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Abstract
An analytic solution is presented in this paper for the electric potential near a wall in a confined
plasma. This is well fitted for both the sheath and pre-sheath regions. In the sheath region, the
potential is well adapted to the differential equation proposed by Bohm. In the pre-sheath region,
the potential is also well suited, decaying to zero electric field in the plasma, which is a physical
condition. The potential is also valid for any value of the parameter K measuring the
dimensionless Bohm velocity.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Plasma is separated by a wall containing a peculiar region
called a plasma sheath, which is followed by a pre-sheath
region. The model most commonly used to describe the
plasma over this region is the so-called Bohm plasma sheath
[1]. This is extensively described in most plasma physics
books [2–4], and also in those related to industrial applica-
tions [5]. There are also some complementary and review
papers [6–10]. It is also interesting to see the work of
Riemann, where a new approximation of the plasma sheath
has been derived [11]. An interesting discussion of the pro-
blem including an electron sheath and multiple ion species
can be found in [12]. Analysis using kinetic theory has also
been performed by several authors—see for instance [13].
Sheaths in magnetized plasma have also been considered
[14]. Plasma sheath formation in low-pressure discharges has
also been studied [15]. In a later paper, the authors also dis-
cuss the importance of collisions in the Bohm criterion [16].
Finally, an interesting topical review of several aspects of

these matters has been made by Robertson [17]. In this paper,
an analysis is made in the simplest case, where magnetic
fields, kinetic effects and more complicated situations are not
considered.

There is a potential drop between neutral plasma and the
entrance of the sheath. In the sheath region the number of ions
is higher than the electron density, due in part to the large
reflection of electrons by the negative potential of the wall.
The ion density is determined by the continuity equation as
well as the energy conservation equation, where the cold ion
approximation is considered. Thus, for the electrons, it is
assumed that they follow a Boltzmann distribution, and for
the ions the cold fluid approach is adopted. In the sheath
region the potential is the solution of Poisson’s equation with
suitable boundary conditions for the dynamical equations of
ions and electrons. For the electron fluid the gradient pressure
is dominant over the momentum term, and since the ions are
cold, the momentum term is more important than the pressure
gradient. For this reason, the electron density is described by
the Maxwell–Boltzmann factor

j=n x n e x k Texpe 0 B e( ) [ ( ) ]/

with the boundary conditions  ¥ =V x 0( ) and
 ¥ =n x ne 0( ) , where n0 is the density in the neutral

plasma, Te is the temperature of the electrons, j(x) is the
electrostatic potential and kB is the Boltzmann constant. By
integrating the ion moment equation and the continuity
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equation, the density of ions is obtained for plasma of a single
species, or for hydrogen plasma:

j
= -

-
n x n

e x

mv
1

2
i 0 2

1 2⎡
⎣⎢

⎤
⎦⎥( ) ( ) /

where v is the characteristic Bohm plasma velocity at the edge
of the plasma, m is the ion mass and n0 is also the density of
ions in the plane plasma. In this way Poisson’s equation is
written as
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The well-known differential equation in dimensionless vari-
ables is

f
x f

= - -
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where dimensionless units are taken, and thus

f
j

= -
e

k T
.

B e

Here (−e) is the electron charge, kB is the Boltzmann constant
and Te is the electron temperature in the plain plasma. The
dimensionless distance is ξ=x/λD, where x is the distance
measured from the wall and λD is the plasma Debye length.
Finally the parameter K is a dimensionless quantity measuring
the characteristic Bohm plasma velocity v, that is,

l = =
 k T

n e
K
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, , 2D
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e
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where ne is the electron density. It is assumed that ions enter
the sheath region with the velocity of sound; then K=1/2
[1]. However, it is interesting that Bohm obtains a relation
with an inequality sign [1], =v v k T mBohm B e

1 2( )/ / .
Here the dimensionless potential f is positive because of

the minus sign in its definition. On the other hand, the dis-
tance x is measured from the wall, and not from the plane
separating the sheath and pre-sheath. The size of the sheath is
usually considered to be d, which is the place where the
derivative of the potential coming from equation (1)
becomes zero.

In this paper, treatment is performed in the simplest way.
Thus, the magnetic field for instance is not included, neither is
hot plasma flow, and the wall is considered a flat surface. One
of the problems with the solution of the Bohm equation for
the sheath region is that this does not verify the condition for
zero electric field in the plasma. Therefore, it has been widely
agreed to provide a second description for the so-called arti-
ficially created pre-sheath region, in which it is recovered as a
smooth continuation of the potential profile, as it has been
experimentally observed to be [18, 19]. There are two main
goals in this work: The first is to find a solution to the Bohm
sheath equation, which is straightforward to calculate, and
one with high accuracy in the region where the solution has

physical meaning, that is, near the wall. However, there is a
second purpose, which is to avoid problems in the region
where the solution is unphysical, in such a way that now the
solution could be joined smoothly to the plasma potential.
This can be done first by looking for an adequate form of the
solution, and second by determining the right parameters
mainly for the conditions in the region near the wall. The
precise connection between the plasma sheath and the plasma,
whether or not using a pre-sheath region, is a very complex
problem—see for instance [20, 21]. There is no general
agreement on or solution to this problem. This is the reason
why we consider a solution for the sheath and pre-sheath
regions in which the adjustment to the good part of the well-
known sheath solution is adapted. Furthermore, the electric
field with respect to the plasma region is zero. Here, we
consider Maxwellian distributions which are commonly
assumed, yet there are other views such as the truncated bi-
Maxwellian distribution [22]; this case could be considered in
the future. This work is organized as follows: In section 2 we
discuss the solution for the sheath potential and a new solu-
tion is also proposed. Moreover, the proposed solution is
presented as a joint solution for both the sheath and pre-
sheath regions. This section also includes several figures for
different plasma conditions. Finally, a conclusion section is
presented.

2. Theoretical treatment and discussion

Equation (1) can be integrated once to obtain a first-order
differential equation, but after that it must be solved
numerically. Yet, in the numerical solution x is obtained as a
function of f, but it is more convenient to obtain f as a
function of x. Several attempts have been made to perform
this inversion [7, 11]. However, an analytic solution for both
the sheath and pre-sheath regions has not been achieved yet.
This is the reason why it is useful to obtain a complete
accurate approximation for f as a function of ξ, as shown
here. The simplest approximation is one of the exponential
type f f= ax-expw as shown in the literature [4], but as K
approaches the Bohm limit, K=1/2, the decay distance
becomes too large. A first integration of equation (1), con-
sidering f as the integration variable and df/dξ=0 for
f=0, leads to

f
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The simplest approximation is obtained by keeping only the
first term of the series expansion [4]. However, the accuracy
of this approximation is not good, and furthermore the
approximation fails for K 1 2, as the so-called Bohm limit
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K=1/2. Better approximations can be obtained using more
terms of the series [11, 23]. The accuracy of these approx-
imations is better than that obtained by using the first term of
the second expansion in equation (4). In our last approx-
imation [23], all the parameters are functions of K only. This
is not convenient because the numerical calculation shows
that the slope at the origin is also a function of the wall
potential fw. In the present treatment, all the parameters will
be functions of K and fw. The form of the approximation to
be determined will be

f
b

F =
+ -

lx

lx

-

-

e

e1 1
5w ( )

( )

where fw is the wall potential, that is, f f=0 w( ) . In this way,
we are certain that for large values of ξ, the potential will be
the plasma potential, which must be zero for f ¥( ). The
parameters to be determined in this approximation are λ and
β. Considering the derivatives of equation (1), the following
are obtained:
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As in the wall, it is found that
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On the other hand, it is known by equations (3) and (1) that
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Now by equalizing equations (8) and (10), and equations (9)
and (11), we obtain
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From these the values of λ and β are obtained, giving
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These parameters are now introduced in equation (5), and
in this way a new approximation is obtained.

A plot of the solutions of equation (1) (dashed lines) and the
present solutions (full lines) is shown in figure 1, for K=1/2
and fw=5, 4, and 6. These values have been considered
because they are coincident with those appearing in [17]—see
figures 2, 11 and 13 there. It is clear that each pair of curves are
coincident near the wall, for each potential. However, they
become different when the solutions of equation (1) are near the
minimum of each curve. This is true just when the solutions are
not valid because the potentials begin to increase. The new
solution has a better adjustment to the physical system, just
where the solution of equation (1) does not show the desired
behavior. In figures 1, 2, and 3, the position corresponding to
each minimum potential is denoted as a black point in the
corresponding new solutions of equation (5) (full line). These
points show the edge or transition region of the corresponding
sheath region—see, for instance, figure 8 in [17]. These regions
increase with the wall potential, notwithstanding that the total
sizes of both the sheath and pre-sheath regions are almost equal
independently of the wall potentials. The minimum of the solu-
tion coming from the differential equations for f=6 presents a
better behavior than that for fw=5, because the minimum of the
curve is closer to the ξ-axis. The solutions now proposed have
better behavior, and the electric field as well as the potential is
zero in the plasma. Although the Bohm value of K=1/2 is the

Figure 1. Numerical solution f (dashed line) of the differential
equation, equation (1), and proposed analytic function Φ (full line),
equation (5), for K=1/2 and fw=5, 6, and 4 as a function of the
dimensionless distance ξ. The edge point between the sheath and
pre-sheath is marked with a black point, and letters a, b, and c follow
the change in the function order.
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most important one, it is also worthwhile to look for values
nearby, such as K=0.58 and K=0.42. The results are shown
in figures 2 and 3 for the same values of the wall potential in
figure 1. That is, different values of K are analyzed, when
fw=4, 5 and 6. In the case of K=0.58, figure 2 shows that the
minimum of the differential equation solution is just near zero for
fw=6, but an increasing potential after that is also present. In
the case of K=0.42, the Bohm criterion is not achieved, that is,
it does not correspond to any appropriate physical case. How-
ever, this case has been included in figure 3 because it seems
interesting to check the behavior of the solution in this case. The
solution for K=0.42 does not present any problems, and the
potential and electric fields become zero at the plasma.

The values of the parameters λ and β used in the above
figures are shown in table 1. From the table, it is clear that the
slope λ at the wall increases with K and decreases with the
value of fw. On the other hand, the parameter β increases
with K and fw.

The approximation here presented is obtained using the
usual equation for sheath or Bohm treatment. It is clear that
the approximation and the numerical solution are almost
coincident in the sheath region, which is the most important
region. However, later the numerical solution of the equation
is not right since f

x
d

d
becomes zero and the solution increases

instead of decreasing. However, the behavior of the present
solution is now different from the actual function far from the
wall. There it behaves like the potential in the pre-sheath
region.

It seems interesting to show the behavior of β and λ with
the dimensionless wall potential fw and characteristic Bohm
velocity K. This is shown in figures 4 and 5 respectively.
From figure 4 it is clear that β (full line) increases with the
Bohm potential, but λ (dashed line) decreases. In figure 5, it is
shown that both parameters increase with K but the increase
of λ is much greater than that of β.

Figure 2. Numerical solution f (dashed line), equation (1), and
proposed analytic function Φ (full line), equation (5), for K=0.58 and
fw=4, 5, and 6 as a function of the dimensionless distance ξ. The
edge point between the sheath and pre-sheath is marked with a black
point, and letters a, b, and c follow the change in the function order.

Figure 3. Numerical solution f (dashed line), equation (1), and
proposed analytic function Φ (full line), equation (5), for K=0.42 and
fw=4, 5, and 6 as a function of the dimensionless distance ξ. The
edge point between the sheath and pre-sheath is marked with a black
point, and letters a, b, and c follow the change in the function order.

Figure 4. Analytic functions β (full line) and λ (dashed line) for
K=1/2, as a function of the wall potential.

Table 1. Values of the parameters λ and β for K=1/2, 0.58, 0.42,
and dimensionless potentials fw=5, 4, 6.

fw β λ

K=1/2 5 0.307 1 0.469 6
4 0.276 0 0.492 8
6 0.327 1 0.444 5

K=0.58 5 0.312 1 0.494 2
4 0.283 8 0.521 9
6 0.331 2 0.466 1

K=0.42 5 0.299 0 0.439 1
4 0.263 6 0.456 3
6 0.321 9 0.418 1
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3. Conclusion

A new analytic solution for the Bohm sheath potential has been
presented, whose advantages can be summarized as follows:
(1) The accuracy of the new solution is better than that of pre-
viously published approximations—see [11, 23]. (2) It is a simple
approach, with only two parameters to be determined, which are
functions of K as well as fw (this is an important advantage with
respect to approximations where the parameters to be determined
are only functions of K ). (3) The sheath and pre-sheath are
included in a unique or joint solution. The present treatment has
also been performed using the most basic model. However, a
more elaborate treatment, which may include the magnetic field,
could be considered in future work. (4) There is no need to
discriminate between the sheath and pre-sheath anymore, and
because of this comparing theory with experiment can be done in
a direct way.
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