ACCEPTED MANUSCRIPT The following article is Open access

A compact approach to higher-resolution resonant inelastic X-ray scattering detection using photoelectrons

, , , , , , , , , , , , and

Accepted Manuscript online 23 April 2024 © 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

What is an Accepted Manuscript?

DOI 10.1088/1367-2630/ad4206

10.1088/1367-2630/ad4206

Abstract

The detection of inelastically scattered soft X-rays with high energy resolution usually requires large grating spectrometers. Recently, photoelectron spectrometry for analysis of X-rays (PAX) has been rediscovered for modern spectroscopy experiments at synchrotron light sources. By converting scattered photons to electrons and using an electron energy analyser, the energy resolution for resonant inelastic X-ray scattering (RIXS) becomes decoupled from the X-ray spot size and instrument length. In this work, we develop PAX towards high energy resolution using a modern photoemission spectroscopy setup studying Ba2Cu3O4Cl2 at the Cu L3 edge. We measure a momentum transfer range of 24% of the first Brillouin zone simultaneously. Our results hint at the observation of a magnon excitation below 100 meV energy transfer and show intensity variations related to the dispersion of dd-excitations. With dedicated setups, PAX can complement the best and largest RIXS instruments, while at the same time opening new opportunities to acquire RIXS at a range of momentum transfers simultaneously and combine it with angle-resolved photoemission spectroscopy in a single instrument.

Export citation and abstract BibTeX RIS

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/4.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.