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Abstract

A novel soliton solution of the famous 2D Ginzburg-Landau equation is obtained. A powerful Sine-
Gordon expansion method is used for acquiring soliton solutions 2D Ginzburg-Landau equation.
These solutions are obtained with the help of contemporary software (Maple) that allows computation
of equations within the symbolic format. Some new solutions are depicted in the forms of figures. The
Sine-Gordon method is applicable for solving various non-linear complex models such as, Quantum
mechanics, plasma physics and biological science.

1. Introduction

Solution of the exact solutions of travelling wave with nonlinear evolution equations plays an important role.
The utilization of these solutions are found in various nonlinear physical phenomenons. There are many
complex models that are used in many fields of nonlinear sciences. Few of these models are described as
biological sciences, quantum mechanics, plasma physics. Obviously, these non linear models requires nonlinear
evolutionary equations to express some physical phenomena. Finding out solutions of these equations have
direct implementations in the above said fields. For the past two decades, many direct method have been
developed to have special solutions with reasonable efficiency. Few of these direct methods are unified Method
[1, 2], tanh-sech method [3], Backlund transformation method [4—6], Jacobi elliptic function expansion method
[7, 8], Hirotas direct method [9], modified auxiliary equation technique [10, 11], F-expansion method [12],
improved Bernoulli sub-equation function method [13], new extended direct algebraic method [14, 15], many
other methods are also reported in [1, 16-28].

In this paper, Ginzburg-Landau equation is presented [29] that appears as a class of nonlinear constant
coefficients partial differential equation. As with the passage of time new and innovative solutions are appearing and
the research activities in this area is still under voyage, it is proposed to have title matching with the on going train.
So, Ginzburg Landau equation’s Innovative Solution (GLEIS) is expresses the right title to present this research.

. 1 1 . . .
it + s+ E(e — if)uy, + (1 — id) [ulPu = iu, M
Where (3, f, 6, y are constants with real values.

A weakly nonlinear and dissipative systems having canonical model can be expressed with the complex
Ginzburg-Landau equation. A variety of settings including chemical physics, condensed matter physics, fluid
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dynamics, mathematical biology, nonlinear optics, and statistical mechanics is available to discuss different
behaviours for this equation. This equation can be used as a generic amplitude equation and researchers were
using it since long. This equation can also generate the instabilities that can lead to chaotic dynamics. Various
areas of physics fir phase transitions and superconductivity can take benefit from this equation in the theory.
Broad range of physical systems that describes evolution phenomena such as physical systems or even extending
from physics to optics was considered as remarkable success in past. More recently, a detailed research is carried
out for turbulent dynamics as systems model with nonlinear partial differential equations [30]. Ginzburg-
Landau equation also found its applications in fluid dynamics by many researchers, however, Poiseuille flow
[31] played vital role in such studies. Similarly, the Rayleigh-Bénard problem and Taylor-Couette flow [32-35]
are also explored for the nonlinear growth of convection rolls.

Complex Ginzburg-Landau equation were under extensive mathematical research for quite along time
[29, 30]. Many hard turbulence examples are provided in [29, 30]. Similarly, cubic-quintic complex Ginzburg-
Landau equation [36] is originated by the researcher. Other studies extended the research for low-dimensional
behavior [37], attractor bifurcation [38, 39], and even revolutionized research for traveling waves[40, 41].

In current research Powerful sine-Gordon expansion method (SGEM) [42—44] is explored for finding out
new solutions to the complex Ginzburg-Landau equations. Many exact solutions were explored for this
equation such as [14, 45-57]. Still there are lot of other solutions exist and can be found with literature review.

2. The Sine-Gordon expansion method

In this section the Sine-Gordon Expansion Method (SGEM) is explained to find out general facts.
Sine-Gordon equation can be considered as follows.

Uge — Uy = m?*sin(u), ()

Wheren € R\ {0} and u = u(x, t).
Wave transformation can be utilized to form u = u(x, t) = ¢((), { = a(x — kt) on equation (2), produces the
following nonlinear ordinary differential equation (NODE):

2

" _ n .
O = o SO 3)

Where k is travelling wave speed representation and ¢ = ¢((), (is travelling wave amplitude. Integrating
equation (3), can also be formulated as follows:

Q/Z_ n2 z(f)
[(2)] T 20— +Q “

Where the integration constant is represented by Q.

Substituting the value of Q = 0, b> = #iia) and w(() = % in equation (4), gives:
w' = bsin(w), (5)
Inserting b = 1 into equation (5), produces:
w' = sin(w), (6)
Simplifying equation (6), and reformulating these equations can provide following set of equations
sin(w) = sin(w(()) = % . = sech((), 7)
d%e — 1
cos(w) = cos(w(()) = ———— = tanh((), (8)
d%e* +1 |,_,

Where d is the constant of integration.
There is dependency of many parameters for partial differential equation (9) and it also has non linearity;

P(u, uuy, uuy, ...), 9

Solving the above equation will produce the following equation:

() = Zm:tanhi’l(C) [B; sech(¢) + A; tanh(()] + A,. (10)

i=1
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equation (10) may be given according to equation (7) and (8) as;

m
P(w) =D cos' (W) [B;sin(w) + A; cos(w)] + Ay. (11)
i=1

Determining m is achieved by balancing the highest power of term having non linearity and adjusting the highest
derivative in the transformed NODE. A new set of equations can be produced by considering each summation of
the coefficients as zero for the equation sin'(w)cos/(w), 0 < 1,j < m . So, we have a new set of equations and all
these equations are symbolic in nature. We can solve these equations in symbolic manners by the use of modern
available computational software. In this research one of these software is used i.e. Wolfram Mathematica 9. By
the use of described software we can have values values of all unknown coefficients that appears in these non
linear partial differential equations. These includes the unknown coefficients such as A;, B;, 1+ and c. substituting
the values of m along with the other obtained values of coefficients in equation (10) leads to have a new travelling
wave solutions which is presented in equation equation (9).

3. Applications of Sine-Gordon expansion method

In this section, it is described, how SGEM can be used in finding out new possible solution of equation (1).
We can always assume that equation (1) describes exact solution of SGEM. So holding this assumption and
continuing with the other equations as function of exponential as described in equation (12)

u=-expi(nv(), n=(px + st), (12)

Where p, s are some unknown constants and should be determined, v(x, y, t) is a function having real values
in it. Following new equation can be constructed by Substituting equation (12) into equation (1)

v + %(Vxx + evy,) — %ifvyy + i(py, + ev),

(13)
—iyy — [s + %(pZ]V + v —isv> =0.
Real and imaginary parts of the equation (13) can be separated and it is found that
1 1
—(V toevy) + v — s+ -p*lv=0,
2 xx )’J/ [ 2 ] (14)

Vz—%V},},—F(pigc—&—evy)—éﬁ—w:o.

Consider the following equation
V(X, Y t) - ¢(f): 5 = kx + l}/ + ut, (15)

Where three constants are unknown i.e. k, [, v. Ordinary differential equations can be obtained by substituting
(15) into equations (14), ¢(&)

LR+ ey + 67— [s+ 12 ]e =0,

(16)
— 24" + (pk + v)¢' — 66> + (—7)6 = 0.
Under the constrain conditions: v = — pk, b = —ﬁ = —;Z—‘z, c= 2%55; = %}, then equation (16) takes
the form
1
2(k* 4 el®) 9" (€) — fAIo(6) + 4(s + 5p2)¢3(§) =0, (17)

Now, ¢ and ¢ in equation (17) can be balanced with the help of coefficient m, take the value m = 1 for balancing
purpose in equation (17).
Following equation can be obtained by using equation (11) and considering m = 1;
¢(w) = Bysin(w) + A cos(w) + Ay, (18)

Differentiating equation (18) twice, following result can be achieved:

@"(w) = B cos*(w)sin(w) — By sin®(w) — 24, sin(w)cos(w). (19)
Putting equations (18) and (19) into equation (17), yields an equation in trigonometric functions. In the above
equations, setting the value of zero to each summation for the functions having various coefficients but same
powers, provides a collection of new algebraic equations. These equations are solvable and the Solution to these
set of equations can be obtained by using any symbolic mathematical solver software like Mathematica or Maple.

Values of these coefficients plays important role and different cases can be obtained using different values of
these coefficients. Taking different values of the coefficients along with the value m = 1, in equation (10)

3
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Figure 1. (A) The three dimensional (3D) surfaces of equation (21), (B) Two dimensional (2D) surfaces of equation (21) by considering
thevaluesp =2,s=— 1,k=2,y=0,e=0.

generates a separate case and hence provides a new solution to equation (1). Each case is highlighted in the
subsequent sections.

Case-1: There could be many possible set of values for the constants used in equation (1). Each set of values
for these constants will generate a different kind of result in form of the solution presented in this paper. One of
the possible set of values for these constants is given below.

(k* + el®)

Ag=0, A =0, B = (5+%p2)

, [ =2(K* + el?). (20)
(k> + el?)
(s + IEpz)

These coefficients can take different values and hence provides solution for equation (1) in the following
format:

where > 0 for all cases.

2 2
w (x’ y’ t) — ei((Px+st) M Sech(kx + l)/ — pkt) . (21)
(s +5#°)
There are other constants in the equation (21) and considering the valuesp = 2; s = — 1; k= 2; y = 0; e = O for

this equation, figure 1 can be obtained. While, figure 1(A) shows The three dimensional (3D) surfaces of
equation (21), and figure 1(B) shows Two dimensional (2D) surfaces of equation (21). It can be observed that this
solution is used for singular soliton surfaces as shown in figure 1 and valid for 3D and 2D surfaces of u;.

Case-2: Interchanging the values of A; with B; and slight change in the values of f*I* another possible set of
constants is generated as follows:

(k* + el®)
6o

Similarly, with the assumption of above coefficients provide solution to equation (1) in the following format:

Ay =0, A = , Bi=0, f2*= —4(k? + e). 22)

(k* + el®)
1.2

(s +52°)

Case-3: Similarly, figure 2 can be obtained using values of p = 1,5 = 0.5, k = 2, ¥ = 0, e = 0 for the constants

given the equation (23). It can also be observed that this solution is extended version of previous solution. This
solution can be used for the periodic 3D and 2D of u, surface.

2 2 2 2
Ay =0, A = — Mi, B = — M, A= —(k? + el?). (24)
A(s + 32?) 4(s + 57)

As describes in case-1 and case-2, with the assumption of the above coefficients provide solution to
equation (1) in the following format:

Uy (x, y, t) = e!xtsD tanh(kx + ly — pkt) |. (23)
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Figure 2. (A) The three dimensional surfaces of equation (23), (B) two dimensional surfaces of equation (23) by considering the values

p=2,s=—1Lk=2,y=0,e=0.

Re u(x,1)

Re u(x,t)

®)

Figure 3. (A) The 3D surfaces of equation (25), (B) 2D surfaces of equation (25) by considering the valuesp = 1,s = 0.5,k = 2,y = 0,

e=0.

2 2
(K H D) anhkx + Iy — pke) |

2 2
kel sech(kx + Iy — pkt) — -
4(5 + Epz

us(x, y, t) = elxtsn]
1.2
4(5 + 2p

(25)

Case-4: Considering the values for the constantsas p = 1; s = 0: 5; k = 2; y = 0; e = 0 figure 3 can be
obtained. The 3D surface of equation (25) is shown in figure 3(A), where as 2D surface of equation (25) is shown
in figure 3(B). Itis also described that figure 3 can only be generated with the assumption of following values of

constants.
f2r 274 2 2
A():O, AIZO, Blz —lz,fZZZ(k +€l) (26)
2(5 + B4 )
The above coefficients provides a unique solution of (1) and given as below:
(27)

f214
———— sech(kx + Iy — pkr) |.

4(‘:(:’ )/, t) = e’((P’H'St)
2 S —|— _p2
( 2 )
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Case-5: Similarly, another solution is possible in the form of us.

£
4(5 + %pz)

i, —f214 = (K + el?). (28)

274
Where 4( f+ ll 5 > 0 for all case. The above coefficients provides a unique solution of (1) and given as below:
s ;p

4(5 + %pz)

f214
1

4(5 + Epz)

us(x, y, t) = el xsHl isech(kx + ly — pkt) + tanh(kx + ly — pkt) [. (29)

All of the above solutions are possible with the help of considering different values of the constants used in
the different equations. More solutions are still possible by considering another possible set of constant used in
same equations. This ongoing research for finding out different solutions is still under way and getting a faster
pace due to the available software available to solve the equations in the symbolic format and hence the title of
this paper is suggested as Ginzburg Landau equation’s Innovative Solution (GLEIS). The solutions obtained
from these equations are directly applicable to different field of sciences like microscopic properties of
superconductivity, phase transition in superconductivity, quantum field theory and event to string theory.

As asummary, it reiterated that similar solutions were obtained in the literature review and reported in this
paper. The solutions obtained in this paper can be applied to the natural travel of waves. These solutions are not
only applied to the waves but in general the similar nature real physical phenomena such as heat flow in single or
multi-dimensional space. In general, there are three types of solutions for such problems. One soliton is the
solution, which is high in the middle and decreasing asymptotically, on both sides. Other solution is known as
kinks and this solution is ascending from one asymptotic state to the other asymptotic state. The third form of
solution is descending from one asymptotic state to the other asymptotic state. However, the solutions extracted
in this paper show entirely new manifestation. This type of solution is known as singular solution which was not
obtained in the literature so far. This solutions is also shown pictorially in from of figure 1. Similar solutions are
provided in various references such as [48]. The solution provided in [48] are in the form of exponential or
exponential with tan functions, In our method the solutions are obtained in the form of exponential function or
exponential function with tanh or sech. The proposed solutions manifest another form of traveling wave which
was never found in literature.

4. Discussion

In [48] the first integral method was developed and been utilized in solving the 2D Ginzburg-Landau equation
and various solutions in hyperbolic functions form were obtained. Secondly, the well-known (%) - Some exact

hyperbolic and trigonometric function were obtained by using the method of expansion as given in [58]. It is also
observed that same solution structures also exists in literature when these two methods are used. However, the
results are new even when the structures are same. These solutions and implementation on waves are novel and
different from the existing solutions. On the other hand, 3D and 2D surfaces of u, is singular soliton surfaces by
observing figures 1. The solution can be extended in figures 2 for periodic 3D and 2D of u, surface.

5. Conclusion

Itis evident from the simulation results that the existing solutions were not the only possible solutions. New
solutions are possible that can find the applications in wave propagation of physical phenomenons. The singular
solution obtained in figure 1 is novel.

The results extracted in this paper show that SGEM is effective tool which can provide various different
solutions. These solutions have importance especially for nonlinear evolution equations. More interesting
solutions are expected in future.
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