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Abstract
Anovel soliton solution of the famous 2DGinzburg-Landau equation is obtained. A powerful Sine-
Gordon expansionmethod is used for acquiring soliton solutions 2DGinzburg-Landau equation.
These solutions are obtainedwith the help of contemporary software (Maple) that allows computation
of equationswithin the symbolic format. Some new solutions are depicted in the forms offigures. The
Sine-Gordonmethod is applicable for solving various non-linear complexmodels such as, Quantum
mechanics, plasma physics and biological science.

1. Introduction

Solution of the exact solutions of travellingwavewith nonlinear evolution equations plays an important role.
The utilization of these solutions are found in various nonlinear physical phenomenons. There aremany
complexmodels that are used inmany fields of nonlinear sciences. Few of thesemodels are described as
biological sciences, quantummechanics, plasma physics. Obviously, these non linearmodels requires nonlinear
evolutionary equations to express some physical phenomena. Finding out solutions of these equations have
direct implementations in the above said fields. For the past two decades,many directmethod have been
developed to have special solutionswith reasonable efficiency. Few of these directmethods are unifiedMethod
[1, 2], tanh-sechmethod [3], Bäcklund transformationmethod [4–6], Jacobi elliptic function expansionmethod
[7, 8], Hirotas directmethod [9], modified auxiliary equation technique [10, 11], F-expansionmethod [12],
improved Bernoulli sub-equation functionmethod [13], new extended direct algebraicmethod [14, 15], many
othermethods are also reported in [1, 16–28].

In this paper,Ginzburg-Landau equation is presented [29] that appears as a class of nonlinear constant
coefficients partial differential equation.Aswith the passage of timenewand innovative solutions are appearing and
the research activities in this area is still under voyage, it is proposed tohave titlematchingwith the on going train.
So,Ginzburg Landau equationʼs Innovative Solution (GLEIS) is expresses the right title to present this research.
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Whereβ, f, δ, γ are constants with real values.
Aweakly nonlinear and dissipative systems having canonicalmodel can be expressedwith the complex

Ginzburg-Landau equation. A variety of settings including chemical physics, condensedmatter physics, fluid
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dynamics,mathematical biology, nonlinear optics, and statisticalmechanics is available to discuss different
behaviours for this equation. This equation can be used as a generic amplitude equation and researchers were
using it since long. This equation can also generate the instabilities that can lead to chaotic dynamics. Various
areas of physicsfir phase transitions and superconductivity can take benefit from this equation in the theory.
Broad range of physical systems that describes evolution phenomena such as physical systems or even extending
fromphysics to optics was considered as remarkable success in past.More recently, a detailed research is carried
out for turbulent dynamics as systemsmodel with nonlinear partial differential equations [30]. Ginzburg-
Landau equation also found its applications influid dynamics bymany researchers, however, Poiseuilleflow
[31] played vital role in such studies. Similarly, the Rayleigh-Bénard problem andTaylor-Couette flow [32–35]
are also explored for the nonlinear growth of convection rolls.

ComplexGinzburg-Landau equationwere under extensivemathematical research for quite a long time
[29, 30].Many hard turbulence examples are provided in [29, 30]. Similarly, cubic-quintic complexGinzburg-
Landau equation [36] is originated by the researcher. Other studies extended the research for low-dimensional
behavior [37], attractor bifurcation [38, 39], and even revolutionized research for travelingwaves[40, 41].

In current research Powerful sine-Gordon expansionmethod (SGEM) [42–44] is explored for finding out
new solutions to the complexGinzburg-Landau equations.Many exact solutionswere explored for this
equation such as [14, 45–57]. Still there are lot of other solutions exist and can be foundwith literature review.

2. The Sine-Gordon expansionmethod

In this section the Sine-Gordon ExpansionMethod (SGEM) is explained tofind out general facts.
Sine-Gordon equation can be considered as follows.

( ) ( )- =u u m usin , 2xx tt
2

Where ⧹{ }Î n 0 and u= u(x, t).
Wave transformation can be utilized to form u= u(x, t)= f(ζ), ζ= α(x− kt) on equation (2), produces the

following nonlinear ordinary differential equation (NODE):
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Where k is travellingwave speed representation andf= f(ζ), ζ is travellingwave amplitude. Integrating
equation (3), can also be formulated as follows:
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Where the integration constant is represented byQ.

Substituting the value ofQ= 0,
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=
a -

b n

k
2

1

2
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2
in equation (4), gives:

( ) ( )w w¢ = b sin , 5

Inserting b= 1 into equation (5), produces:

( ) ( )w w¢ = sin , 6

Simplifying equation (6), and reformulating these equations can provide following set of equations
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Where d is the constant of integration.
There is dependency ofmany parameters for partial differential equation (9) and it also has non linearity;

( ) ( )¼P u uu u u, , , , 9x t
2

Solving the above equationwill produce the following equation:
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equation (10)may be given according to equation (7) and (8) as;

( ) ( )[ ( ) ( )] ( )åf w w w w= + +
=

- B A Acos sin cos . 11
i

m
i

i i
1

1
0

Determiningm is achieved by balancing the highest power of termhaving non linearity and adjusting the highest
derivative in the transformedNODE.A new set of equations can be produced by considering each summation of
the coefficients as zero for the equation ( ) ( )w wsin cosi j , 0� i, j�m . So, we have a new set of equations and all
these equations are symbolic in nature.We can solve these equations in symbolicmanners by the use ofmodern
available computational software. In this research one of these software is used i.e.WolframMathematica 9. By
the use of described software we can have values values of all unknown coefficients that appears in these non
linear partial differential equations. These includes the unknown coefficients such asAi,Bi,μ and c. substituting
the values ofm alongwith the other obtained values of coefficients in equation (10) leads to have a new travelling
wave solutionswhich is presented in equation equation (9).

3. Applications of Sine-Gordon expansionmethod

In this section, it is described, how SGEMcan be used infinding out newpossible solution of equation (1).
We can always assume that equation (1) describes exact solution of SGEM. So holding this assumption and

continuingwith the other equations as function of exponential as described in equation (12)

( ) ( ) ( ) ( )h x h= = +u i v px stexp , , 12

Where p, s are some unknown constants and should be determined, v(x, y, t) is a function having real values
in it. Following new equation can be constructed by Substituting equation (12) into equation (1)
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Real and imaginary parts of the equation (13) can be separated and it is found that
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Consider the following equation

( ) ( ) ( )f x x n= = + +v x y t kx ly t, , , , 15

Where three constants are unknown i.e. k, l, ν. Ordinary differential equations can be obtained by substituting
(15) into equations (14),f(ξ)
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Now,f″ andf3 in equation (17) can be balancedwith the help of coefficientm, take the valuem= 1 for balancing
purpose in equation (17).

Following equation can be obtained by using equation (11) and consideringm= 1;

( ) ( ) ( ) ( )f w w w= + +B A Asin cos , 181 1 0

Differentiating equation (18) twice, following result can be achieved:

( ) ( ) ( ) ( ) ( ) ( ) ( )f w w w w w w = - -B B Acos sin sin 2 sin cos . 191
2

1
3

1
2

Putting equations (18) and (19) into equation (17), yields an equation in trigonometric functions. In the above
equations, setting the value of zero to each summation for the functions having various coefficients but same
powers, provides a collection of new algebraic equations. These equations are solvable and the Solution to these
set of equations can be obtained by using any symbolicmathematical solver software likeMathematica orMaple.
Values of these coefficients plays important role and different cases can be obtained using different values of
these coefficients. Taking different values of the coefficients alongwith the valuem= 1, in equation (10)

3
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generates a separate case and hence provides a new solution to equation (1). Each case is highlighted in the
subsequent sections.

Case-1:There could bemany possible set of values for the constants used in equation (1). Each set of values
for these constants will generate a different kind of result in formof the solution presented in this paper. One of
the possible set of values for these constants is given below.

( )
( ) ( ) ( )= = =

+

+
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f l k el0, 0, , 2 . 200 1 1

2 2

1

2
2
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for all cases.

These coefficients can take different values and hence provides solution for equation (1) in the following
format:
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There are other constants in the equation (21) and considering the values p= 2; s=− 1; k= 2; y= 0; e= 0 for
this equation, figure 1 can be obtained.While,figure 1(A) showsThe three dimensional (3D) surfaces of
equation (21), andfigure 1(B) showsTwodimensional (2D) surfaces of equation (21). It can be observed that this
solution is used for singular soliton surfaces as shown infigure 1 and valid for 3D and 2D surfaces of u1.

Case-2: Interchanging the values ofA1 withB1 and slight change in the values of f
2l4 another possible set of

constants is generated as follows:
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Similarly, with the assumption of above coefficients provide solution to equation (1) in the following format:
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Case-3: Similarly,figure 2 can be obtained using values of p= 1, s= 0.5, k= 2, y= 0, e= 0 for the constants
given the equation (23). It can also be observed that this solution is extended version of previous solution. This
solution can be used for the periodic 3D and 2D of u1 surface.

( ) ( )
( ) ( ) ( ) ( )= = -

+

+
= -

+

+
= - +A A

k el

s p
i B

k el

s p
f l k el0,

4
,

4
, . 240 1

2 2

1

2
2

1

2 2

1

2
2

2 4 2 2

As describes in case-1 and case-2, with the assumption of the above coefficients provide solution to
equation (1) in the following format:

Figure 1. (A)The three dimensional (3D) surfaces of equation (21), (B)Two dimensional (2D) surfaces of equation (21) by considering
the values p = 2, s = − 1, k = 2, y = 0, e = 0.
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Case-4:Considering the values for the constants as p= 1; s= 0: 5; k= 2; y= 0; e= 0figure 3 can be
obtained. The 3D surface of equation (25) is shown infigure 3(A), where as 2D surface of equation (25) is shown
infigure 3(B). It is also described thatfigure 3 can only be generatedwith the assumption of following values of
constants.
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The above coefficients provides a unique solution of (1) and given as below:
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Figure 2. (A)The three dimensional surfaces of equation (23), (B) two dimensional surfaces of equation (23) by considering the values
p = 2, s = − 1, k = 2, y = 0, e = 0.

Figure 3. (A)The 3D surfaces of equation (25), (B) 2D surfaces of equation (25) by considering the values p = 1, s = 0.5, k = 2, y = 0,
e = 0.
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Case-5: Similarly, another solution is possible in the formof u5.
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for all case. The above coefficients provides a unique solution of (1) and given as below:
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All of the above solutions are possible with the help of considering different values of the constants used in
the different equations.More solutions are still possible by considering another possible set of constant used in
same equations. This ongoing research forfinding out different solutions is still underway and getting a faster
pace due to the available software available to solve the equations in the symbolic format and hence the title of
this paper is suggested asGinzburg Landau equationʼs Innovative Solution (GLEIS). The solutions obtained
from these equations are directly applicable to different field of sciences likemicroscopic properties of
superconductivity, phase transition in superconductivity, quantumfield theory and event to string theory.

As a summary, it reiterated that similar solutionswere obtained in the literature review and reported in this
paper. The solutions obtained in this paper can be applied to the natural travel of waves. These solutions are not
only applied to thewaves but in general the similar nature real physical phenomena such as heat flow in single or
multi-dimensional space. In general, there are three types of solutions for such problems.One soliton is the
solution, which is high in themiddle and decreasing asymptotically, on both sides. Other solution is known as
kinks and this solution is ascending fromone asymptotic state to the other asymptotic state. The third formof
solution is descending fromone asymptotic state to the other asymptotic state. However, the solutions extracted
in this paper show entirely newmanifestation. This type of solution is known as singular solutionwhichwas not
obtained in the literature so far. This solutions is also shownpictorially in fromoffigure 1. Similar solutions are
provided in various references such as [48]. The solution provided in [48] are in the formof exponential or
exponential with tan functions, In ourmethod the solutions are obtained in the formof exponential function or
exponential functionwith tanh or sech. The proposed solutionsmanifest another formof travelingwavewhich
was never found in literature.

4.Discussion

In [48] thefirst integralmethodwas developed and been utilized in solving the 2DGinzburg-Landau equation

and various solutions in hyperbolic functions formwere obtained. Secondly, thewell-known ( )¢G

G
- Some exact

hyperbolic and trigonometric functionwere obtained by using themethod of expansion as given in [58]. It is also
observed that same solution structures also exists in literature when these twomethods are used.However, the
results are new evenwhen the structures are same. These solutions and implementation onwaves are novel and
different from the existing solutions. On the other hand, 3D and 2D surfaces of u1 is singular soliton surfaces by
observing figures 1. The solution can be extended in figures 2 for periodic 3D and 2D of u1 surface.

5. Conclusion

It is evident from the simulation results that the existing solutionswere not the only possible solutions. New
solutions are possible that canfind the applications inwave propagation of physical phenomenons. The singular
solution obtained infigure 1 is novel.

The results extracted in this paper show that SGEM is effective tool which can provide various different
solutions. These solutions have importance especially for nonlinear evolution equations.More interesting
solutions are expected in future.
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