; = 0.05.

up state and down state occur with rough edges. This implies that after the perturbation, the reverse mode of the
system will not be as sharp as in figure 4 but will occur with some intermittent delays. Figures 10(b), (c) show that
as the value of fincreases, the time taken for the up state and the down state to reverse increases. In practice, the
appearance of either a sharp reverse mode or a delayed reverse mode can be effected by adjusting the value of fto
yield the desired result.

4. Fast-slow and bifurcation analysis

4.1. Fast-slow analysis

Equation (8) describes a fast—slow system with two slow excitations (0 < w; , < 1). Itis when a system exhibits
fast-slow dynamics that bursting oscillations may occur. In system (8) the parametric excitation provides the fast
dynamics while the external forcing is taken as the slow dynamics, with the two commensurate frequencies w;
and w, related by w; = nw,. Therefore, we obtain the transformed fast-slow system as

— 2 . .
0+ az(%) — [B + aPf()1sin 0 + 6 + ol — fx=0, (14)
sin

where
X = sin(w,t) (15)
is the only slow variable of the system. Based on De Moivre’s theorem, the trigonometric polynomial function,
P(x), resulting from sin(nw,1) is
PI0) = Cx" = Gix" (1 = x) = CIx" (1 = )~ ..
+imCI (1 — DT (16)

where m(m < n) is the maximum odd number not larger than # and i is a complex number. Substituting the slow
variable 1(t) in equation (14) leads to a fast subsystem, given as

—_ 2 . .
0+ az(%) — [B + aPf()lsin 0 + 6 + ob’ —fx=0 (17)
sin

where y = sin w,t is the control parameter.

In order to establish the transition condition, we examine the behaviour of the fast subsystem. If
B+ aPf(x) = 0, the fast subsystem has two equilibrium points, (¢}, 6,), where 6;, (i = 1, 2) is determined from
the real roots of

10



10P Publishing

Phys. Scr. 97 (2022) 085211 K S Oyeleke et al

(@) )
2 Equlbiun Sete 1\

!
|

i
CE,0730)

|
1
|
|
|
!
/1
/1
|
|
|

%Om

IR
o e
1 10750)
cﬁ 040)

ro

CEOS0 | |
CE0850) | | *
CE0%0) |

A 05 0 0 14 05 0 05

ro

Figure 11. One parameter bifurcation of the variable 6 as function of x for system (8) with control parameter x for different values of
n:(@)n = 2,(b)n = 4,(c)n = 8and (d) n = 10. The other parameters were fixed as follows: « = 0.1, 6 = —1,a = 1,¢c, = 0.5,
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_ 2
o LSO ) (51 apF()sind — fi = 0. (18)
sin* @
For simplicity, we assume that 0is small and as a and  approach the critical escape (CE) condition
B+ aPf(x) = 0i.e.a. = P*( > , the equilibrium will tend to infinity. Hence, at the CE condition, equilibrium

does not exist. Noting that 5 = —1 in our computations, the CE condition becomes a, = . This condition

P*( )’
shall be explored later while examining the PSE associated with the equilibrium points.

4.2. Bifurcation analysis

When a system’s trajectory transits between attractors, bursting can be created. Consequently, bursting can be
obtained in the system (8) when the trajectory transits between the different attractors and the dynamical
mechanism of bursting patterns shown in figures 4—7 can then be analysed. Recall that bursting is a complex
oscillation, where the trajectory undergoes transitions between an active state of rapid spike oscillations and a
state of quiescence; the dynamical mechanism (bifurcation) underlying the process can be explored.

Based on the transition condition obtained earlier, we now examine the PSE associated with the equilibrium
points by analysing the bifurcation of system 8 s a function of x with different values of n1 (say n = 2,4, 8 and 10),
exploring the PSE related to equilibrium. We start with the bifurcation behaviour when n = 2. Figure 11(a)
shows the bifurcation behaviour of the fast subsystem for n = 2 which exhibits two critical escapes (CE) lines at
CE; = (—0.73,0) and CE , = (0.73, 0) where a fold bifurcation related to CE transitions takes place. As the slow
variable, x, increases from —1, —0.4 where a large-amplitude oscillation takes place. It then switches to a rest
state between —0.4 < x < 0.4, after which it switches to an active regime between 0.4 < x < 0.9,and finally
comes to a rest state between 0.9 < x < 1 through small-amplitude oscillations.

For other values of 1 (i.e. n = 4, 8 and 10), figures 11(b)—(d) depicts the bifurcation behaviour of the fast
subsystem as a function of the control parameter, x. PSEs showing more than two peaks can be observed in the
fast subsystem with nn > 4. When n = 4 the bifurcation behaviour of the fast subsystem exhibits four CE lines at
CE; = (-0.9,0), CE, = (—0.45,0), CE 5 = (0.45,0) and CE , = (0.9, 0) as shown in figure 11(b), where a fold
bifurcation related to CE transitions takes place. Between —1 < y < —0.85, the dynamics is in an active regime
with appreciably high-amplitude oscillation. The rest state with small-amplitude oscillations follows between
—0.85 < x < —0.55. It then switches to an active domain between —0.55 < x < —0.3 before entering a quieter
rest state between —0.3 < x < 0.3. The active regime between 0.3 < x < 0.55 is followed by a small-amplitude
quiescent state between 0.55 < x < 0.85 and finally switches to an active regime between 0.85 < x < 1.

11



10P Publishing

Phys. Scr. 97 (2022) 085211 K S Oyeleke et al

Figure 11(c) displays six CE lines at CE; = (—0.95, 0), CE, = (—0.85, 0), CE; = (—0.5,0), CE , = (0.5,0), CE
5 =(0.85,0)and CE 4 = (0.95, 0) with n = 8. The rest states in-between the active regimes exhibit small-
amplitude oscillations. Figure 11(d) shows a fold bifurcation related to CE transitions with # = 10 having eight
CElines at CE, = (-1, 0), CE, = (—0.85,0), CE; = (—0.75,0), CE, = (—0.4, 0), CE 5 = (0.4, 0), CE s = (0.75, 0),
CE; =(0.85,0) and CE g = (1, 0) and every rest state exhibits small-amplitude oscillations. Obviously, the
system (8) displays stability within — 1 < x < 1 which connotes a stable PSE of the equilibrium attractor.
Finally, we examine the mechanism of bursting by analyzing the stability of the fast subsystem given by Eqn
(17). The equilibrium point of the fast subsystem can be written in the form (6,, 6,), where #, = 0 and 6, is
determined by the real roots of equation (18). Linearization of the fast subsystem at the equilibrium points (6,
0) leads to the Jacobian matrix

J= (a2K1 —|—0B cos B Iiz)’ (19
where
K = 3(1 — cos8,)? cotBcsc®d; — 2(1 — cos 0))csc?0;,
K = —q — 3605 = —gand B = (3 + asinw,t. From equation (19), we obtain the characteristic equation as

M — KX\ — a2Ky — Beosf;, = 0. (20)

The equilibrium point is stable if K, < 0 and o?K; + B cos 6, < 0,and unstable if K, > 0. For the set of
parameters values used in the numerical simulations, o?K; + B cos §; < 0and K, < 0. In addition, the

1 — cos 0)?
infinity. We found that the transition between the rest state and active state is associated with the appearance of a
zero eigenvalue of the characteristic equation when «?K; + B cos 6 = 0. That is, the asymptotic stability of the
equilibrium point is lost when a transition occurs between the rest and active states. The active state exists
between the critical values of y, where a?K; + B cos §; = 0 and are shown in the shaded regions of figure 12(a)
and 13(a).

We now discuss the transition mechanism for the two cases as illustrated in figures 12(a) and 13(a), where we
show the superposition of the bifurcation diagram of the equilibrium point 6 with respect to the control
parameter X and the transformed phase diagram in the (x, ) plane. First, let us consider the Periodic-One
bursting reported for n = 2 and illustrated in figure 4. Figure 12(a) shows that, as x changes from —1to+1,a
zero eigenvalue appears for a broad range of y values and a transition to the active state takes place in the region
spanning 0.63 < x < 0.79 (denoted as Region 1). Figure 12(a) shows that as f starts from a near zero negative
value, it becomes positive as it crosses y = 0 values. However, as x approaches Region 1 in the neighbourhood of
X = 0.63, the equilibrium point increases sharply with the appearance of an active state, reaching a maximum at
x = 0.63. Evidently, there is a decrease in the equilibrium point to alocal minimum at x = 0.71 and an increase
to the maximum value as x approaches 0.79. Moreover, as  leaves Region 1, there is a sharp decrease in the
equilibrium point as the system undergoes a transition from the active state to the rest state. From figure 12(a),
the transformed phase diagram shows that the transition to the active state from the rest state occurs within
Region 1. Note that, due to the trigonometric nature of the control parameter, ¥, for every region where there is a
transition between the rest and active states, there is another transition region on the other side of the xy = 0 line.
That s, for a transition in the Region 1 between 0.63 < x < 0.79, there is a corresponding transition due to
Region 1 also between —0.63 > y > —0.79, herein denoted as Region 2 in figure 12(b). These observations from
figure 12(a) are further corroborated in figure 12(b). In figure 12(b), we display the time series 6(t), overlaid with
the y as a function of £. The transition region with 0.63 < x < 0.79 (the up state) and —0.63 > x > —0.79 (the
down state) as predicted from figure 12(a) are indicated. It can be seen that the transition to the active state
occurs when x values coincide with the aforementioned transition regions. The up state occur at x values lying
between 0.63 < x < 0.79 and the down state occurs at x values between —0.63 > x > -0.79.

For n = 4 where Period-Two bursting was found in figures 5, 13(a) shows that the transition to the active state
occurs within the regions labelled Region 1 (—0.90 > x > —0.95) and Region 2 (0.35 < x < 0.42). In addition,
there exist two transition regions located within 0.90 < x < 0.95and —0.35 > y > —0.42 - corresponding to
Region 1 and Region 2, respectively. There are an additional two regimes denoted as Regions 3 and Regions 4.
Hence, as y increases from —1 to 41, there are four transition regimes from rest state to active state. Figure 13(b)
shows the time series 0(¢) overlaid with the x as a function of t for n = 4, in which the four transition regions are
clearly indicated. Again, the transition to the active state occurs when y values are chosen within the transition
regions. The up states occur in the interval 0.35 < x < 0.42 and 0.90 < x < 0.95, while the down states occur in
the neighborhood of —0.35 > x > —0.42 and —0.90 > x > —0.95. In general, foranyn =2, 4,6, ..., there are
2n transition regions as y switches between its peak values from —1 to +1. Moreover, the large amplitude
oscillations created as the system moves from the rest state to active states within the transition regions are

condition az( ) — (B 4 aPX(x))sin § = 0 is never satisfied. Hence, the equilibrium point is never at
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(#) (thick black curve) overlaid with  as a function of t (dashed red curve).

induced by the loss of asymptotic stability due to the appearance of a zero eigenvalue of the equilibrium point
when o?K; + Bcos6, = 0.

5. Summary and concluding remarks

We have examined the occurrence of bursting oscillations in a gyroscope oscillator subjected to a low frequency
external driving force and a low frequency parametric excitation force. The oscillation observed exhibits a PSE
pulse-shaped bursting pattern with changing bursting periods as the frequency of the parametric excitation is
progressively varied. A change in the amplitude of the parametric excitations, as well as a change in the
amplitude of the external forcing, affects this bursting pattern. The bifurcation diagram of the fast subsystem was
found to exhibit different numbers of CE lines where fold bifurcations related to CE transitions take place. In
general, the bursting patterns found in this model arise from losses in the asymptotic stability of equilibrium
point between the rest and active states associated with the appearance of zero eigenvalue. Understanding the
bursting oscillations pattern in the gyroscope oscillator could be useful in its application to micro-
electromechanical systems (MEMS) gyroscopes with multiple driving forces [44, 45] where the phenomenon
can be employed to achieve rapid movement and control [ 19]. These can readily be explored in control systems
and devices such as: RF switches; a phase shifter for spacecraft communication; lab-on-a-chip microsensors for
remote chemical detection; compact thermal control systems for pico- and nano-satellites and inertial sensors
for spacecraft navigation, which are all products of MEMS technology [46].
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