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Abstract
The ground state spin magnetic moment current, binding energy, wave function and diamagnetic
susceptibility of a shallow hydrogenic impurity located at the center of a parabolic spherical
quantum dot (QD) are calculated analytically as a function of the dot size, interaction strength
and confinement frequency. For comparison purposes, the results are discussed in the presence
and in the absence of an impurity. Also, the dependence of the spin magnetic moment current on
the spherical coordinates are derived, it is found that the spin magnetic moment current exhibits a
peak structure and this current has a pronounced maximum for both small dot sizes and in the
absence of impurities. Our results show that the impurities’ ground state binding energy
enhances as the dot dimension decreases and depends strongly on the interaction strength as the
dot size increases and reduces to zero in the bulk limit for large dimensions of the dot. Moreover,
the harmonic interaction has a strong influence on the diamagnetic susceptibility when the dot
size increases where it decreases sharply in the presence of impurities while in the absence of
impurities it decreases smoothly. In addition, the intensity of the magnetic field created by the
spin magnetic moment current at the center of the QD has been calculated. It is concluded that
there is a critical value for characteristic parameters and the dot size for each type of
semiconductor QD to give a specific function that might be important for nanotechnology
manufacturing techniques.

Keywords: spherical quantum dot, spin magnetic moment current, harmonic e–e interaction,
diamagnetic susceptibility, donor impurity

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, the growing enthusiasm for the development
of nanoscience and modern uses of nanotechnology has led to
the synthesis of a certain type of semiconductor called
quantum dots (QD) [1]. QDs may be fabricated on semi-
conductor chips with the help of the electric potential of two-
dimensional electron gas. A QD can be a small semiconductor
area where electrons are confined to a very small size (about
100 nm) that shows a discrete spectrum of energy levels;
further, the confinement potential plays an important role in
the QD as it resembles the nucleus in the real atoms. For this
reason, QDs are called artificial atoms [2–4]. Because of its

strikingly adjustable properties, QD innovation continues to
expand and seeks to deliver their benefits to an ever-growing
number of innovatively associated fields, for example solar-
directed cells, transistors, lamps, medical imaging and quan-
titative diagnostics [1, 5–7]. The decrease in the dimension-
ality of QDs, created by the electrons’ confinement to a
smaller semiconductor region, changes its behavior excep-
tionally and significantly affects its optical properties and
electronic structure [8–11].

Impurities play a key role in semiconductor nanostructure
materials. The impurity states in these low-dimensional
structures are extremely necessary because they control
optical, electrical and thermal properties. Because of the
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above characteristics, after the unique and pioneering work of
Bastard [12] a large number of theoretical and hypothetical
works on electronic structures, binding energy, optical and
transport properties and diamagnetic susceptibility of hydro-
genic impurities trapped in QD semiconductors with different
sizes, shapes and different confinement potentials have been
implemented in the literature in the last few years [13–32].
The vast majority of theoretical studies indicate that the
binding energy of shallow donor impurities in nanostructure
systems is strongly dependent on both the type of material
and the position of the impurity, while the geometry, size and
shape appear to have a minor effect [33–35].

Analytical solutions for hydrogenic impurities centered
in a spherical QD have been obtained [36–38], while the
perturbation method [39] and variational approach [12,
40–43] have been performed for on- and off- impurities
located at the center. In particular, Porras-Montenegro et al
[41] and Zhu et al [43] studied the effect of confinement and
dot size on the donor binding energies (for the ground and
excited states) of the impurities located at the center of QD.
They demonstrated that the binding energy and its maximum
depend heavily on the height of the barrier. Variational
method was used to study the influence of on- and off-
shallow hydrogenic impurities on the binding energy of the
ground state of spherical parabolic GaAs QD [44]. The results
showed that the binding energy enhanced as the dot size
decreases and it increases dramatically as the impurity moves
near the center.

Moreover, the utilization of external probes such as
hydrostatic pressure, an electric or magnetic field, can give
much profitable data about the hydrogenic impurity states
[45–47]. A variational approach has been applied to a sphe-
rical QD to study the effect of a uniform magnetic field on the
ground-state binding energy of an on (off)-center hydrogenic
impurity [45]. The authors found that for on-center impurity,
the ground-state binding energy enhances as the size of the
QD diminishes, while in the presence of a magnetic field,
extra increment in binding energy is found for large dot sizes.
In the case of the off-center impurity, the binding energy of
the ground state decreases compared with the case of the
impurities in the center, and increases under the magnetic
field in a smooth manner. Matrix diagonalization method had
been used to study the effects of both non-parabolicity of
conduction band and hydrostatic pressure on the binding
energy and the diamagnetic susceptibility of a hydrogenic
impurity located at the center of a spherical QD [46]. It was
noted that the binding energies decreases and the magnitude
of the diamagnetic susceptibility increases with decreasing
pressure. Also, the absolute value of the diamagnetic sus-
ceptibility decreases in the presence of conduction band non-
parabolicity at a critical value of pressure. John Peter et al
[47] studied the binding energy of on-center shallow donors
in spherical GaAs/Ga1−xAlxAs QD in the presence of electric
field for three types of confinement potential. They demon-
strated that the ionization energy decreases when the electric
field strength increases.

Both the energy spectrum of donor electron and other
characteristics of the studied impurity system can be

controlled by changing the size of the QD. One of these
intrinsic properties is the spin magnetic moment current of the
electron associated with its own magnetic moment. This
current is not related to the charge motion, and is due to the
presence of a connection between current density and mag-
netization. Boichuk et al [48] and Amirkhanyan et al [49]
calculated the spin magnetic moment current of an impurity
electron in a CdS and GaAS spherical QD, respectively. They
demonstrated that the presence or absence of an impurity ion
in the QD basically affects the form and the behavior of spin
magnetic moment current. Mita [50] derived the spin magn-
etic moment current as an example of hydrogen atom. It was
demonstrated that for S-states the angular current disappears,
and the spin magnetic moment current is present. Many stu-
dies addressed the spin and angular current [51–53] in
spherical and cylindrical QD; in such systems, it is also
possible to recognize the physical conditions through which
the one-electron orbital current disappears and we stay only
with the spin magnetic moment current. Consequently, the
fundamental feature of nanostructures is the ability to control
the current value associated with the spin magnetic moment
of one-electron in the studied system.

The investigations of magnetic properties in low-
dimensional structures can be utilized to control and adjust
the electromagnetism of nanosystems [54–56]. Additionally,
the latest development of spintronics [57, 58] demands
potential investigations of magnetic properties of nanos-
tructures. One of these properties is the diamagnetic sus-
ceptibility for which we can observe quantum phenomena
like, quantum chaos and electronic conductivity of electron
gas in these low-dimensional structures. Many theoretical
studies investigated the diamagnetic susceptibility of shallow
donor impurity in a QD [59–61]. The diamagnetic suscept-
ibility for a hydrogenic donor impurity in GaAs/AlxGa1-xAs
quantum well, quantum well wires and QD have been
investigated [27]. The authors demonstrated the effect of
dimensionality on the diamagnetic susceptibility. They con-
cluded that when the system goes to lower dimensionality the
effect of non-parabolicity becomes intangible. Using varia-
tional method Jasper et al [62] observed a strong influence of
both the QD geometry and the confinement potential shape on
the diamagnetic susceptibility of a hydrogenic donor in
spherical QD. The dependence of diamagnetic susceptibility
on the pressure was carried out for donor impurity confined in
different dimension of QD [63]. They noticed that diamag-
netic susceptibility decreases with increases in pressure.

It should be noted here that most of the previous studies
on a hydrogenic donor in spherical QDs were based on
theoretical approximations and numerical methods using the
Coulomb interaction, so this study comes to shed light on this
issue in an analytical way through a potential which mimics
the Coulomb interaction, this can be achieved through har-
monic interaction for which the ground-state binding energy,
current of spin magnetic moment, diamagnetic susceptibility
and other electronic and optical properties can be written in a
closed expressions form, since no part of the Hamiltonian is
neglected, therefore quantum effects show up completely in
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many properties. Consequently experimentalists are invited to
build up this type of model to real physical nanostructures.

The paper is organized as follows. In section 2 the
mathematical formalism for the system is presented and the
ground-state analytical expressions for the donor states, spin
magnetic moment current, binding energy and diamagnetic
susceptibility are derived. Analysis and discussion of the
analytical results obtained for GaAs and InAs spherical QD
are summarized in section 3. In section 4, the paper ends with
important conclusions and observations.

2. Model formulation

2.1. Donor states and binding energy

Within the effective mass approximation, the Hamiltonian of
shallow hydrogenic impurities located at the center of a
spherical QD which is confined by a parabolic potential is
given by

w= + +H
p

m
m r U r

2

1

2
, 1

2

0
2 2

imp.
*

*ˆ ˆ ( ) ( )

where m* is the effective mass of the electron, and w0 is the
confinement strength frequency. The frequency of the con-
finement potential is related to the dot size R through the

formula w
p

=


m R

2
0 2*

[64], r

is the position vector of the

electron relative to the spherical QD center, p̂ is the linear
momentum operator of the electron and U rimp.( ) being the
interaction potential of an electron with the impurity located
at the center of the dot. In free space the Coulomb interaction
proportional to r−1. However, at larger distances in QD
structures the Coulomb potential is screened in the presence
of image charges in the contiguous layer. Furthermore, it is
cut off and saturates at shorter separations because in the
direction of growth the wave function of an electron has a
limited extent [65]. Hence the electron-impurity interaction
has been modeled by a parabolic potential [66], which makes
the Hamiltonian exactly soluble and is given by
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1

2
, 2imp. 0

2 2*( ) ( )

where Ω is the interaction strength and V0 is a positive
parameter which can be selected to fit different kinds of QD.
The Schrödinger equation for the effective Hamiltonian in
spherical coordinates q jr, ,( ) can be written as
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Since the interaction potential and the confinement potential
are spherically-symmetric, then the Schrödinger equation
can be separated into the product q jR r Y ,( ) ( ) i.e.

y q j=r R r Y , ,( ) ( ) ( )
which is analogous to the problem in

the hydrogen-like atom, q jY ,( ) is a spherical harmonic
function. The radial part of the Schrödinger equation R(r) can
be written as follows [67, 68]:
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where n w= - W0
2 2 is the effective frequency. Introducing

a = n


m

2

* and recalling that =u r rR r( ) ( ). Thus equation (4)
represents the radial equation of a spherically-symmetric
three-dimensional harmonic oscillator which can be solved
analytically to give a normalized solution as [69]
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where +Ln
l 1 2( )/ is the generalized Laguerre polynomials;

n 0 and = ¼ -l n0, 1, 2, 1. The corresponding energy
state of the system with impurity is given by [66, 67]
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Thus, the ground state donor wave function can be reduced to
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We define the S-state binding energy Eb of a shallow
hydrogenic impurity as the difference between the ground-
state energy of the system without Harmonic interaction, and
the ground-state energy of the system with impurity, i.e.

w n= - - E V
3

2

3

2
3 . 8b 0 0 ( )

2.2. Spin magnetic moment current

The expression for the wave function derived above enables
us to obtain the impurity electron characteristics current,
specifically the spin magnetic moment current, whose exis-
tence is due to the spin of the electron. We can obtain the
expression for the spin magnetic moment current using the
general form of the charge current density in non-relativistic
quantum mechanics, including the electron spin and without
any external fields, has the following form [70]:

sm m  = Y Y - Y Y + ´ Y Yj i , 9B B* * *[ ] ( ) ( )


where m = e

mB 2 *
is the Bohr magneton and σ are the Pauli

matrices. The first term is associated with the orbital motion
of the electron and the second is the current of the spin
magnetic moment. It is clear that this current is related to the
presence of the correct current of spin magnetic moment,
instead of the electron motion. Accordingly, the following
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relationship is always correct

 =j 0, 10SMM· ( )


where jSMM


is the spin magnetic moment current and it is

solenoidal. Now, the electron wave function in the Russell–
Saunders coupling approximation can be written as

s y cY = r r, , 11( ) ( ) ( )

with χs the eigenspinors of the electron given by

c c= =+ -
1
0

, 0
1
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since sc c =   k ,† 
where k


is the unit vector in the

direction of z-axis, then equation (9) simplified to
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in the spherical coordinate the spin magnetic moment current
in the S-state (l=0, m=0) takes the following form
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where j is the unit vector in the spherical coordinate which
represents the direction in which the angle at the x–y plane is
increased counter-clockwise from the positive x-axis and θ is
the polar angle measured from the positive z-axis [71]. We
can show through direct calculations that in the S-state (l=0,
m=0) the orbital current vanishes, while the ground state
(n=0) spin magnetic moment current has the following
form:

n n
p
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2.3. Magnetic field strength at the center of QD

According to the formulas of electrodynamics, the magnetic
field strength at the origin is equal to [72]

ò ò m r= = - H
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the integral (16), use the formula
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Then, the magnetic field intensity produced by the spin
magnetic moment current at the QD center for the electron in
the ground-state is given by

n
p

= 


H
e m

k0
4

3
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3*( ) ( )
 

2.4. Diamagnetic susceptibility

Diamagnetism is a material property that causes the creation
of a magnetic field that opposes the effect of any magnetic
field that affects the outside and produces a force of repulsion
between the material and the source of the external field.
Specifically, the external magnetic field changes the speed of
the electron’s orbit around the atomic nuclei, thereby altering
the magnetic moments of the atoms. The tendency of the
material to be magnetic can be measured through a diamag-
netic susceptibility. For spherically symmetric charge dis-
tribution, we can assume that the x, y, z coordinates
distribution are equally distributed and independent. Then
á ñ = á ñ = á ñ = á ñx y z r ,2 2 2 1

3
2 where r is distance of the

electrons from the dot center (impurity). Thus
rá ñ = á ñ + á ñ = á ñx y r .2 2 2 2

3
2 The volume diamagnetic sus-

ceptibility in the ground state is given by [73]
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where c is the speed of light and ä is the material dielectric
constant.

3. Results and discussion

The analytical results obtained for GaAs and InAs spherical
QD are performed with the characteristic parameters sum-
marized in table 1. Throughout this study the dot radii are
expressed in terms of the effective Bohr radius

=  a m k eeB
2 2 2*/ and the donor binding energy is expres-

sed in terms of the effective Rydberg’s constant
=  R m e k 2 ,y e

4 2 2 2* / where ä is the material dielectric con-
stant, m* is the effective mass of the electron and ke is the
Coulomb’s constant.

In figure 1 the probability density distribution of the
GaAs QD is displayed as a function of the radial coordinate r
for GaAs QD for different radii ( =R a a, 1.2 ,B B a1.4 B) at

Table 1. Characteristic parameters for GaAs and InAs spherical QD.

m* (effective mass) aB (Bohr radius) Ry (Rydberg constant) ä (dielectric constant)

GaAs QD 0.067me 9.87 nm 5.83 meV 13.2
InAs QD 0.042me 18.4 nm 2.67 meV 14.6

4

Phys. Scr. 95 (2020) 015802 F S Nammas



W = ´1 10 Hz.12 We observe the probability densities for
the donor states are maximum (strongly localized) for the on-
center impurity for all radii considered and decreases as the
electron moves away from the center also at large radii, i.e.

=R a1.2 B and a1.4 ,B the probability density decreases with
radial coordinate less sharply than that at small radii, i.e.

=R a ,B which is suitable because the effect of the confine-
ment is stronger at small radii where the localization of the
electron is shown noticeably. Also, it should be mentioned
that as the size of the QD increases, the electron does not feel
the effect of confinement and acts like an electron in the field
of a hydrogen-like impurity in a bulk material. Moreover, as
the size of QD increases, the curve flattens and the peak value
becomes smaller.

The dependence of the probability density of GaAs QD
on the radial coordinate r for W = ´ ´0, 1 10 and 312

10 Hz12 with QD radius =R aB is shown in figure 2. The
probability densities of the electron are maximum at the dot

center (are localized), and they were almost identical as the
electron moves away from the dot center (impurity). As
shown by the figure, when the electron remains close to
impurity, one can notice that for strong harmonic interaction,
the electron is confined weakly compared to the electron
exposed to a weak harmonic interaction. Also, it is noted that
the harmonic interaction decreases the probability density as r
increases continuously.

In figure 3 the probability density is plotted against radial
coordinate r for GaAs/InAs semiconductor QD with
W = ´1 10 Hz.12 The plot shows that the electron in GaAs
QD is strongly localized more than the electron in InAs QD.
The reason for this is that the Bohr radius of InAs QD is
greater than that of GaAs QD. Due to this, the confinement
effect appears noticeably in GaAs QD, while the donor wave
function in InAs spreads all over the surrounding. As shown
in the figure, the probability density is reduced with the
increase in distance r, because the distance between the
electron and the impurities increases, and as a result,
the harmonic interaction and the quantization of size gradu-
ally become weaker.

The dependence of the spin magnetic moment current for
S-state of GaAs QD on radial coordinate for a shallow
hydrogen-like impurity located in the center for different radii

= =R a R a, 1.2B B* * and =R a1.4 B* at W = ´1 10 Hz12

and q
p

=
2

is shown in figure 4. The figure shows that the

spin magnetic moment current peaks at a certain value of the
radial coordinate ~r a2 B*( ) and then decreases at each point
in space and finally it goes to zero as the electron moves away
from the center of the dot (impurity); this is in conformity
with the results reported by Boichuk et al [48]. These curves
indicate that the highest peak value of the current is related to
the smallest QD radius where the confinement of the impurity
electron is the highest and subsequently the R r2 ( ) dependence
is rapidly varying. Also notice that as the radial coordinate
increases the current gradually decreases until it completely

Figure 1. The probability density distribution of GaAs QD versus
radial coordinate r with a shallow hydrogen-like impurity in the
center for different radii at W = ´1 10 Hz.12

Figure 2. The probability density distribution of GaAs QD as a
function of radial coordinate r with a shallow hydrogen-like impurity
in the center for different interaction strength at =R a .B

Figure 3. The probability density distribution of GaAs/InAs QD as a
function of radial coordinate r with a shallow hydrogen-like impurity
in the center at with W = ´1 10 Hz.12
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vanishes; this is because the probability of localization of the
electron will be zero there, see figure 1.

Figure 5 presents, for purposes of comparison, the spin
magnetic moment current as a function of radial coordinate at

different values of angle q
p p

=
8

,
4

⎜⎛⎝ and
p
2

⎟
⎞
⎠ for radius

=R a .B The figure indicates that when the electron remains
close to the center of the QD (impurity), i.e. ~r a2 B, the spin
magnetic moment current shows a peak structure. Moreover,
the maximum value of the peak corresponds to the largest
angle. Also, it is noted that decreasing the angle leads to a
reduction in the current; also as the radial variable increases,
the distinction of angles turns out to be less important. The
major difference between figures 4 and 5 is that the peak in
figure 5 shifts towards left and become narrower. The beha-
vior of the spin magnetic moment current on radial coordinate

of GaAs QD forW = ´0 and 3 10 Hz12 is shown in figure 6.
These plots indicate that, for the same QD radius ( =R aB) the
current peak in the absence of impurities is greater than in the
case of impurities almost by one and a half times, since
harmonic interaction together with confinement potential both
lead to a localization of electron.

Comparison of r-dependences of the spin magnetic
moments currents of an electron placed in GaAs
( =a 9.8 nmB ) and InAs ( =a 18.4 nmB ) QD with a shallow
hydrogen-like impurity in the center is presented in figure 7.
This function has a pronounced maximum for the electron
distance r, which is close to the radius of QD for both
semiconductors material considered. In the vicinity of =r a ,B

we have an abrupt change in the current density, which is
explained by the fact that the probability density of the
electron gradually decreases, as illustrated in figure 3, as the

Figure 4. The spin magnetic moment current versus radial coordinate
r with a shallow hydrogen-like impurity in the center of GaAs QD
for different radii at W = ´1 10 Hz12 and q

p
=

2
.

Figure 5. The spin magnetic moment current versus radial coordinate
r with a shallow hydrogen-like impurity in the center of GaAs QD
for different values of angle θ at W = ´1 10 Hz12 and =R a .B

Figure 6. The dependence of the spin magnetic moment current on
radial coordinate of GaAs QD in the absence and in the presence of a
shallow hydrogen-like impurity at the center at q

p
=

2
and =R a .B

Figure 7. The dependence of the spin magnetic moment current on
radial coordinate of GaAs and InAs QD at q

p
=

2
with W = ´3

10 Hz .12
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electron moves away from impurities, as a result the spin
magnetic moment current decreases and finally it vanishes.
Also, the current density produced in GaAs QD is always
greater than the current generated in InAs QD. This is due to
the fact that, the harmonic confinement potential is larger
in the InAs QD also the energy of the electron in InAs QD
near the central area is larger; see figure 9.

Figure 8 shows the dependence of the ground-state
binding energy (expressed in terms of the effective Rydberg’s
constant) of a shallow impurity located at the center of GaAs
QD on the dot size. The figure shows that the ground-state
binding energy (GSBE) has a maximum value for an on-
center impurity, because the electronic density has zero-order
which is proportional to the wave function exhibits a max-
imum at the center of the QD. Also, for small radii the
interaction effect has a negligible influence on the GSBE
due to the dominance of the confinement energy while for
large dot sizes the GSBE decreases smoothly. Actually,
keeping the electron away from the center of the QD leads to
a spread of a wave function gradually which basically causes
a drop in the binding energy. In fact the increase in GSBE
with the decrease of QD size is a common characteristic [74].
For Ω= ´3 10 Hz12 one can observe that as the dot radius
increases, GS binding energy increases slightly. The increase
in binding energy when the radius becomes big enough is a
purely quantum mechanical effect. As the QD radius becomes
very large, the uncertainty in position also becomes very large
and due to this the uncertainty in the momentum and hence
the kinetic energy itself becomes very small and as a result
binding energy increases slightly. Moreover, for sufficiently
large dot radius, it is expected that the impurity behaves like a
free hydrogen atom. However, our calculations show that for
sufficiently large dot radius, our calculated GS binding energy
is approximately 0.22 RY. It can be noted that, the existence of
impurity at the center of QD decreases the GSBE smoothly as
the dot size increases and never comes to zero and the wave

function behaves as a hydrogen atom state in free space, while
in the absence of impurity the GSBE decreases monotonically
until it vanishes in the bulk limit for large QD radii, since the
size quantization effect becomes weaker, this is in agreement
with [44] in the case of a shallow hydrogenic donor in
spherical parabolic GaAs QDs using variational approach.
Also, the rate of decrease in the GSBE in the absence of
impurities is greater than its presence. Moreover, the exis-
tence of impurity increases GSBE for a given dot size.

The variation of the ground-state binding energy with dot
size is shown in figure 9 for two QD semiconductors, i.e.
GaAs and InAs QD at W = ´3 10 Hz .12 It is noticeable that
as the dot size decreases, the binding energy increases
monotonically and below a certain critical value of the dot
size this increase becomes very rapid, because the quantiza-
tion effect becomes weaker and the interaction between the
electron and the impurities increases. Also, it is clear that
when the dot size increases the binding energies gradually
converge and diminishes and finally it vanishes in the bulk
limit for large sizes of QD. It was demonstrated that for
relatively small dot size the variation in the binding energy is
more pronounced for InAs QD than GaAs QD, where the
InAs QD gives a higher binding energy as compared to a
GaAs QD. The reason for this is that the electron wave
function in InAs QD spreads more significantly to the sur-
rounding than in GaAs QD since the surrounding is over-
whelmingly controlled by hydrogenic impurity potential and
not by the size of the QD. Our results are in good agreement
with those reported in [41, 44].

In figure 10 we have shown the dependence of the dia-
magnetic susceptibility of S-state as a function of the dot
radius for GaAs QD. Here we observed a decrease in the
diamagnetic susceptibility when the dot size increases; this
behavior is consistent with the results obtained previously in
[46, 62]. The figure also indicates that, when the dot radius
increases, harmonic interaction decreases the absolute value

Figure 8. Variations of the ground-state binding energy with the dot
size in the absence and in the presence of a shallow impurity at the
center of GaAs QD for V0=0.375 meV.

Figure 9. Variations of the ground-state binding energy with the dot
size in the presence of a shallow impurity at the center of GaAs and
InAs QD at W = ´3 10 Hz12 with V0=1.875 meV.
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of the diamagnetic susceptibility compared to the case when
the impurities are absent W = 0 .( ) The incorporation of the
harmonic interaction reduces the permeation of the wave
function into the barrier of semiconductor; this in turn reduces
the extended area of the wave function and actually reduces
the value of á ñr .2 Therefore, in accordance with equation (20),
the absolute value of the diamagnetic susceptibility is reduced
as the influence of the harmonic interaction. In addition, the
effect of the harmonic interaction is negligible for small dot
radii due to the dominance of the confinement effect. In
figure 11, we compare the diamagnetic susceptibility for a
hydrogenic donor in GaAs and InAs and the results are pre-
sented for W = ´3 10 Hz.12 We observed that the suscept-
ibility value is higher for the donor confined in GaAs
spherical QD than for a donor confined in InAs spherical QD,
since the wave function is highly localized and thus the
magnitude of á ñr2 is higher in the GaAs QD, see figure 3. This
indicates a strong influence of the QD type used in the

semiconductors on the susceptibility. We note that the dia-
magnetic susceptibility of InAs QD is more sensitive to the
variation of the radius for large QD than GaAs QD and
converges to the limiting value of the bulk material, i.e.
-1.1 a.u. The value of our diamagnetic susceptibility is jus-
tified by considering the value of the bulk limit as dot size
 ¥, i.e. á ñ r a32

B
2 (a ,B effective Bohr radius) then

c  -1.1 a. u.dia . = - ´ - -2.36 10 cm mole .6 3 1( ) Here we
must point out that our results are in good agreement with the
results presented in [27, 62].

The functional dependence of the current density from
the coordinates r and θ determine the value magnetic field
strength at the center of QD. From figure 12 it can be seen
that the intensity decreases with the increase in the size of
QD. This dependence is fully consistent with the results of the
dependence of the current density on the coordinates in
figure 6. For small QD size the magnetic field intensity pro-
duced in the absence of an impurity ion is higher than the
magnetic field intensity produced in its presence. Also, for
larger QD size the magnetic field intensity vanishes in the
presence of impurity, whereas for sufficiently large size of
QD this intensity comes to zero in the absence of impurity
(though not shown in the figure). It is worth noting that for
small QD radius the magnetic field strength created by the
electron is not small. Calculations for the parameters con-
sidered in this study show that for the electronic donor
it varies within - - H96.515 A m 0 102.529 A m .1 1( )
Figure 13 shows a comparison of the magnetic field intensity
produced at the center of QD for GaAs QD and InAs QD at
Ω=3×1012 Hz. As expected, for small QD radii the
magnetic field intensity decreases monotonically as the dot
radius increases, also the magnetic field intensity produced in
InAs QD is always higher than the intensity of the magnetic
field in GaAs QD; this behavior is in consistent with the plots
obtained in figure 7.

Figure 10. Ground-state diamagnetic susceptibility as a function the
dot radius for GaAs QD with and without hydrogenic impurity.

Figure 11. Comparison of the diamagnetic susceptibility with dot
sizes for GaAs QD and InAs QD at W = ´3 10 Hz.12

Figure 12. Dependence of the magnetic field at the center of the
GaAs QD on its radius for electron in the ground- state with and
without hydrogenic impurity.
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4. Conclusions

In this paper, within the effective mass approximation, we
studied the dependence of the spin magnetic moment current,
binding energy, wave function and diamagnetic susceptibility
on the radial coordinate, dot size, interaction strength and
confinement frequency for the electron in the ground state (S-
state) coupled with shallow donor located at the center of
GaAs/InAs spherical parabolic QDs. We derived the
equations analytically as a function of spherical coordinates r
and θ and some relevant parameters both with and without an
impurity, and we compared the obtained results for both
GaAs and InAs spherical QDs. It was found that the prob-
ability density for the donor states is maximum (more loca-
lized) at the origin and decreases as the electron moves away
from the center. Moreover, for relatively strong interactions
the localization decreases as a result to the spread of the donor
wave function in all over the surrounding. Also, it was noted
that the donor localization appears noticeably in GaAs QD
more than InAs QD. The variation of the spin magnetic
moment current with radial coordinate shows a peak structure
for different sizes of the QD. It was shown that the presence
or absence of an impurity in the QD as well as the size of QD
essentially influence the maximum value of the spin magnetic
moment current for a fixed θ. The study also proved that in
the presence of impurities, the spin magnetic moment current
produced by GaAs QD is always greater than that in InAs QD
and the current shows a peak structure in both cases around
one effective Bohr radius (for both GaAs QD and InAs QD).
It was established that the harmonic interaction of an electron
with an impurity reduces the spin magnetic moment current
and this effect becomes tangible around r=aB. It was found
that the ground state binding energy decreases as the dot size
increases and reduces to zero in the bulk limit when the
impurity is absent. We also observed that the harmonic
interaction of electron with an impurity shifts the donor levels
toward higher energy levels and the effect of interaction
becomes significant as the dot size increases. We compared

and showed the distinctions in behavior of an impurity ground
state binding energy in GaAs and InAs spherical QDs. It was
concluded that the variation in binding energy has been
shown to be more pronounced and larger in InAs QD com-
pared to GaAs QD for small QD radius. We also found that
by increasing the size of the dot, the diamagnetic suscept-
ibility diminishes rapidly with the presence of an impurity due
to the harmonic interaction while it decreases slowly in the
absence of impurities. It is also evident that the diamagnetic
susceptibility of the donor confined in the GaAs spherical QD
is higher than the donor confined in InAs spherical QD. The
magnetic field intensity created by an electron at the center of
the QD was derived. We have shown that the intensity of the
magnetic field decreases gradually as the size of the QD
increases; also the interaction of the electron with the impu-
rities reduces the magnetic field intensity compared to the
case in which the impurities are absent. It was demonstrated
that the magnetic field intensity generated by InAs QD was
always greater than that generated by GaAs QD, and with
further increase in the QD radius, the magnetic field intensity
vanishes as it expected. It is worth to mention that the electron
associated with the impurity placed at the center of the
quantum QD may not affected by the environment of the QD
when its radius is too large and behave just like the atom of
impurity in the three-dimensional state. It was noted during
this study that there are many [76] results that are consistent
with previous studies, which were referred to in their appro-
priate positions.

We expect that the analysis conducted during this study
on the donor susceptibility of a QD will be appropriate to
understand the transition of metallic semiconductors [75] in
low-dimensional semiconductor systems. The developing
field of spintronics demands a broad investigation of magnetic
properties of nano structures and furthermore encourages a
comprehension of quantum chaos and electron gas con-
ductivity in the nano systems. More investigations are
required for other type of interaction potentials and for narrow
QD to test the theory of effective mass approximation. We
also encourage experimental efforts to support our results and
the possibility of further shedding light on the donor wave
function of the confined systems will soon be available. In the
future, we intend to study the effect of both temperature and
pressures on a hydrogenic impurity located on (off) a sphe-
rical QD center in the presence of harmonic interaction and
explore other properties of these systems.
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