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Abstract
This work finds several new traveling wave solutions for nonlinear directional couplers with optical
metamaterials by means of the modified Kudryashov method. This model can be used to distribute
light from a main fiber into one or more branch fibers. Two forms of optical couplers are considered,
namely the twin- and multiple- core couplers. These couplers, which have applications as intensity-
dependent switches and as limiters, are studied with four nonlinear items namely the Kerr, power,
parabolic, and dual-power laws. The restrictions on the parameters for the existence of solutions are
also examined. The 3D- and 2D figures are introduced to discuss the physical meaning for some of
the gained solutions. The performance of the method shows the adequacy , power, and ability for
applying to many other nonlinear evolution models.

Keywords: traveling wave solution, the modified kudryashov method, twin-core couplers,
multiple-core couplers, optical metamaterials

(Some figures may appear in colour only in the online journal)

1. Introduction

The wave propagation in optical couplers is a well-known
topic of research in nonlinear optics. Several results were
published addressing this problem during the past couple of
decades [1–24]. More recently, the study of wave propagation

in couplers with optical metamaterials gained particular
attention and important achievements were reported [1, 2, 19].

It was observed that by varying the intensity of the input
light pulses in a nonlinear coupler one can achieve pulse
switching between the cores [10] and, therefore, optical couplers
can be used as an optical switch. In the past, it was shown that
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soliton switching in dual-core optical fibers yielded excellent
switching characteristics with high efficiency for a wide range of
input energies. After comparing the switching behavior amongst
fundamental, second-order and quasi-solitons, it was concluded
that a fundamental soliton carry the most ideal features for
conducting optical switching. In fact, it was also established that
pulse breakup can be avoided provided the input signal is a
soliton [20]. Therefore, the extraction of soliton solutions of
optical couplers is an important topic that carries relevant ben-
efits in the area of telecommunications. We find several inte-
gration algorithms to fulfill this task such as the trial function,
undetermined coefficients, sine-cosine function, Bernoulli
equation, -expansion, and several others techniques [2, 12–14].

The main motivation of this paper is to employ a pow-
erful mathematical algorithm, namely the modified Kudrya-
shov method [25–27], to unravel the traveling wave solutions
of couplers in optical metamaterials.

The paper is organized in the following order. Section 2,
gives a brief description of the modified Kudryashov method.
Sections 3 investigates the twin-, multiple- (coupling with
nearest neighbors), and multiple- (coupling with all neigh-
bors) core couplers. Section 4, investigates the physical
interpretation for some of the obtained solutions. Section 5,
provides the conclusions of the paper.

2. Description of the modified Kudryashov method

Here, we give a briefdescription of the modified Kudryashov
method. Let us consider a nonlinear partial differential
equation (PDE),

X =u u u u u, , , , , 0, 1t x tt xx( ) ( )

where Ξ is a polynomial in its arguments.
The essence of modified Kudryashov method can be

presented in the following steps
Step 1.By means of the variable transformation

z l= kx t, 2( )

where k and λ are constants.
Equation (1) can be converted to

¡ L L¢ L L¢¢¢ =, , , , 0, 3( ) ( )

where ϒ is in general a polynomial function of its arguments

and
z

L¢ =
Ld

d
.

Step 2.Suppose that the solution of (3) can be expressed
by a polynomial in j z( ) as follows

åz j zL =
=

B , 4
i

N

i
i

0

( ) ( ) ( )

where Bi, i=0, 1, 2, 3, L, N are real constants with ¹B 0N

to be determined, and N is a positive integer to be determined.
The function j(ζ) is the solution of the auxiliary linear
ordinary differential equation

j
z

j z j z= -
d

d
Aln , 52( ( ) ( )) ( ) ( )

where A is a non-zero constant with the conditions A>0
and ¹A 1.

Equation (5) gives the following solution:

j z =
+

Î
z


dA

d
1

1
, . 6( ) ( )

Step 3.After substituting (4) into (3) and (5) and collecting all
terms with the same order of j(ζ), the left-hand side of
equation (3) is converted into another polynomial in j(ζ).
Equating each coefficient of this polynomial to zero, yields a
set of algebraic equations for Bi, d, k, and λ by using a
software package such as Maple.

Step 4. Substituting the values of the constants together
with the solutions of equation (5), we will obtain the exact
traveling wave solutions of the nonlinear PDE (1).

3. Applications and discussion

3.1. Twin-core couplers

Consider the following twin-core couplers in optical meta-
materials [2, 12–14]

x h z k
G + G + G G
= G G + G G + G G + W

i a F

, 7
t xx

xx xx xx

1 1
2

1
2

1
2

1
2

1*
(∣ ∣ )

(∣ ∣ ) ∣ ∣ ( )

x h z k
W + W + W W
= W W + W W + W W + G

i a F

. 8
t xx

xx xx xx

2 2
2

2
2

2
2

2
2

2*
(∣ ∣ )

(∣ ∣ ) ∣ ∣ ( )

The complex-valued functions Γ=Γ(x, t) and Ω=Ω(x, t)
represent the optical fields in two respective cores and
= -i 1 . The symbols a1 and a2 denote the coefficients of

group velocity dispersion. Moreover, κj, j=1, 2, are the
coupling coefficients, and the terms including ξj, μj, and ζj
characterise the properties of optical metamaterials [14].

In order to handle the governing model, we consider the
following starting hypotheses

xG = Fx t U e, , 9i x t
1

,( ) ( ) ( )( )

xW = Fx t U e, , 10i x t
2

,( ) ( ) ( )( )

where U1 (ξ ) and U2 (ξ ) represent the shape of the pulse with
the phase F x t,( ) so that

w qF = - + +x t px t, .0( )

The traveling coordinate ξ is given by

x = -k x vt ,( )

where v, p, ω, and θ0 represent the soliton velocity, frequency,
wave number, and phase constant, respectively.

Substituting (9) and (10) into (7) and (8), respectively,
the imaginary component yields

x h z- + ¢ + + -  =

=

vk a pk U pk U U

s

2 2 3 0,

1, 2.

11

s s s s s s s
2 2( ) ( )

( )

After setting the coefficients of the linearly independent
functions in (11) to zero, we verify that it is possible to
determine the speed of the soliton = -v a p2 s and the

2
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constraint conditions

x h z+ - =3 0. 12s s s ( )

Equating the two values of the soliton velocity = -v a p2 s

leads to

= =a a a. 131 2 ( )

Consequently, it reduces to

= -v ap2 . 14( )

The real parts imply

w

x h z x

x h z k

 - + +

+ + + - ¢

- + +  - =

ak U ap U F U U

p U k U U

k U U U

6

3 0, 15

s s s s s

s s s s s s s

s s s s s s s

2 2 2

2 3 2

2 2
*

( ) ( )
( ) ( )

( ) ( )

where = =a a a1 2 and = -s s3* , s=1, 2.
The balancing principle leads to =U Us s*. Consequently,

equation (15) can be written as

w k z x

x z

 - + + + + -

- ¢ -  =

ak U ap U F U U p U

k U U k U U

2

6 2 0.

16

s s s s s s s s s

s s s s s s

2 2 2 2 3

2 2 2

( ) ( ) ( )

( )
( )

In the following subsections, this equation will be studied
when considering four different types of nonlinearity.

3.1.1. Kerr law nonlinearity. In this case we have
D = DF bs s( ) =s 1, 2( ) and inserting it into equations (7)

and (8) yields

x h z k
G + G + G G
= G G + G G + G G + W

i a b

, 17
t xx

xx xx xx

1
2

1
2

1
2

1
2

1*
∣ ∣

(∣ ∣ ) ∣ ∣ ( )

x h z k
W + W + W W
= W W + W W + W W + G

i a b

. 18
t xx

xx xx xx

2
2

2
2

2
2

2
2

2*
∣ ∣

(∣ ∣ ) ∣ ∣ ( )

Equation (16) takes the following form

w k z x

x z

 - + + + + -

- ¢ -  = 19

ak U ap U b p U

k U U k U U

2

6 2 0.
s s s s s s s

s s s s s s

2 2 2 3

2 2 2 ( )
( ) ( ( ) )

( )

To obtain an analytic solution, we apply the transforma-
tions z x= = 0s s in equation (19) and we obtain

w k - + + + =ak U ap U b U 0. 20s s s s s
2 2 3( ) ( )

Balancing Us with Us
3 in equation (20) give

+ =  =N N N2 3 1.

We seek solutions of the form

z s s j z= +U , 211 0 1( ) ( ) ( )

z r r j z= +U , 222 0 1( ) ( ) ( )

where s s r, ,0 1 0, and r1 are constants to be determined.
Substituting the solutions (21) and (22) in (20) gives the

polynomial equation in j z( ). Thus, we find algebraic
equations system by setting all the coefficients to zero. The
solution of this system for s s r r, , ,0 1 0 1, and ω with s r ¹, 01 1

gives

s s

r r

w k

=  =

=  =

= - + -

k a

b
A k

a

b
A

k a

b
A k

a

b
A

ap ak A

2

2
ln ,

2
ln ,

2

2
ln ,

2
ln ,

1

2
ln . 23s

0
1

1
1

0
2

1
2

2 2 2

( ) ( )

( ) ( )

( ) ( )





After substituting equations (23), (9), and (10) into
equations (21) and (22), we obtain the exact solutions of
equations (17) and (18)

k q

G =  -
+

´ - + - + - +

+
x t k

a

b
A

dA

i px ap ak A t

,
2

ln
1

2

1

1

exp
1

2
ln ,

k x apt1
1

2

2
1

2 2
0⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟

( ) ( )

( )

( )

k q

W =  -
+

´ - + - + - +

+
x t k

a

b
A

dA

i px ap ak A t

,
2

ln
1

2

1

1

exp
1

2
ln .

k x apt1
2

2

2
2

2 2
0⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟

( ) ( )

( )

( )

These solutions are valid for >a b 0s , s=1, 2.

3.1.2. Power law nonlinearity. In this case we have
D = DF bs s

n( ) =s 1, 2( ), (n indicates the power law
nonlinearity factor) and inserting it into equations (7) and
(8) yields

x h z k
G + G + G G
= G G + G G + G G + W

i a b

, 24
t xx

n

xx xx xx

1
2

1
2

1
2

1
2

1*
∣ ∣

(∣ ∣ ) ∣ ∣ ( )

x h z k
W + W + W W
= W W + W W + W W + G

i a b

. 25
t xx

n

xx xx xx

2
2

2
2

2
2

2
2

2*
∣ ∣

(∣ ∣ ) ∣ ∣ ( )

Equation (16) takes the form

w k z x

x z

 - + + + + -

- ¢ -  =

+ak U ap U b U p U

k U U k U U

2

6 2 0.

26

s s s s s
n

s s s

s s s s s s

2 2 2 1 2 3

2 2 2 2

( ) ( )

( )
( )

To obtain an analytic solution, we apply the transformations
z x= = 0s s in equation (26) to find

w k - + + + =+ak U ap U b U 0. 27s s s s s
n2 2 2 1( ) ( )

In order to obtain the closed form solutions, the following
transformation

=U V , 28s s
n

1
2 ( )

is applied. Therefore, equation (27) becomes

w k

 + - ¢

- + + + =

ak nV V n V

n ap V n b V

2 1 2

4 4 0. 29

s s s

s s s s

2 2

2 2 2 2 3

( ( )( ) )
( ) ( )

Balancing Vs
3 with ¢Vs

2( ) gives N=2. We seek solutions of
the form

z s s j z s j z= + +V , 301 0 1 2
2( ) ( ) ( ) ( )

3
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z r r j z r j z= + +V , 312 0 1 2
2( ) ( ) ( ) ( )

where s s s r r, , , ,0 1 2 0 1, and r2 are constants to be determined.
Substituting the solution (30) and (31) into (27) gives the

polynomial equation in j(ζ). Thus, we find algebraic
equations system by setting all the coefficients to zero. The
solution of this system for s s s r r r, , , , ,0 1 2 0 1 2, and ω with
s r ¹, 02 2 gives

s s

s

r r

r

w
k

= =
+

=-
+

= =
+

=-
+

=
- +

ak n A

n b

ak n A

n b

ak n A

n b

ak n A

n b

ak A n ap

n

0,
1 ln

,

1 ln
,

0,
1 ln

,

1 ln
,

ln 4

4
. 32s

0 1

2 2

2
1

2

2 2

2
1

0 1

2 2

2
2

2

2 2

2
2

2 2 2 2

2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

After substituting equations (32), (9), and (10) into
equations (30) and (31), we obtain the following exact
solutions of equations (24) and (25)

k
q

G =
+

+

´ - +
- +

+

+

+
x t

ak n A dA

n b dA

i px
ak A n ap

n
t

,
1 ln

1

exp
ln 4

4
,

k x apt

k x apt2

2 2 2

2
1

2 2

2 2 2 2
1

2 0

n
1

2⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠
⎟⎟

( ) ( ) ( )
( )

( ) ( )

( )

( )

k
q

W =
+

+

´ - +
- +

+

+

+
x t

ak n A dA

n b dA

i px
ak A n ap

n
t

,
1 ln

1

exp
ln 4

4
.

k x apt

k x apt2

2 2 2

2
2

2 2

2 2 2 2
2

2 0

n
1

2⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠
⎟⎟

( ) ( ) ( )
( )

( ) ( )

( )

( )

3.1.3. Parabolic law nonlinearity. In this case we have
D = D + DF b cs s s

2( ) (s=1, 2) and inserting it into
equations (7) and (8) yields

x h z k
G + G + G + G G
= G G + G G + G G + W

i a b c

, 33
t xx

xx xx xx

1
2

1
4

1
2

1
2

1
2

1*
( ∣ ∣ ∣ ∣ )

(∣ ∣ ) ∣ ∣ ( )

x h z k
W + W + W + W W
= W W + W W + W W + G

i a b c

. 34
t xx

xx xx xx

2
2

2
4

2
2

2
2

2
2

2*
( ∣ ∣ ∣ ∣ )

(∣ ∣ ) ∣ ∣ ( )

Equation (16) becomes:

w k z x

x z

 - + + + + -

+ - ¢ -  =

ak U ap U b p U

c U k U U k U U

2

6 2 0.

35

s s s s s s s

s s s s s s s s

2 2 2 3

5 2 2 2 2

( ) ( ( ) )

( )
( )

To obtain an analytic solution, we apply the transformations
z x= = 0s s in equation (35) to find

w k - + + + + =ak U ap U b U c U 0. 36s s s s s s s
2 2 3 5( ) ( )

In order to obtain the closed form solutions, the following
transformation

=U V , 37s s
1
2 ( )

is applied. The above equation gives

w k - ¢ - + +

+ + =

ak V V V ap V

b V c V

2 4

4 4 0. 38

s s s s s

s s s s

2 2 2 2

3 4

( ( ) ) ( )
( )

Balancing Vs
4 with V Vs s gives N=1. We seek solutions of

the form

z s s j z= +V , 391 0 1( ) ( ) ( )
z r r j z= +V , 402 0 1( ) ( ) ( )

where s s r, ,0 1 0, and r1 are constants to be determined.
Substituting the solution (39) and (40) into (36) gives the

polynomial equation in j(ζ). Thus, we find algebraic
equations system by setting all the coefficients to zero. The
solution of this system for s s r r w, , , ,0 1 0 1 , and k with
s r ¹, 01 1 gives

Case 1.

s s

r r

w
k

= - =

= - =

= -
+ +

=  -

b

c

b

c
b

c

b

c

c ap b

c

k
b

A c a

3

4
,

3

4
,

3

4
,

3

4
,

1

16

16 3
,

ln

3

4
. 41

c s s

s

s

s

0
1

1
1

1

1

0
2

2
1

2

2

2 2( )

( )
( )

Case 2.

s s

r r

w
k

= - =

= = -

= -
+ +

=  -

b

c

b

c
b

c

c ap b

c

k
b

A c a

3

4
,

3

4
,

0,
3

4
,

1

16

16 3
,

ln

3

4
. 42

c s s

s

s

s

0
1

1
1

1

1

0 1
2

2

2 2( )

( )
( )

Substituting equations (41), (9), and (10) into equations (39)
and (40), leads to the following exact solutions of
equations (33) and (34)

k
q

G = - +
+

´ - -
+ +

+

 - +
x t

b

c dA

i px
c ap b

c
t

,
3

4
1

1

1

exp
1

16

16 3
,

x apt
3

1

1 2

1
2

1 1
2

1
0

b
A c a
1

ln
3

4 1

1
2⎛

⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )

( )

( )( )

k
q

W = - +
+

´ - -
+ +

+

 - +
x t

b

c dA

i px
c ap b

c
t

,
3

4
1

1

1

exp
1

16

16 3
.

x apt
3

2

2 2

2
2

2 2
2

2
0

b
A c a
2

ln
3

4 2

1
2⎛

⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )

( )

( )( )

Substituting equations (42), (9), and (10) into equations (39)
and (40), results in the following exact solutions of

4
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equations (33) and (34)

k
q

G = -
+

´ - -
+ +

+

 - +
x t

b

c dA

i px
c ap b

c
t

,
3

4 1

exp
1

16

16 3
,

x apt
4

1

1
2

1
2

1 1
2

1
0

b
A c a
1

ln
3

4 1

1
2⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )( )

( )

( )( )

k
q

W = -
+

´ - -
+ +

+

 - +
x t

b

c dA

i px
c ap b

c
t

,
3

4 1

exp
1

16

16 3
.

x apt
4

2

2
2

2
2

2 2
2

2
0

b
A c a
2

ln
3

4 2

1
2⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )( )

( )

( )( )

These solutions are valid for <a c 0s , s= 1, 2.

3.1.4. Dual-power law nonlinearity. In this case we have
D = D + DF b cs s

n
s

n2( ) (s=1, 2) and inserting it into
equations (7) and (8) yields

x h z k
G + G + G + G G
= G G + G G + G G + W

i a b c

, 43
t xx

n n

xx xx xx

1
2

1
4

1
2

1
2

1
2

1*
( ∣ ∣ ∣ ∣ )

(∣ ∣ ) ∣ ∣ ( )

x h z k
W + W + W + W W
= W W + W W + W W + G

i a b c

. 44
t xx

n n

xx xx xx

2
2

2
4

2
2

2
2

2
2

2*
( ∣ ∣ ∣ ∣ )

(∣ ∣ ) ∣ ∣ ( )

Equation (16) takes the form

w k

z x

x z

 - + + +

+ - +

- ¢ -  =

+

+

ak U ap U b U

p U c U

k U U k U U

2

6 2 0. 45

s s s s s
n

s s s s s
n

s s s s s s

2 2 2 1

2 3 4 1

2 2 2 2

( )
( )

( ) ( )

To obtain an analytic solution, we apply the transformations
z x= = 0s s in equation (45) obtaining

w k - + + + + =+ +ak U ap U b U c U 0.
46

s s s s s
n

s s
n2 2 2 1 4 1( )

( )

In order to obtain the closed form solutions, the following
transformation

=U V , 47s s
n

1
2 ( )

is applied. Therefore the above equation can be written as

w k + - ¢ - + +

+ + =

ak nV V n V n ap V

n b V n c V

2 1 2 4

4 4 0.

48

s s s s s

s s s s

2 2 2 2 2

2 3 2 4

( ( )( ) ) ( )

( )

Balancing Vs
4 with V Vs s gives N=1. We seek solutions of

the form

z s s j z= +V , 491 0 1( ) ( ) ( )
z r r j z= +V , 502 0 1( ) ( ) ( )

where σ0, σ1, ρ0, and ρ1 are constants to be determined.
Substituting the solution (49) and (50) into (46) gives the

polynomial equation in j(ζ). Thus, we find algebraic

equations system by setting all the coefficients to zero. The
solution of this system for s s r r, , , ,0 1 0 1 and k with s r ¹, 01 1
gives Case 1.

s s

r r

w
k

= -
+
+

=
+
+

= -
+
+

=
+
+

= -
+ + + +

+

= 
+

-
+

n b

n c

n b

n c
n b

n c

n b

n c

c n ap n b

n c

k
nb

n A

n

c a

2 1

2 1
,

2 1

2 1
,

2 1

2 1
,

2 1

2 1
,

1

4

4 1 2 1

1
,

1 ln

2 1

4
. 51

s s s

s

s

s

0
1

1
1

1

1

0
2

2
1

2

2

2 2 2

2

( )
( )

( )
( )

( )
( )

( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

Case 2.

s s

r r

w
k

= =
+
+

= =
+
+

= -
+ + + +

+

= 
+

-
+

n b

n c
n b

n c

c n ap n b

n c

k
nb

n A

n

c a
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2 1

2 1
,
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2 1

2 1
,

1

4

4 1 2 1

1
,

1 ln

2 1

4
. 52

s s s

s

s

s

0 1
1

1

0 1
2

2

2 2 2

2

( )
( )

( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

Substituting equations (51), (9), and (10) into equations (49)
and (50), we obtain the following exact solutions to
equations (43) and (44)

k
q

G =
+
+

- +
+

´ - -
+ + + +

+
+

 - ++
+

x t
n b

n c dA

i px
c n ap n b

n c
t

,
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1

1

1

exp
1
4

4 1 2 1

1
,
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5

1

1 2

1
2 2

1 1
2

2
1

0
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n A

n
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n

1
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2 1
4 1

1
2⎛

⎝
⎜⎜

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( ) ( )
( )

( ) ( ) ( )
( )

( )( ) ( )

k
q

W =
+
+

- +
+

´ - -
+ + + +

+
+

 - ++
+

x t
n b

n c dA

i px
c n ap n b

n c
t

,
2 1

2 1
1

1

1

exp
1
4

4 1 2 1

1
.

x apt
5

2

2 2

2
2 2

2 2
2

2
2

0
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n A

n
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n

2
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2 1
4 2

1
2⎛

⎝
⎜⎜

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( ) ( )
( )

( ) ( ) ( )
( )

( )( ) ( )

Substituting equations (52), (9), and (10) into equations (49)
and (50), we obtain the following exact solutions to
equations (43) and (44)

k
q

G = -
+

´ - -
+ + + +

+
+

 - ++
+

x t
b

c dA

i px
c n ap n b

n c
t

,
3

4 1

exp
1
4

4 1 2 1

1
,

x apt
6
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1
2

1
2 2

1 1
2

2
1

0
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n A

n
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n

1
1 ln

2 1
4 1

1
2⎛

⎝

⎜⎜⎜⎜ ⎛
⎝⎜

⎞
⎠⎟

⎞

⎠

⎟⎟⎟⎟
⎛
⎝
⎜⎜

⎛
⎝⎜
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⎞
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( ) ( ) ( )
( )
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k
q

W = -
+
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+ + + +

+
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 - ++
+
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b

c dA

i px
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t

,
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4 1
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1
4
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1
.
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2

2
2

2
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2

2
2

0
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n
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n

2
1 ln
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4 2

1
2⎛

⎝
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⎝⎜

⎞
⎠⎟

⎞

⎠

⎟⎟⎟⎟
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
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( )

( ) ( ) ( )
( )

( )( ) ( )

These solutions are valid for <a c 0s , s=1, 2.

3.2. Multiple-core couplers (coupling with nearest neighbors)

Consider the following Multiple-core couplers in optical
metamaterials [2, 12]

x h z

G + G + G G

= G G + G G + G G

+ G - G + G

t

- +

i a F

K 2 , 53

s
s xx

s
s

s s

s
s s

xx s
s

xx
s

s
s

xx
s

s s s

2

2 2 2

1 1

*

(∣ ∣ )
(∣ ∣ ) ∣ ∣

[ ] ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

where  s M1 and K is the coupling coefficient. In order
to handle the governing model, the following are our starting
hypothesis

t xG = tFx U e, , 54s
s

i x,( ) ( ) ( )( ) ( )

where Us (ξ ) represents the shape of the pulse. The phase
tF x,( ) is expressed as

t wt qF = - + +x px, .0( )

The traveling coordinate ξ is given by

x t= -k x v ,( )

where v, p, ω, and θ0 represent velocity, frequency, wave
number, and phase constant of the soliton, respectively.

Substituting (54) into (53), the imaginary component
offers

x h z- + ¢ + + -  =

 

vk a pk U pk U U

s M

2 2 3 0,

1 .

55

s s s s s s s
2 2( ) ( )

( )

Setting the coefficients of the linearly independent functions,
in (55) to zero, we obtain the speed of the soliton

= -v a p2 , 56s ( )

and the constraint conditions

x h z+ - =3 0. 57s s s ( )

The real parts imply

w

z x x

z

 - + +

+ - - ¢

-  - - + =- +

ak U a p U F U U

p U k U U

k U U K U U U

2 6

2 2 0. 58

s s s s s s

s s s s s s

s s s s s s

2 2 2

2 3 2 2

2 2
1 1

( ) ( )
( ) ( )

( ) ( )

Next, balancing principle leads to

= =- +U U U . 59s s s1 1 ( )

Consequently, equation (58) is

w z x

x z

 - + + + -

- ¢ -  =

ak U a p U F U U p U

k U U k U U

2

6 2 0.

60

s s s s s s s s s

s s s s s s

2 2 2 2 3

2 2 2 2

( ) ( ) ( )

( )
( )

In the following subsections, this equation will be studied for
four different types of nonlinearity.

3.2.1. Kerr law nonlinearity. In this case we have
D = DF bs s( )  s M1( ) and inserting it into

equation (53) yields

x h z

G + G + G G

= G G + G G + G G

+ G - G + G

t

- +

i a b

K 2 . 61

s
s xx

s
s

s s

s
s s

xx s
s

xx
s

s
s

xx
s

s s s

2

2 2 2

1 1

*

∣ ∣
(∣ ∣ ) ∣ ∣

[ ] ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

Equation (60) takes the following form

w z x

x z

 - + + + -

- ¢ -  =

ak U a p U b p U

k U U k U U

2

6 2 0. 62
s s s s s s s

s s s s s s

2 2 2 3

2 2 2 2

( ) ( ( ) )
( ) ( )

To obtain an analytic solution, we apply the transformations
z x= = 0s s in equation (62) to find

w - + + =ak U a p U b U 0. 63s s s s s
2 2 3( ) ( )

Balancing Us and Us
3 in equation (63) give

+ =  =N N N2 3 1.

We seek solutions of the form

z s s j z= +U , 64l 0 1( ) ( ) ( )

where σ0 and σ1 are constants to be determined.
Substituting the solution (64) into (63) gives the

polynomial equation in j z( ). Thus, we find algebraic
equations system by setting all the coefficients to zero. The
solution of this system for s s,0 1, and ω with s ¹ 01 gives

s s

w

= - =  -

=- -

k a

b
A k

a

b
A

a p a k A

2

2
ln ,

2
ln ,

1

2
ln . 65

s

s

s

s

s s

0 1

2 2 2

( ) ( )

( ) ( )

Substituting equations (65) and (54) into equation (64), we
obtain the following exact solutions of equation (61)

t

t q

G =  - +
+

´ - + - - +

t+
x k

a

b
A

dA

i px a p a k A

,
2

ln
1

2

1

1

exp
1

2
ln .

s s

s
k x a p

s s

7 2

2 2 2
0

s

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟

( ) ( )

( )

( )
( )

These solutions are valid for <a b 0s s ,  s M1 .

3.2.2. Power law nonlinearity. In this case, D = DF bs s
n( )

 s M1( ), (n indicates the power law nonlinearity factor)
and inserting it into equation (53) yields

x h z

G + G + G G

= G G + G G + G G

+ G - G + G

t

- +

i a b

K 2 , 66

s
s xx

s
s

s n s

s
s s

xx s
s

xx
s

s
s

xx
s

s s s

2

2 2 2

1 1

*

∣ ∣
(∣ ∣ ) ∣ ∣

[ ] ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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Equation (60) can be written as

w z x

x z

 - + + + -

- ¢ -  =

+ak U a p U b U p U

k U U k U U

2

6 2 0.

67

s s s s s
n

s s s

s s s s s s

2 2 2 1 2 3

2 2 2 2

( ) ( )

( )
( )

To obtain an analytic solution, we apply the transformations
z x= = 0,s s equation (67) to find

w - + + =+ak U a p U b U 0. 68s s s s s
n2 2 2 1( ) ( )

In order to obtain the closed form solutions, the following
transformation

=U V , 69s s
n

1
2 ( )

is applied. The above equation therefore becomes

w

 + - ¢

- + + =

ak nV V n V

n a p V n b V

2 1 2

4 4 0. 70

s s s

s s s s

2 2

2 2 2 2 3

( ( )( ) )
( ) ( )

Balancing Vs
3 with ¢Vs

2( ) gives N=2. We seek solutions of
the form

z s s j z s j z= + +U , 71l 0 1 2
2( ) ( ) ( ) ( )

where s s,0 1, and s2 are constants to be determined.
Substituting the solution (71) into (68) gives the

polynomial equation in j z( ). Thus, we find an algebraic
equation system by equating all the coefficients to zero. The
solution of this system for s s s, ,0 1 2, and ω with s ¹ 02 gives

s s

s w

= =
+

=-
+

=
-

a k n A

n b

a k n A

n b

a k A n a p

n

0,
1 ln

,
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,

ln 4

4
.

72

s

s

s

s

s s

0 1

2 2

2

2

2 2

2

2 2 2 2

2

( ) ( )

( ) ( ) ( )

( )

After substituting equations (72) and (54) into equation (71),
we obtain the following exact solutions of equation (66)

t

t q

G =
+

+

´ - +
-

+

t

t

+

+
x

a k n A dA

n b dA

i px
a k A n a p

n

,
1 ln

1

exp
ln 4

4
.

s s
k x a p

s
k x a p

s s

8

2 2 2

2 2 2

2 2 2 2

2 0

s

s

n
1

2⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠
⎟⎟

( ) ( ) ( )
( )

( )

( )
( )

( )

3.2.3. Parabolic law nonlinearity. In this case, D =Fs ( )
D + Db cs s

2  s M1( ) and inserting it into equation (53)
yields

x h z

G + G + G + G G

= G G + G G + G G

+ G - G + G

t

- +

i a b c

K 2 , 73

s
s xx

s
s

s
s

s s

s
s s

xx s
s

xx
s

s
s

xx
s

s s s

2 4

2 2 2

1 1

*

( ∣ ∣ ∣ ∣ )
(∣ ∣ ) ∣ ∣

[ ] ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

Equation (60) turns into

w z x

x z

 - + + + - +

- ¢ -  =

ak U a p U b p U c U

k U U k U U

2

6 2 0.

74

s s s s s s s s s

s s s s s s

2 2 2 3 5

2 2 2 2

( ) ( ( ) )

( )
( )

To obtain an analytic solution, we apply the transformations
z x= = 0s s in equation (74) to find

w - + + + =ak U a p U b U c U 0. 75s s s s s s s
2 2 3 5( ) ( )

In order to obtain the closed form solutions, the following
transformation

=U V , 76s s
1
2 ( )

is applied. The above equation therefore develops into

w - ¢ - +

+ + =

ak V V V a p V

b V c V

2 4

4 4 0. 77

s s s s s

s s s s

2 2 2 2

3 4

( ( ) ) ( )
( )

Balancing Vs
4 with V Vs s gives N=1. We seek solutions of

the form

z s s j z= +U , 781 0 1( ) ( ) ( )

where s0 and s1 are constants to be determined.
Substituting the solution (78) into (75) gives the

polynomial equation in j z( ). Thus, we find an algebraic
equation system by equating all the coefficients to zero.
The solution of this system for σ0, σ1, ω, and k with s ¹ 01

gives
Case 1.

s s

w

= - =

= -
+

=  -

b

c

b

c

c a p b

c

k
b

A c a

3

4
,

3

4
,

1

16

16 3
,

ln

3

4
. 79

s

s

s

s

s s s

s

s

s s

0 1

2 2

( )
( )

Case 2.

s s

w

= = -

= -
+

=  -

b

c

c a p b

c

k
b

A c a

0,
3

4
,

1

16

16 3
,

ln

3

4
. 80

s

s

s s s

s

s

s s

0 1

2 2

( )
( )

Substituting equations (79) and (54) into equation (78), we
obtain the following exact solutions of equation (73)

t

t q

G = - +
+

´ - -
+

+

t - +
x

b

c dA

i px
c a p b

c

,
3

4
1

1

1

exp
1

16

16 3
.

s s

s x a p

s s s

s

9
2

2 2

0

bs
A csas sln

3
4

1
2⎛

⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )( )
( )( )

7

Phys. Scr. 95 (2020) 075217 H M Srivastava et al



Substituting equations (80) and (54) into equation (78), we
obtain the following exact solutions of equation (73)

t

t q

G = -
+

´ - -
+

+

t - +
x

b

c dA

i px
c a p b

c

,
3

4 1

exp
1

16

16 3
.

s s

s
x a p

s s s

s

10
2

2 2

0

bs
A csas sln

3
4

1
2⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )( )( )

( )( )

These solutions are valid when <a c 0s s ,  s M1 .

3.2.4. Dual-power law nonlinearity. In this case,
D = D + DF b cs s

n
s

n2( )  s M1( ) and inserting it into
equation (53) yields

x h

z

G + G + G + G G

= G G + G G

+ G G + G - G + G

t

- +

i a b c

K 2 , 81

s
s xx

s
s

s n
s

s n s

s
s s

xx s
s

xx
s

s
s

xx
s s s s

2 4

2 2

2 1 1*

( ∣ ∣ ∣ ∣ )
(∣ ∣ ) ∣ ∣

[ ] ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Equation (60) takes the following structure

w

z x

x z

 - +

+ + - +

- ¢ -  =

+ +

ak U a p U

b U p U c U

k U U k U U

2

6 2 0. 82

s s s

s s
n

s s s s s
n

s s s s s s

2 2

2 1 2 3 4 1

2 2 2 2

( )
( )

( ) ( )

To obtain an analytic solution, we apply the transformations
z x= = 0s s in equation (82) to find

w - +

+ + =+ +

ak U a p U

b U c U 0. 83
s s s

s s
n

s s
n

2 2

2 1 4 1

( )
( )

In order to obtain the closed form solutions, the following
transformation

=U V , 84s s
n

1
2 ( )

is applied. The above equation therefore is written as

w

 + - ¢

- + + + =

ak nV V n V

n a p V n b V n c V

2 1 2

4 4 4 0. 85

s s s

s s s s s s

2 2

2 2 2 2 3 2 4

( ( )( ) )
( ) ( )

Balancing Vs
4 with V Vs s gives N=1. We seek solutions of

the form

z s s j z= +U , 86l 0 1( ) ( ) ( )

where s0 and σ1 are constants to be determined.
Substituting the solution (86) into (83) gives the

polynomial equation in j z( ). Thus, we find an algebraic
equation system by equating all the coefficients to zero. The
solution of this system for σ0, σ1, ω, and k with s ¹ 01 gives

Case 1.

s s

w

= -
+
+

=
+
+

= -
+ + +

+

= 
+

-
+

n b

n c

n b

n c

c n a p n b

n c

k
nb

n A

n

c a

2 1

2 1
,

2 1

2 1
,

1

4

4 1 2 1

1
,

1 ln

2 1

4
. 87

s

s

s

s

s s s

s

s

s s

0 1

2 2 2

2

( )
( )

( )
( )

( ) ( )
( )

( ) ( )
( )

Case 2.

s s

w

= =
+
+

= -
+ + +

+

= 
+

-
+

n b

n c

c n a p n b

n c

k
nb

n A

n

c a

0,
2 1

2 1
,

1

4

4 1 2 1

1
,

1 ln

2 1

4
. 88

s

s

s s s

s

s

s s

0 1

2 2 2

2

( )
( )

( ) ( )
( )

( ) ( )
( )

Substituting equations (87) and (54) into equation (86), we
obtain the exact solutions of equation (81)

t

t q

G =
+
+

- +
+

´ - -
+ + +

+
+

t - ++
+

x
n b

n c
dA

i px
c n a p n b

n c

,
2 1

2 1
1

1

1

exp
1
4

4 1 2 1

1
.

s s

s x a p

s s s

s

11
2

2 2 2

2 0

nbs
n A

n
csas

s

n

1 ln
2 1
4

1
2⎛

⎝
⎜⎜

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( ) ( )
( )

( ) ( )
( )

( )

( )( ) ( )

Substituting equations (88) and (54) into equation (86), we
obtain the exact solutions of equation (81)

t

t q

G = -
+

´ - -
+ + +

+
+

t - ++
+

x
b

c dA

i px
c n a p n b

n c

,
3

4 1

exp
1

4

4 1 2 1

1
.

s s

s
x a p

s s s

s

12
2

2 2 2

2 0

nbs
n A

n
csas s

n

1 ln
2 1
4

1
2

⎜ ⎟

⎛

⎝

⎜
⎜
⎜⎜ ⎛

⎝
⎞
⎠

⎞

⎠

⎟
⎟
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )

( ) ( )
( )

( )

( )( ) ( )

These solutions are valid for >a c 0s s ,  s M1 .

3.3. Multiple-core couplers (coupling with all neighbors)

The governing system of equations for multiple-core cou-
plers, where the coupling action is with all the existing
neighbors, is given by [2, 12]

å

x

h z l

G + G + G G = G G

+ G G + G G + G

t

=

i a F

, 89

s
s xx

s
s

s s
s

s s
xx

s
s

xx
s

s
s

xx
s

m

M

sm
m

2 2

2 2

1

*

(∣ ∣ ) (∣ ∣ )

∣ ∣ ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

where  s M1 . Here, λsm represents the coupling coeffi-
cient with all neighbors. In order to handle the governing
model, the following are our starting hypothesis

t xG = tFx U e, , 90s
s

i x,( ) ( ) ( )( ) ( )

where Us(ξ ) represents the shape of the pulse. The phase
tF x,( ) is

t wt qF = - + +x px, .0( )

The traveling coordinate ξ is given by

x t= -k x v ,( )

where v, p, ω, and θ0 represent the velocity, frequency, wave
number, and phase constant of the soliton, respectively.
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Substituting (90) into (89), the imaginary component
offers

x h z- + ¢ + + -  =

 

vk a pk U pk U U

s M

2 2 3 0,

1 .

91

s s s s s s s
2 2( ) ( )

( )

Setting the coefficients of the linearly independent functions
in (91) to zero is possible to find the speed of the soliton

= -v a p2 92s ( )

and the constraint conditions

x h z+ - =3 0. 93s s s ( )

The real parts imply

å

w

z x x z

l

 - + +

+ - - ¢ - 

- =
=

ak U a p U F U U

p U k U U k U U

U

2 6 2

0. 94

s s s s s s

s s s s s s s s s

m

M

sm m

2 2 2

2 3 2 2 2 2

1

( ) ( )
( ) ( )

( )

Next, balancing principle leads to

=U U . 95s m ( )

Consequently, equation (94) is

åw l

z x x

z

 - + + +

+ - - ¢

-  =

=

ak U a p U F U U

p U k U U

k U U

2 6

2 0. 96

s
m

M

sm s s s s s

s s s s s s

s s s

2

1

2 2

2 3 2 2

2 2

⎛
⎝⎜

⎞
⎠⎟ ( )

( ) ( )
( )

In the following subsections, this equation will be studied for
four different types of nonlinearity.

3.3.1. Kerr law nonlinearity. In this case, D = DF bs s( )
 s M1( ) and inserting it into equation (89) yields

x

h z l

G + G + G G = G G

+ G G + G G + å G
t

=

i a b

, 97

s
s xx

s
s

s s
s

s s
xx

s
s

xx
s

s
s

xx
s

m
M

sm
m

2 2

2 2
1*

∣ ∣ (∣ ∣ )
∣ ∣ ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Equation (96) gives

åw l z x

x z

 - + + + + -

´ - ¢ -  =

=

ak U a p U b p

U k U U k U U

2

6 2 0.

98

s
m

M

sm s s s s s

s s s s s s s

2

1

2 2

3 2 2 2 2

⎛
⎝⎜

⎞
⎠⎟ ( ( ) )

( )
( )

To obtain an analytic solution, we apply the transformations
z x= = 0s s in equation (98) to find

åw l - + + + =
=

ak U a p U b U 0. 99s
m

M

sm s s s s
2

1

2 3
⎛
⎝⎜

⎞
⎠⎟ ( )

Balancing Us with Us
3 in equation (104) gives

+ =  =N N N2 3 1.

We seek solutions of the form

z s s j z= +U , 100l 0 1( ) ( ) ( )

where σ0 and σ1 are constants to be determined.

Substituting the solution (100) into (99) gives the
polynomial equation in j z( ). Thus, we find an algebraic
equation system by equating all the coefficients to zero. The
solution of this system for σ0, σ1, and ω with s ¹ 01 gives

å

s s

w l

=  - =  -

= - - -
=

k a

b
A k

a

b
A

a p a k A

2

2
ln ,

2
ln ,

1

2
ln . 101

s

s

s

s

s
m

M

sm s

0 1

2

1

2 2

( ) ( )

( ) ( )

Substituting equations (101) and (90) into equation (100),
leads to the exact solutions of equation (97)

å

t

l t q

G =  - +
+

´ - + - - - +

t+

=

x k
a

b
A

dA

i px a p a k A

,
2

ln
1

2

1

1

exp
1

2
ln .

s s

s
k x a p

s
m

M

sm s

13 2

2

1

2 2
0

s

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

( ) ( )

( )

( )
( )

These solutions are valid when <a b 0s s ,  s M1 .

3.3.2. Power law nonlinearity. In this case, D = DF bs s
n( )

 s M1( ), (n indicates the power law nonlinearity factor)
and inserting it into equation (89) yields

å

x

h z l

G + G + G G = G G

+ G G + G G + G

t

=

i a b

. 102

s
s xx

s
s

s n s
s

s s
xx

s
s

xx
s

s
s

xx
s

m

M

sm
m

2 2

2 2

1

*

∣ ∣ (∣ ∣ )

∣ ∣ ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Equation (96) results in the expression:

åw l

z x x

z

 - + + +

+ - - ¢

-  =

=

+ak U a p U b U

p U k U U

k U U

2 6

2 0. 103

s
m

M

sm s s s s
n

s s s s s s

s s s

2

1

2 2 1

2 3 2 2

2 2

⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( )

To obtain an analytic solution, we apply the transformations
z x= = 0s s in equation (103) to find

åw l - + + + =
=

+ak U a p U b U 0. 104s
m

M

sm s s s s
n2

1

2 2 1
⎛
⎝⎜

⎞
⎠⎟ ( )

In order to obtain the closed form solutions, the following
transformation

=U V , 105s s
n

1
2 ( )

is applied. The above equation therefore shapes up as

åw l

 + - ¢

- + + + =
=

ak nV V n V

n a p V n b V

2 1 2

4 4 0. 106

s s s

m

M

sm s s s s

2 2

2

1

2 2 2 3
⎛
⎝⎜

⎞
⎠⎟

( ( )( ) )

( )

Balancing Vs
3 with ¢Vs

2( ) gives N=2. We seek solutions of
the form

z s s j z s j z= + +U , 107l 0 1 2
2( ) ( ) ( ) ( )

where s s,0 1, and σ2 are constants to be determined.
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Substituting the solution (107) into (104) gives
the polynomial equation in j z( ). Thus, we find an algebraic
equation system by equating all the coefficients to zero.
The solution of this system for σ0, σ1, σ2, and ω with s ¹ 02

gives

s s

s

w
l

= =
+

=-
+

=
- + å =

a k n A

n b

a k n A

n b

a k A n a p

n

0,
1 ln

,

1 ln
,

ln 4

4
. 108

s

s

s

s

s s m
M

sm

0 1

2 2

2

2

2 2

2

2 2 2 2
1

2

( )

( ) ( )

( ) ( )

( )
( )

Substituting equations (108) and (90) into equation (107), we
obtain the exact solutions of equation (102)

t

l
t q

G =
+

+

´ - +
- + å

+

t

t

+

+

=

x
a k n A dA

n b dA

i px
a k A n a p

n

,
1 ln

1

exp
ln 4

4
.

s s
k x a p

s
k x a p

s s m
M

sm

14

2 2 2

2 2 2

2 2 2 2
1

2 0

s

s

n
1

2⎡
⎣⎢

⎤
⎦⎥

⎛

⎝
⎜⎜⎜

⎛

⎝
⎜⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟⎟

⎞

⎠
⎟⎟⎟

( )

( ) ( ) ( )
( )

( )

( )
( )

( )

3.3.3. Parabolic law nonlinearity. In this case, D =Fs ( )
D + Db cs s

2  s M1( ) and inserting it into equation (89)
yields

å

x h z

l

G + G + G + G G

= G G + G G + G G

+ G

t

=

i a b c

. 109

s
s xx

s
s

s
s

s s

s
s s

xx s
s

xx
s

s
s

xx
s

m

M

sm
m

2 4

2 2 2

1

*

( ∣ ∣ ∣ ∣ )
(∣ ∣ ) ∣ ∣

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

Equation (96) takes the following form

åw l

z x x

z

 - + +

+ + - + - ¢

-  =

=

ak U a p U

b p U c U k U U

k U U

2 6

2 0.

110

s
m

M

sm s s

s s s s s s s s s

s s s

2

1

2

2 3 5 2 2

2 2

⎛
⎝⎜

⎞
⎠⎟

( ( ) ) ( )

( )

To obtain an analytic solution, we apply the transformations
z x= = 0s s in equation (110) to find

åw l - + + + + =
=

ak U a p U b U c U 0.

111

s
m

M

sm s s s s s s
2

1

2 3 5
⎛
⎝⎜

⎞
⎠⎟

( )

In order to obtain the closed form solutions, the following
transformation

=U V 112s s
1
2 ( )

is applied. The above equation therefore can be written as

åw l - ¢ - + +

+ + =
=

ak V V V a p V

b V c V

2 4

4 4 0. 113

s s s
m

M

sm s s

s s s s

2 2

1

2 2

3 4

⎛
⎝⎜

⎞
⎠⎟( ( ) )

( )

Balancing Vs
4 with V Vs s gives N=1. We seek solutions of

the form

z s s j z= +U , 1141 0 1( ) ( ) ( )

where σ0 and σ1 are constants to be determined.
Substituting the solution (114) into (111) gives the

polynomial equation in j z( ). Thus, we find an algebraic
equation system by equating all the coefficients to zero. The
solution of this system for s s w, ,0 1 and k with s ¹ 01 gives

Case 1.

s s

w
l

= - =

= -
+ å +

=  -

=

b

c

b

c

c a p b

c

k
b

A c a

3

4
,

3

4
,

1

16

16 3
,

ln

3

4
. 115

s

s

s

s

s s m
M

sm s

s

s

s s

0 1

2
1

2( )

( )
( )

Case 2.

s s

w
l

= = -

= -
+ å +

=  -

=

b

c

c a p b

c

k
b

A c a

0,
3

4
,

1

16

16 3
,

ln

3

4
. 116

s

s

s s m
M

sm s

s

s

s s

0 1

2
1

2( )

( )
( )

Substituting equations (115) and (90) into equation (114), we
obtain the exact solutions of equation (109)

t

l
t q

G = - +
+

´ - -
+ å +

+

t - +

=

x
b

c dA

i px
c a p b

c

,
3

4
1

1

1

exp
1

16

16 3
.

s s

s x a p

s s m
M

sm s

s

15
2

2
1

2

0

bs
A csas sln

3
4

1
2⎛

⎝
⎜⎜

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎞

⎠
⎟⎟

⎛

⎝
⎜
⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟
⎟

( )

( )( )
( )( )

Substituting equations (116) and (90) into equation (114), we
obtain the exact solutions of equation (109)

t

l
t q

G = -
+

´ - -
+ å +

+

t - +

=

x
b

c dA

i px
c a p b

c

,
3

4 1

exp
1

16

16 3
.

s s

s
x a p

s s m
M

sm s

s

16
2

1
2

2
1

2

0

bs
A csas sln

3
4⎜ ⎟

⎛

⎝

⎜
⎜
⎜⎜ ⎛

⎝
⎞
⎠

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝
⎜
⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟
⎟

( )

( )( )

( )( )

These solutions are valid when <a c 0s s ,  s M1 .
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3.3.4. Dual-power law nonlinearity. In this case, D =Fs ( )
D + Db cs

n
s

n2  s M1( ) and inserting it into equation (89)
yields

å

x h

z l

G + G + G + G G

= G G + G G

+ G G + G

t

=

i a b c

, 117

s
s xx

s
s

s n
s

s n s

s
s s

xx s
s

xx
s

s
s

xx
s

m

M

sm
m

2 4

2 2

2

1

*

( ∣ ∣ ∣ ∣ )
(∣ ∣ ) ∣ ∣

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

Equation (96) results in

åw l

z x

x z

 - + +

+ + - +

- ¢ -  =

=
+ +

ak U a p U

b U p U c U

k U U k U U

2

6 2 0. 118

s
m

M

sm s s

s s
n

s s s s s
n

s s s s s s

2

1

2

2 1 2 3 4 1

2 2 2 2

⎛
⎝⎜

⎞
⎠⎟

( )
( ) ( )

To obtain an analytic solution, we apply the transformations
z x= = 0s s in equation (118) to find

åw l - + +

+ + =
=

+ +

ak U a p U

b U c U 0. 119

s
m

M

sm s s

s s
n

s s
n

2

1

2

2 1 4 1

⎛
⎝⎜

⎞
⎠⎟

( )

In order to obtain the closed form solutions, the following
transformation

=U V 120s s
n

1
2 ( )

is applied. The above equation gives

å ¢ w l+ - - + +

´ + + =

=

121

ak nV V n V n a p

V n b V n c V

2 1 2 4

4 4 0.

s s s
m

M

sm s

s s s s s

2 2 2

1

2

2 2 3 2 4

⎛
⎝⎜

⎞
⎠⎟

( )

( ( )( ) )

Balancing Vs
4 with V Vs s gives N=1. We seek solutions of

the form

z s s j z= +U , 122l 0 1( ) ( ) ( )

where σ0 and σ1 are constants to be determined.
Substituting the solution (122) into (119) gives the

polynomial equation in j z( ). Thus, we find an algebraic
equation system by equating all the coefficients to zero. The
solution of this system for σ0, σ1, ω, and k with s ¹ 01 gives

Case 1.

s s

w
l

= -
+
+

=
+
+

= -
+ + å + +

+

= 
+

-
+

=

n b

n c

n b

n c

c n a p n b

n c

k
nb

n A

n

c a

2 1

2 1
,

2 1

2 1
,

1

4

4 1 2 1

1
,

1 ln

2 1

4
.

123

s

s

s

s

s s m
M

sm s

s

s

s s

0 1

2 2
1

2

2

( )

( )
( )

( )
( )

( ) ( )

( )

( ) ( )
( )

Case 2.

s s

w
l

= =
+
+

= -
+ + å + +

+

= 
+

-
+

=

n b

n c

c n a p n b

n c

k
nb

n A

n

c a

0,
2 1

2 1
,

1

4

4 1 2 1

1
,

1 ln

2 1

4
.

124

s

s

s s m
M

sm s

s

s

s s

0 1

2 2
1

2

2

( )

( )
( )

( ) ( )

( )

( ) ( )
( )

Substituting equations (123) and (90) into equation (122), we
obtain the exact solutions of equation (117)

t

l
t q

G =
+
+

- +
+

´ - -
+ + å + +

+
+

t - +

=

+
+

x
n b

n c dA

i px
c n a p n b

n c

,
2 1

2 1
1

1

1

exp
1

4

4 1 2 1

1
.

s s

s x a p

s s m
M

sm s

s

16
2

2 2
1

2

2 0

nbs
n A

n
csas s

n

1 ln
2 1
4

1
2⎛

⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
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Substituting equations (124) and (90) into equation (122), we obtain the exact solutions of equation (117)
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These solutions are valid when as cs>0,  s M1 .

4. Graphical description of the obtained solutions

In this section, the physical descriptions for some of the
acquired solutions are explained graphically. The obtained

solutions of the equations represent bright, dark and kink
shaped solitons. However, a few numbers of the representa-
tive solutions are explained for the sake of straightforward-
ness. The 3D and 2D graphical illustrations of the explored
solutions to three types of nonlinear directional couplers
equation are presented to illustrate the solution’s behavior by

Figure 1. (a)–(d) The absolute values for the wave solutions Γ1(x, t) and Ω1(x, t) in 3D- and 2D-plots when = = =A p b0.5, 0.3, 0.11 ,
= =b k0.9, 0.22 , a=0.6 and d=1.

Figure 2. (a)–(d) The absolute values for the wave solutions Γ2(x, t) and Ω2(x, t) in 3D- and 2D-plots when = = =A p b0.5, 0.3, 0.11 ,
= =b k0.9, 0.22 , a=0.6, d=1 and n=2.

12

Phys. Scr. 95 (2020) 075217 H M Srivastava et al



considering particular values of the free parameters in these
solutions. These graphics are visualized to display the spa-
tiotemporal distribution of the obtained solutions.

Figures 1(a)–(d) represents the absolute values of the
wave solutions Γ1(x, t) and Ω1(x, t) in 3D- and 2D-plots
which are bright solitons (the anti-bell shape soliton which
rises from both sides) and they are stable. These waves are
symmetric about the vertical axis that passing through the
origin and propagated along the x-axis.

Figures 2(a)–(d) represents the absolute values of the
wave solutions Γ2(x, t) and Ω2(x, t) in 3D- and 2D-plots
which are dark solitons (the bell shape soliton which is
characterized by infinite tails or infinite wings) and they are
also stable and symmetric about the vertical axis that passing
through the origin and propagated along the x-axis.

Figures 3(a)–(b) represents the absolute value of the
wave solution Γ12(x, t) in 3D- and 2D-plots which is stable
kink wave that rises from left to right. The same discussion
can be presented here as in figures 1 and 2, but the wave is not
symmetric.

5. Conclusion

This paper investigates the traveling wave solution to non-
linear directional couplers in optical metamaterials. The
modified Kudryashov method is applied to retrieve dark,
singular and periodic soliton solutions. In future, the results
will be extended with DWDM topology, also the phenom-
enon of birefringence in birefringent fibers that is described
with this model will be explored. The 3D and 2D graphics for
different values of the free parameter are represented to
understand the physical meaning over the solutions. In
comparison with previously attained solutions, the generated
dark, bright and kink wave solutions are new in applied
method senses and were not reported in previously published
articles. The results are useful in telecommunication industry
to enhance the performance capacity of transmission systems.
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