

PAPER • OPEN ACCESS

Multi-agent blind quantum computation without
universal cluster states
To cite this article: Shuxiang Cao 2023 New J. Phys. 25 103028

View the article online for updates and enhancements.

You may also like
Half-blind quantum computation with
operation teleportation
Zhen Yang, Guangyang Wu and
Mingqiang Bai

-

Adiabatic graph-state quantum
computation
B Antonio, D Markham and J Anders

-

Analysis and improvement of verifiable
blind quantum computation
Min Xiao, , Yannan Zhang et al.

-

This content was downloaded from IP address 3.128.94.171 on 08/05/2024 at 14:02

https://doi.org/10.1088/1367-2630/acfab6
/article/10.1088/1751-8121/ad3e45
/article/10.1088/1751-8121/ad3e45
/article/10.1088/1367-2630/16/11/113070
/article/10.1088/1367-2630/16/11/113070
/article/10.1088/1674-1056/ac2f34
/article/10.1088/1674-1056/ac2f34

New J. Phys. 25 (2023) 103028 https://doi.org/10.1088/1367-2630/acfab6

OPEN ACCESS

RECEIVED

2 May 2023

REVISED

1 September 2023

ACCEPTED FOR PUBLICATION

18 September 2023

PUBLISHED

16 October 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Multi-agent blind quantum computation without universal cluster
states
Shuxiang Cao
Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU, United Kingdom

E-mail: shuxiang.cao@physics.ox.ac.uk

Keywords: blind quantum computing, ZX-calculus, measurement-based quantum computing

Abstract
Blind quantum computation (BQC) protocols enable quantum algorithms to be executed on
third-party quantum agents while keeping the data and algorithm confidential. The previous
proposals for measurement-based BQC require preparing a highly entangled cluster state. In this
paper, we show that such a requirement is not necessary. Our protocol only requires pre-shared
Bell pairs between delegated quantum agents, and there is no requirement for any classical or
quantum information exchange between agents during the execution. Our proposal requires fewer
quantum resources than previous proposals by eliminating the need for a universal cluster state.

1. Introduction

Quantum computers built from current technology are difficult to be miniaturized, and unlikely to become
personal electronics such as a laptop or a cellphone [1–4]. Therefore, cloud-based services are considered the
most applicable approach to offer the general public access to quantum computers. It is natural to ask
whether the privacy of the quantum algorithm can be kept when one does not have complete control of the
quantum hardware. Blind quantum computing (BQC) aims to solve this problem. Quantum algorithms can
be executed with BQC protocols on third-party quantum agents while keeping the algorithm, data, and
results confidential [5, 6].

Here we discuss two ways to implement universal quantum computation. One is gate-based quantum
computing (GBQC) [7]. This method starts with a pure quantum state, usually by resetting all qubits to zero.
Then it transforms the quantum state using a sequence of quantum gates. The final output state carries the
processed information. The other method is called measurement-based quantum computing (MBQC) or
one-way quantum computation [8–11]. This method prepares a highly entangled state of multiple qubits,
often referred to as a cluster state [12], then performs a sequence of measurements and corrections to
implement computation. Eventually it can give the same result as the GBQC.

The universal blind quantum computing (UBQC) protocol was proposed in [6] based on the MBQC
framework. UBQC protocol utilizes a universal cluster state and can be implemented by a semi-classical
client with a single agent or an entirely classical client with multiple agents. There are other proposals
implementing BQC with a single agent and an entirely classical client are possible, however, these proposals
require some computational assumptions [13–15].

In this paper, we make use of a quantum graphical reasoning method, ZX-Calculus, to derive a BQC
protocol that can be implemented with multiple agents and an entirely classical client. The UBQC protocol
utilizes a universal cluster state, forcing all the information describing the algorithm to be encoded in the
measurement axis. It sacrifices the ability to encode information into the entanglement structure between
qubits. Contrarily, our method does have information encoded in the entanglement structure, and does not
require a universal cluster state. This makes our protocol more resource-efficient.

This paper is arranged as follows: section 2.2 describes ZX-calculus, a graphical quantum reasoning
technique that we use to derive our result. Section 3 explains our BQC protocol. Section 4 gives proof of the
correctness and secureness of our protocol. Section 6 discusses the compatibility with existing verification

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/acfab6
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/acfab6&domain=pdf&date_stamp=2023-10-16
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7178-4250
mailto:shuxiang.cao@physics.ox.ac.uk

New J. Phys. 25 (2023) 103028 S Cao

protocols, and quantifies the resource cost of our protocol and the UBQC protocol. Section 7 summarizes the
paper.

2. Background

2.1. UBQC
The UBQC protocol employs the MBQC method to implement BQC [6]. Under the MBQC framework, the
algorithm can be described with only the entanglement structure between qubits and each qubit’s
measurement axis. To make the algorithm blind to the agents, the information each agent possesses, the
entanglement structure, the measurement axis, and the measurement output of the agents, must not reveal
any information about the algorithm. A valid BQC protocol must make this information independent from
the delegated task.

To make the entanglement structure of the delegated task independent from the quantum algorithm,
UBQC utilizes a universal cluster state, which can implement arbitrary quantum algorithms with the same
entanglement structure but a different measurement axis. Such a method concentrates the information
describing the quantum algorithm on the measurement axis. UBQC protocol uses the brickwork cluster state
to implement MBQC. Different quantum gates can be implemented by measuring the cluster state with
different angles in sequence. For the brickwork state, the qubits are measured from left to right. Based on the
measurement result, corrections is applied to the following qubits on each step. The calculated result is then
stored in the qubit on the right end of the brickwork cluster state and can be further processed by piling up
more elementary components, or more ‘bricks’.

Example 2.1. Brickwork cluster state and MBQC with brickwork resource state. Each node denotes a qubit prepared in |+⟩ state.
Wires connecting two qubits denote an entanglement that is generated by applying a CZ gate between two qubits. The result is
stored inside the very right qubits after measuring each qubit from left to right. The angle inside each node represents the angle of
measurement that would be applied to the corresponding qubit. (a) The layout of a typical brickwork cluster state. The gray
square shows a fundamental element of the brickwork cluster state. (b) Implement a Hadamard gate. The square on the left side
denotes the qubits that hold the computation output. (c) Implement T (π/8) gate. (d) Implement identity gate. (e) Implement a
CNOT gate.

Usually the measurement axis is defined by doing a single qubit rotation before the physically
implementable measurement, which is usually the Pauli Z axis. To make the measurement axis independent
to the quantum algorithm, a second agent is introduced to implement all or part of the single qubit rotation.
When only one remote agent is available, UBQC protocol requires the client to be semi-classic; that is, the
client can manipulate a minimum of a single qubit. It also requires the remote server to exchange quantum
information by physically swapping qubits or establishing new entanglement. See example 2.2(a). In the
original proposal, known as the ‘prepare-and-measure’ method, the semi-classical agent effectively prepares
the measurement angle. The agent and the client share the entanglement of each qubit, and the client
measures its qubit at a random angle. This random angle would be ‘teleported’ to the agent and affect the
cluster state. The agent only needs to initialize the qubit into a superposition state and directly measure the
qubit without rotating the qubit [6]. Alternatively, the agent can provide the cluster state and send the state
back to the agent, known as the ‘measurement-only’ method. Only the agent has access to the measurement
angle [16]. The UBQC protocols can also be implemented with multiple remote quantum agents and a
purely classical client when the two agents’ communication is restricted. See example 2.2(b). A uniformly
distributed measurement axis for the delegated agent can be implemented on the first agent by simply
requesting the second agent to measure their entangled qubits from a random axis. Then the computation
can continue with the same method for a single agent UBQC.

The measurement outcome for the ‘prepare-and-measure’ approach is obfuscated by randomly flipping
the outcome distribution during the measurement. Such obfuscation can be done by randomly choosing to
measure at its original or with a π difference. The measurement outcome would flip when the measurement

2

New J. Phys. 25 (2023) 103028 S Cao

angle is chosen with π difference. Then the client classically restores the distribution after the measurement.
Since the agent does not know if the distribution has been flipped or not, it can only observe a uniform
distribution of 0 and 1 outcomes.

Example 2.2. Two protocols of UBQC. Both methods execute quantum algorithms with MBQC on the brickwork cluster state
prepared on the remote agents. (a) Protocol with a semi-classical client and a single remote agent. The client can manipulate only
one qubit and exchange qubits with the agent—the client prepares phase or measures the qubit at a random angle. The agent
would know the actual rotation angle obfuscated by this random angle. (b) Protocol with a full classical client and multiple
remote agents with shared entanglement. A second agent is introduced to replace the semi-classical client.

It is worth mentioning that a circuit-based BQC method proposed in [17] utilizes a similar philosophy as
the UBQC protocol. A ‘universal circuit’ that can implement arbitrary operation by modifying the
single-qubit gate rotation angle has been introduced in the proposal. The entanglement structure is then
irrelevant to the circuit on the agent, and the rotation angles are obfuscated with quantum computing on
encrypted data [18–20], which requires the agent to exchange quantum information with the client. The
circuit-based protocol computes the cluster state in a circuit-based manner. However, it still requires
exchanging the same amount of quantum information between the client and agent as the UBQC protocol to
implement ‘correction’.

2.2. ZX-calculus
In this section, we provide a brief review of the ZX-calculus [21]. The ZX-calculus is a diagrammatic method
for reasoning the linear maps of quantum operations. With the gate representation of quantum
computation, we decompose a unitary operation into a sequence of predefined gates; with ZX-calculus, we
decompose the unitary into a network, the so-called ZX-diagram, consists of red and green spiders. In the
following discussion, we ignore the scalars of the ZX-diagrams.

2.2.1. ZX-diagram
A ZX-diagram consists of wires and spiders, corresponding to legs and tensors in the tensor network
language [22, 23]. There are two types of spiders: Z spiders and X spiders noted as green and red dots. The
spiders are defined as a tensor parameterized by a single phase variable. The opened wire can be considered
an input or output of the ZX-diagram. The summary of the definition of the basic building blocks of
ZX-diagram is shown in example 2.3. A quantum circuit can be easily rewritten to a ZX-diagram with rules
provided in example 2.3. The X gate can be replaced with a red spider, and the Z gate can be replaced with a
green spider. The rotation angle is represented as the phase of each spider.

Instead of directly contracting the tensor network, ZX-calculus provided a set of rules to manipulate
ZX-diagrams while keeping them equivalent. ZX-calculus is complete on Clifford+T language with the set of
rules are specified [24, 26]. Some of these rules are shown in example 2.4.

Instead of representing the gates with both input wires and output wires, spiders can have just a single
wire. With a single output wire, the spider represents a bra notation. Such bra notation denotes to a
post-selection operation when extracting the diagram into a quantum circuit. While with a single input wire,
the spider represents a ket notation. Such ket notation denotes preparation of the initial state of the quantum
circuit.

A ZX-diagram can also represent a density matrix. For a pure state |ψ⟩, the density matrix is ρ= |ψ⟩⟨ψ|,
which is the tensor product of |ψ⟩ and ⟨ψ|. In a ZX-diagram, a tensor product can be represented by putting
two disconnected diagrams together. By writing |ψ⟩ and ⟨ψ| into the same diagram, we have the ZX-diagram
of the density matrix ρ shown in example 2.6(b).

3

New J. Phys. 25 (2023) 103028 S Cao

Example 2.3. Basic building blocks of ZX-diagram. ZX-diagram is a notation representing tensor networks. Any quantum circuit
can be converted into a quantum tensor network and further represented by ZX-diagram [24, 25]. ZX-diagram consists of spiders,
which is a tensor with constraints above. Standard quantum circuits can be converted into ZX-diagram with the rules listed above.

Example 2.4. The power of ZX-calculus is it derives a set of rules to transfer a ZX-diagram to another one while keeping them
equivalent. Here we show several rules that we will use later. The (f) rule indicates that any two spiders with the same color can
be merged. The (h) indicates that spider color can be changed by adding a Hadamard spider on every wire of the spider. (π)
indicates that a Pi operation with a different color can be copied and moved to other wires while changing the sign of the spider’s
phase. Also, (i1) and (i2) can help generate or remove redundant spiders and Hadamard nodes. (b) the bialgebra rule. The Hopf
law or antipode law (a) shows two parallel Hadamard wire results canceling each other.

Example 2.5. Post-selection in ZX-diagram. The post-selection is represented by attaching a spider with no output to the
output wires of the ZX-diagram. Apply a red dot denoting post select the |0⟩ state, and a green dot means |+⟩ state.

A mixed state can be generated by partially tracing away part of a pure system. The reduced density
matrix of which some qubits are traced away can be represented by directly connecting the wire of the
traced-away qubits between the |ψ⟩ diagram and the ⟨ψ| diagram. This is shown in example 2.7.

Although converting an arbitrary quantum circuit into a ZX-diagram is easy, it is not always trivial to
convert a ZX-diagram back into a quantum circuit. A ZX-diagram can always represent an arbitrary gate in
quantum circuits; however, a ZX-diagram can also represent a non-unitary tensor. For example, the number
of input and output wires can be different. The process of converting a ZX-diagram into a quantum circuit is
often referred to as circuit extraction [27].

4

New J. Phys. 25 (2023) 103028 S Cao

Example 2.6. The representation of a pure state density matrix. Putting two isolated ZX-diagram together gives the tensor
product between to ZX-diagram. Suppose density matrix is ρ= |ψ⟩⊗ ⟨ψ|, it can be represented by placing two ZX-diagram
of |ψ⟩ and ⟨ψ| together.

Example 2.7. The ZX-diagram representation of a reduced density matrix by tracing away one of the qubits. The reduced density
matrix can be represented by directly connecting the open wires of the qubit. In this example, the two open wires of the last qubit
are connected, marked with a rectangle.

2.2.2. Graph-like ZX-diagram
There is a special form of ZX-diagram that is particularly useful, called graph-like ZX-diagram [28].

Definition 2.8. A diagram is called graph-like if

1. All spiders are Z-spiders.
2. Spiders are only connected via Hadamard wires.
3. There are no parallel Hadamard wires or self-loops.
4. Every input or output is connected to a Z-spider.
5. Every Z-spider is connected to at most one input or output.

An example is shown in example 2.9.
From the Gottesman–Knill theorem, quantum circuits containing gates only from the Clifford group can

be simulated efficiently on a classical computer [29]. After a quantum circuit is written into a ZX-diagram, it
is possible to simplify the diagram and remove Clifford operations before further modifications. This
technique has been developed for circuit simplification [28].

2.3. Flow and determinism inMBQC
Suppose a circuit is converted into a ZX-diagram and then transformed into a graph-like ZX-diagram. Then
we modify the ZX-diagram and give every spider an extra regular wire. See example 2.10(a). The new
diagram equals the original diagram when all these wires terminate with a zero-phase Z spider.

Now let us consider each spider corresponds to a qubit, and measure the qubit closes the added open wire
with either a zero-phase spider or a π-phase spider. When we get an unwanted π-phase spider, see example
2.10(b), we restore the state by applying extra single-qubit operations on the related qubit which we have not
been measured. This is equivalent to the correction operation for MBQC. See example 2.10(c). In this way, we
can always obtain the same distribution as the original quantum circuit.

Pushing the π phase into unmeasured spiders is a simple correction strategy; however, it does not work
for arbitrary graphs. For example, if a non-output qubit is being measured with an unexpected result, and all
its neighboring qubit has already been measured, then there is no qubit the π phase can be pushed to. For a
diagram that can utilize this single qubit correction strategy, the diagram must admit a causal flow [30].

5

New J. Phys. 25 (2023) 103028 S Cao

Example 2.9. A graph-like ZX-diagram. A graph-like ZX-diagram must have only Z-spiders (green), and the internal connections
are only Hadamard wires (dashed-blue line). There are no self-loops or parallel wires, and each spider is connected to at most one
input or output. (a) demonstrates a schematic of an original circuit written into ZX-diagram. It can be created by substituting
each quantum gate in the circuit with its corresponding ZX-diagram component. This diagram contains both X and Z spiders,
with each row representing a qubit and each column denoting a layer of the circuit. (b) Demonstrate schematics of a graph-like
ZX-diagram, comprised solely of Z spiders and Hadamard edges. A graph-like ZX-diagram that is equivalent to a diagram like (a)
can always be found [28]. In a graph-like ZX-diagram, the columns and rows no longer correspond directly to a gate layer or a
qubit. The open Hadamard edges with the ellipsis denote some arbitrary configuration that is abbreviated.

Example 2.10.Measurement sequence of implementing correction. (a) The spiders have been grouped based on their distance
from the output spiders. Shown in gray squares. (b) The measurement has been performed on the group with the largest distance;
some unexpected outcome has been measured. (c) Apply the (π) and (h) to recover the state. The phase can always get
propagated into groups with a lower distance to the output spiders.

Definition 2.11 (causal flow [30, 31]). A causal flow is a pair (f,≺) with ≺ a partial order and f a function
f : Oc → Ic on open graph state (G, I,O) which associates with every non-output vertices a set of non-input
vertices such that

• u ∈ N(f(u)).
• u≺ f(u)
• u≺ v for all v ̸= u, v ∈ N(f(u)).

where N(K) denote the neighbor vertices of K.
Consider we are looking for a strategy to execute the graph with the MBQC method, which consists of

measuring the qubits and modifying one qubit f (u) after each measurement. The partial order of the causal
flow describes a possible order to execute the measurement. f (u) qubits must be measured after u, which
gives the second rule. Also, applying the correction would affect not only u, but all the neighbors of f (u).
Therefore these neighbors must be measured after u.

However, admitting a causal flow is unnecessary for a graph to be executed with MBQC [30–33]. Recall
that modifying one qubit can correct the unexpected measurement outcome from a graph with the causal
flow. There are at least two improvements to the flow mechanism that can be applied.

First, instead of correcting the state by modifying one qubit, the idea of graph stabilizers can be used to
obtain a set of qubits and corresponding operations to correct the state. A stabilizer of a graph is a set of
operations that can be applied to the state while keeping it identical. To correct the state, we could consider
the unexpected gate as part of a stabilizer, which would keep the state unchanged if we complete it. Such

6

New J. Phys. 25 (2023) 103028 S Cao

stabilizers can be found intuitively with ZX-calculus by pushing the unexpected π phase around the
phase-free graph [24, 34]. We then could relax f (u) to be multiple qubits called the correction set.

Second, for the qubits measured on the Pauli basis, some correction does not need to be applied to the
qubit physically [31, 35]. For example, pushing a π spider through another π phase spider with a different
color does not need to apply physical corrections because−π and π phase are equivalent.

The above two modifications lead to the definition of Pauli flow.

Definition 2.12 (Pauli flow [35]). An open graph state (G, I,O) has Pauli flow if there exists a map f : Oc →
F(Ic) and a partial order≺ over V such that for all u ∈ Oc

1. if v ∈ f(u), and λ(v) /∈ X,Y then u≺ v,
2. if v ̸= u, and λ(v) /∈ Y,Z then v /∈Odd(f(u)),
3. if v⪯ u,v ∈ f(u) and λ(v) = Y then v ∈Odd(f(u)),
4. if λ(u) = XY then u /∈ f(u) and u ∈Odd(f(u)),
5. if λ(u) = XZ then u ∈ f(u) and u ∈Odd(f(u)),
6. if λ(u) = YZ then u ∈ f(u) and u /∈Odd(f(u)),
7. if λ(u) = X then u ∈Odd(f(u)),
8. if λ(u) = Z then u ∈ f(u),
9. if λ(u) = Y then either: u /∈ f(u) and u ∈Odd(f(u)) or u ∈ f(u) and u /∈Odd(f(u)).

Where Odd(K) = {u, |N(u)∩K|= 1 mod 2} is the odd neighbor of K, i.e. the set of vertices which have
an odd number of neighbors in K. N(K) denote the neighbor vertices of K. |K| denote the number of vertices
in K. λ(u) denote the measurement plane of u, for green spiders with 0 or π phase, the measurement plane is
X. The measurement plane is XY for other arbitrary phases.

In the following sections, we show that all the rewrite rules used to implement the protocol would at least
preserve the Pauli flow of the graph. This guarantees the transformed ZX-diagrams can be executed on
MBQC hardware.

3. BQC from ZX-calculus

The previous section shows that a graph-like ZX-diagram can fully describe the information needed to
execute a quantum algorithm. This information includes each spider’s phase, the connectivity of the
ZX-Diagram which represent the entanglement structure required by the the algorithm, and the number of
spiders used in the graph. The outcome of each measurement may also contain information about the result
of the algorithm.

The UBQC protocol splits the initial phase into two parts to obfuscate this information. Each is
independent of the initial phase; however, the execution would yield the same result when combined. The
measurement results are obfuscated by randomly flipping the qubits before measurement and classically
restoring them by the client after measurement. For obfuscation of the connectivity, the UBQC protocol
utilizes a universal cluster state; therefore, any algorithm would have an identical entanglement structure.
Using the universal cluster state forces all the information of the algorithm to be stored in the phases.
Limiting the ability to represent information with the layout of the cluster state requires extra resources. An
overview of our protocol is presented in Figure 1. Our proposal obfuscates the connectivity by making those
connectivities carry information about the algorithm entanglement structure and become connectivities
between two different agents. Because each agent only possesses the fragment of the diagram that executes on
itself, it loses track of the entanglement structure of the algorithm. Because our protocol does not require the
universal cluster state, and encoding a considerable portion of the algorithm into the connectivity between
the spiders, it requires fewer resources than the UBQC protocol.

In this section, we show how to implement our protocol with ZX-calculus. The phases and measurement
results are obfuscated with similar approaches to the UBQC protocol. With proper manipulation of the
ZX-diagram, the connectivity information can all be hidden by ensuring that each agent only possesses one
end of the entanglement that holds the information about the entanglement structure.

3.1. Defining blocks
Here we introduce the concept of blocks. Blocks Bi are a set of spiders that are hosted by the same agent.
B(V) = Bk denote the block spider V belongs to block Bk. For simplicity, we define Bi − 1= Bi−1.

Definition 3.1 (spider depth). For a given quantum algorithm represented in ZX-diagram G(EN,EH,V), let
dG(V1,V2) denote the distance of V1 and V2 in graph G, Vo denotes all output spiders. Define depth of the
spider Vi in the graph G as

7

New J. Phys. 25 (2023) 103028 S Cao

Figure 1. An overview of the obfuscation strategy of our proposed protocol.

D(Vi) =min
(
d
(
Vi,Vj

))
,∀Vj ∈ VO. (1)

Definition 3.2 (blocks initialization). Define the block as a set of spiders, and spider Vi belongs to block
B(Vi), given by

B(Vi) = Bk (2)

where

k= D(Vi) . (3)

To illustrate this partition, consider a quantum circuit directly transformed into a ZX-diagram. This
partition simply categorizes each layer of the quantum circuit into an individual block.

3.2. Phase obfuscation
Before we move into the method, let us start with a few definitions.

Definition 3.3 (semi-graph-like diagram). A diagram is called semi-graph-like if

1. All spiders are Z-spiders.
2. There are no parallel Hadamard wires or self-loops.
3. Every input or output is connected to a Z-spider.
4. Every Z-spider is connected to at most one input or output.

The difference between a semi-graph-like diagram and a graph-like diagram is that it allows regular edges
to be present in the graph.

Definition 3.4 (reduced graph-like diagram). A graph-like diagram Gg is the reduced graph-like diagram of
a semi-graph-like diagram Gsg if Gsg can be transformed into Gg with only rule (f).

Now we consider the obfuscation process of the phase of a spider. The goal of this obfuscation step is to
rewrite the graph so that the individual phase value in the new graph is independent of the phase values in
the original graph. Such rewrite can be implemented by applying the (f) to make a single spider become
multiple spiders connected with regular edges, see example 3.5. Suppose the original spider has phase α. The
new phases for new spiders are αi. Rule (f) shows that the rewrite graph is equivalent to the original graph if
phase αi is chosen to satisfy

α=
∑
i

αi. (4)

When the operation to implement phase α is split into multiple operations across different agents, each
single agent would not be able to find the original phase α.

We have shown the obfuscated diagram is equivalent to the original diagram, and next, we show the
obfuscated diagram can also be executed on the physical hardware in an MBQC manner.

8

New J. Phys. 25 (2023) 103028 S Cao

Example 3.5. Phase obfuscation with rule (f). (a) is the original spider with multiple inputs and outputs. (b) is equivalent to (a),
while the phase has been split into two spiders connected with a regular wire. α1 and α2 can be chosen randomly with the
restriction α= α1 +α2. Adding one extra spider gives minimum protection to hide the rotation phase from the agent. (c) depict
a more general form where the spider can be split into n spiders.

Theorem 3.6 (spider split flow preservation). Given a graph state (G, I,O), where G is a graph-like diagram

G(EN,EH,V). Split spider Vi ∈ V into N spiders, Ṽi = {Ṽ(0)
i . . . Ṽ(N)

i }, that is construct a new graph
G̃(ẼN, ẼH), Ṽi, where Ṽ= V except Vi is replaced with a set of spiders Vk

i . V
k
i are connected through regular

edges. If (G, I,O) admit a Pauli flow (f,≺), the new graph G̃ also admit a Pauli flow.

Proof. By measuring all the splitted spider Ṽ(n)
i , we could obtain all ϕϕ̃i . Using (f) to merge the split spider

back to one spider, we can obtain the effective measurement outcome for Vi as ϕVi =
∑

NϕṼi . Therefore the
split spiders ~Vi has the same predecessors and successors as Vi in partial order ≺. The partial order ≺̃ for G̃
can also be constructed as follows.

≺̃=
∪

{(Vm,Vn)}∪
∪

{(V ′
i ,Vk)}∪

∪{(
Vj,V

′
i

)}
,

∀(Vm,Vn) ∈≺,Vm ̸= Vi,Vn ≠ Vi,

∀
(
Vj,Vi

)
∈≺ and ∀(Vi,Vk) ∈≺ .

(5)

Since Vi satisfies all the requirements from definition of Pauli flow 2.12, each node {Ṽ(0)
i . . . Ṽ(N)

i } also
satisfies all the requirements. Therefore new graph G̃ also admits a Pauli flow.

Example 3.7. Execution strategy on a ZX-diagram with regular edges. For a single spider in the original ZX-diagram (a), it is
split into multiple spiders (b) by rule (f). All split spiders were measured when executing a measurement step in the original
diagram (d). Inversely apply rule (f) gives an equivalent effect of measuring the single spider in the original diagram (c).

From the theorem 3.6, we define the Pauli flow for a semi-graph-like diagram.

Definition 3.8 (Pauli flow on semi-graph-like diagram). A semi-graph-like diagram admits a Pauli flow if
its reduced graph-like diagram admits a Pauli flow.

Lemma 3.9 (spider rule flow preservation). Rewrite rule (f) preserves Pauli flow on semi-graph-like
diagrams.

Proof. Because applying (f) to a semi-graph-like diagram will not change its reduced graph-like diagram.
From definition 3.8, (f) will not affect the flow property of the diagram.

9

New J. Phys. 25 (2023) 103028 S Cao

Theorem 3.10 (phase obfuscation). Given a quantum algorithm represented in graph-like ZX diagram
G= (∅,EH,V) with n spiders, where ∅ denote the null set and EH denote the Hadamard edges. Each spider Vi has
phase αi. A graph G̃= (ẼN, ẼH, Ṽ) equivalent to G can always be found, preserves the Pauli flow of G, and each
individual phase α̃i is independent to G.

Proof. Construct G̃= (ẼN, ẼH, Ṽ), with 2n spiders. The Hadamard edge ẼH and regular edge ẼN is given by

ẼH =
∪{(

Ṽ2i+1, Ṽ2j

)}
, ∀

(
Vi,Vj

)
∈ E (6)

ẼN =
∪{

Ṽ2i, Ṽ2i+1

}
, ∀Vi ∈ V. (7)

And the new phase α̃i is given by:

α̃2i = αi −βi (8)

α̃2i+1 = βi (9)

where βi is a random phase value. G̃ can be rewrite to G by applying the (f) to merge spider Ṽ2i and Ṽ2i+1.
Therefore G̃ and G are equivalent. Since α̃2i = αi −βi + b2iπ, α̃2i+1 = βi + b2i+1π, when βi is chosen uni-
formly random, α̃2i or α̃2i+1 is independent from αi. Since α̃2i and α̃2i+1 only dependent to αi and βi, each
single of them is independent toG. This rewrite only uses (f), from lemma 3.9, it preserves the Pauli flow.

Example 3.11. To illustrate the phase obfuscation strategy, consider (a) the original graph-like ZX diagram describing the original
algorithm. Each spider Vi with phase αi is split into two spiders connected with a regular wire. A random phase value βi is
generated, and the phase for two new spiders α̃2i = αi −βi, α̃2i+1 = βi, results in (b).

After this construction, we could show that D(Ṽ2i+1)< D(Ṽ2i).

3.3. Connectivity obfuscation
Recall that in the phase obfuscation step, we have turned each spider into a pair of spiders connected with a
regular wire, and two spiders in the pair now belong to different blocks. The wires within each block can be
rewritten into a wire between the adjacent block. Such wire can be rewritten by disconnecting it from one
spider and connecting it to the spider in an adjacent block which has a regular wire connected to the just
disconnected from.

Theorem 3.12 (internal connectivity to external connectivity). Given graph G= (EN,EH,V) where
EHi,j = {Ṽ2i, Ṽ2j} is an wire connect two spiders Ṽ2i and Ṽ2j in the same block. EHi,j can be replaced with
{Ṽ2i+1, Ṽ2j}, where Ṽ2i and Ṽ2i+1 are connected with an regular wire. The rewrite rule preserves the Pauli
flow of G.

Proof. The graph can be constructed with the following rewrite presented in figure 2. The rewrite uses only
(f), from lemma 3.9 it preserves Pauli flow.

10

New J. Phys. 25 (2023) 103028 S Cao

Figure 2. Proof of Theorem 3.12.

Theorem 3.13 ([36, 37]). Let G= (V,E) be a graph with vertices V and edges E. Suppose the labeled open graph
(G, I,O), and λ(u) ∈ {XY,X} for all u ∈ Oc , has Pauli flow. Pick an edge v,w ∈ E and subdivide it twice (see
figure 3), i.e. let G ′ := (V ′,E ′) where V ′ := V∪ v ′,w ′ contains two new vertices v′, w′, and

E ′ = (E/{{v,w}})∪{{v,w ′} ,{v ′,w ′} ,{v ′,w}} . (10)

Then (G ′, I,O,λ ′) has Pauli flow, where

λ ′ (u) :=

{
λ(u) , if u ∈ V/O

X, if u ∈ {v ′,w ′} .
(11)

Figure 3. The Rewrite rule for Theorem 3.13.

Theorem 3.14 (obfuscate the connectivity between blocks). Given a semi-graph ZX diagram G(EN,EH,V)
generated from phase obfuscation, an equivalent, Pauli flow preserving semi-graph ZX-diagram G̃(ẼN, ẼH, Ṽ)
and a block partition B can be found, such that for edges Ẽ= (Ṽi, Ṽj) within the same partition Ṽi ∈ Bk,Ṽj ∈ Bk,
all edges depends only on deg(Vi), Vi ∈ V.

Proof. To find G̃, we first apply the rewrite rule from theorem 3.12 and remove wires within the blocks. Then
for all Ei,j = {Vi,Vj} ∈ EH, we apply rewrite rules from 3.13. Denote the newly added spider for each edge Ei,j
asWi,j andW ′

i,j. AssignWi,j to block B(Vi) andW ′
i,j to B(Vj).

After this rewrite, all the edges within the blocks connect to an extra spider Wi,j and W ′
i,j. For any two

spiders WA and WB connect to Vi, they can be only distinguished by the external connection. Therefore all
the edges (Vi,Wi,j) and (Vj,W ′

i,j) within the same block does not depends on EH. However since multipleW
spiders may still connect to a single V spider, the internal wires depend on the degree of spider Vi and Vj.

Because the rewrite rule used in obfuscation is from theorems 3.12 and 3.13 and they both preserve Pauli
flow, the rewrite for obfuscation also preserves Pauli flow.

The connectivity obfuscation restricts each agent to have only the label of edges si,j instead of the actual
qubit connected in the adjacent agents. Such obfuscation prevents the connectivity configuration of the
ZX-diagram from being reconstructed. After the obfuscation, the leg connects to hub spiders are all in an
equivalent position; therefore agent cannot distinguish the direction of information flow during the
execution. In practice, the si,j can be used to identify the pre-shared Bell pairs between the agents. Each agent
would not be able to know the entanglement structure of other agents.

The connectivity obfuscation step hides the agent’s other end of the entanglement. However, the actual
required entanglement can be estimated by the agent by counting the number of entanglements within its
block, connected to some hub spiders. To further obfuscate the resource requirement of the quantum
algorithm, we need to modify the number of connectivity of these hub spiders. We could add dummy qubit
resources to obfuscate the exact resource requirement of the quantum algorithm. This can be done by
attaching two phase-free spiders to the existing graph and connecting them with Hadamard edges.

11

New J. Phys. 25 (2023) 103028 S Cao

Example 3.15. The process of connectivity obfuscation between blocks can be illustrated as follows. Suppose a fragment of the
quantum algorithm looks like (a). Here all the phases in the spiders are not included in the diagram. First extra spiders are created
with rule (f) to ensure no two inter-block wires are connected to the same spider, see (b). Then extra dummy spiders are created
to obfuscate the spiders’ degree (wire connected to the same spider). Each dummy spider has only two wires and would connect
another dummy spider or a hub spider. See (c). Now for each inter-block wire, a random id si,k is generated for its identification,
see (d). The spiders’ order can be randomly shuffled in each block, as long as the connectivity remains the same. See (e). Two
adjacent blocks are assigned to a different quantum agent. Each agent only needs the wire identity si,k to establish the correct
entanglement.

Theorem 3.16 ([36, 37]). Let G= (V,E) be a graph with vertices V and edges E. Suppose the labeled open graph
(G, I,O), and λ(u) ∈ {XY,X} for all u ∈ Oc, has Pauli flow. Pick a node u ∈ E and append two new vertices
connected by a Hadamad edge (See figure 4), i.e. let G ′ := (V ′,E ′) where V ′ := V∪ v,w contains two new
vertices v′, w′, and

E ′ = E∪{{v,w} ,{w,w ′}} . (12)

Then (G ′, I,O,λ ′) has Pauli flow, where

λ ′ (u) :=

{
λ(u) , if u ∈ V/O

X, if u ∈ {w,w ′} .
(13)

Figure 4. The rewrite rule for Theorem 3.16.

Theorem 3.17 (dummy resources). Given a ZX-diagram G(EN,EH,V) and partition B generated from
connectivity obfuscation. An equivalent, Pauli flow preserved graph G̃(ẼN, ẼH, Ṽ) and a partition B̃ can be found,
such that the hub spider has a larger degree.

Proof. Suppose we want to increase the degree of spider Vi ∈ Bj. Apply the rewrite rule from theorem 3.16 to

the spider Vi, and we have two added spider w and w
′
. Assign w to Bj−1 and w

′
to Bj−2. The rewrite graph is

equivalent to the original graph, preserves the Pauli flow, and increases the degree of Vi.

12

New J. Phys. 25 (2023) 103028 S Cao

3.4. Measurement result obfuscation
So far, we have made input information to each agent independent of the algorithm. However, each agent
may obtain information from their measurement outcome. Here we show some information may leak out
from the measurement distribution of intermediate blocks, if the measurement outcome is not further
obfuscated. To illustrate it, first consider a circuit is folded into two piece and each part of the ZX-diagram is
executed on a different agent. See example 3.18.

Example 3.18. Fold a quantum circuit. On (a) we rewrite our quantum circuit into a ZX-diagram and then divide them into two
quantum circuits noted as U1 and U2. Then we fold the ZX-diagram in (b) and rewrite the folded connection between U1 and U2

in (c). Eventually, we add the initial state of the quantum circuit in (d). The ZX-diagram in (d) is ready to be extracted into a
quantum circuit with shallower depth but used twice as the original quantum circuit.

Now we would like to understand the measurement result distribution of the agent executing the upper
half of the diagram. See example 3.19.

Example 3.19. The reduced density matrix of a folded circuit. The reduced density matrix can be expressed by adding a dual of
the existing quantum circuit and connecting the qubits that need to be traced away. Here we can show that after tracing away the
qubits containing the computation result, the ZX-diagram of the reduced density matrix is an identity. This identity indicates that
the measurement distribution of these qubits is uniform.

The graph-like ZX-diagram can be considered folding the circuit until it has only one operation before it
gets measured. We can apply the same analysis to our protocol.

The observed distribution of each agent is characterized by the reduced density matrix. A non-uniform
distribution indicates a potential information leakage. Now we introduce the measurement result obfuscation
approach to resolve the information leakage from the non-uniform measurement outcome distribution.

13

New J. Phys. 25 (2023) 103028 S Cao

Example 3.20. Information leakage from correction. Here we show that there could be information leakage from the agent’s
observation when correction is applied. To understand each agent’s measurement distribution, we first arrange the spiders into
the same column. Then we generate its conjugate diagram next to the existing diagram. The observed distribution described by
the reduced density matrix can be obtained by tracing away the unmeasured qubits. However, we always apply the correction to
restore the quantum state for measured qubits. Therefore it is equivalent to measuring the zero-phase spider on these qubits. The
reduced density matrix is shown in (a). Now we try to simplify the quantum circuit; most of the unmeasured qubits can be traced
away. However, it still leaves a graph that is not necessarily identity—shown in (b). The non-identity graph indicates the agent can
observe a non-uniformed distribution, which may carry useful information.

Theorem 3.21 (measurement result obfuscation). Given ZX-diagram G(EN,EH,V) executes with MBQC
methods. For each spider Vi ∈ V with phase αi, generate a random bit bi and define α̃i = αi + biπ, the
measured distribution is independent of the diagram and the distribution for the calculation result can be
reconstructed classically by the client.

Proof. Suppose for each shot a new diagram G̃(ẼN, ẼH, Ṽ) is constructed at the execution time. Consider the
measurement outcome for measuring spider Ṽi is r̃i. The result of executing G̃ is equivalent to G when we
consider ri = r̃i ⊕ bi. Since bi is chosen randomly, the distribution of r̃i is random and independent to the
diagram G.

Example 3.22. To illustrate the obfuscation of the readout distribution for each qubit, we introduce a bit string bi. Suppose a
fragment of the ZX diagram is shown as (a). For each Vi, we add two connected spiders with phase biπ. This is equivalent to
adding 2π bi to each Vi as (b). Then one of the spiders is removed and converted into a classical flip operation. Merge the other
spiders, and we have a new diagram as (c). For each Ṽi, we add a π phase if bi is 1, otherwise, keep it the same.

To understand this more easily, consider a quantum circuit that generates a binary distribution. Such
distribution can be hidden by randomly applying a π rotation to the qubit, swapping the probability of |0⟩
and |1⟩ just before the measurement. Then the original distribution can be restored by classically swapping
them back.

Suppose the distribution without measurement obfuscation is r̃j, and the distribution after measurement
obfuscation is rj. The extra π phase swaps the distribution of measuring the qubit with π phase or zero
phases. Therefore rj = r̃j ⊕ bj, where⊕ denote the bit-wise exclusive or operation. If bi is chosen uniformly
random, the measured result would be uniform. The correction process would be intuitive: r̃j = rj ⊕ bj. If we

14

New J. Phys. 25 (2023) 103028 S Cao

have measured a π phase and have already added a π phase to the spider, it cancels out if we have measured a
zero phase and have added a π phase to the spider, it is equivalent to measuring a π phase without modifying
the phase of the spider.

Theorem 3.23 (measurement result independence). The distribution of measurement results ri is
independent of the executed quantum algorithm.

Proof. The measurement result without measurement obfuscation r̃j can be non-uniform. The measurement
result observed by each agent is rj = r̃j ⊕ bj. With the bj chosen uniformly random, the measurement distribu-
tion of rj would be uniform.

3.5. Circuit extraction
So far, we have generated a ZX-diagram, which needs to be extracted into physical quantum operations. Note
that the graph-like ZX-diagram contains only Hadamard wires. The regular wires between blocks come from
the phase obfuscation step when each spider is split into two and connected with regular wires. So each
spider is connected to a maximum of one regular wire to spiders at other agents.

The extraction can be implemented with the following method:

Theorem 3.24. With a given obfuscated graph G̃(ẼN, ẼH, Ṽ) where size(ẼN) = 1, i.e. each node would connect
to multiple Hadamard edges and maximum one regular edge. G̃ can be extracted into physical quantum
operations and implemented on a quantum device. The extracted physical operation to implement an edge is
independent of the edge type.

Proof. Each edge in graph G̃ can be extracted into two equivalent quantum operations, with different
appraoch of placing the Hadamard gate (See figure 5). By randomly choosing the which operation that the
diagram being extracted to, whether the Hadamard gate exists is independent of the type of wire.

Figure 5. Proof of Theorem 3.24. (a) Hadamard wires can be extracted into a CZ operation, or applying CZ operation first, then
applying Hadamard gate on both qubits. (b) Regular wires can be extracted into a CZ operation and then apply a Hadamard gate
on only one side.

3.6. Summarize the protocol
The information describing the quantum algorithm consists of the phases of each spider and the connectivity
between spiders under the perspective of ZX-diagram. Also, the measurement outcome would cause
information leakage when the correction process is applied. Our protocol provides a complete solution to
obfuscate information from these three aspects. First, our protocol utilizes the same strategy as the UBQC

15

New J. Phys. 25 (2023) 103028 S Cao

protocol to obfuscate the phase information and the measurement outcome. The phase rotation operation is
split into two and performed by different agents. Then the measurement outcome is obfuscated by randomly
flipping the quantum distribution with a phase difference of π. The rotation phase evaluation happens
during the execution process to update the correction into the phase in real time. Finally, for the connectivity,
our proposal moves all the connectivity information that reveals the algorithm as a wire between two
different agents to hide the connectivity of the diagram. Since each agent cannot access the information from
its neighboring agent, it loses track of the information on the other side of the wire. Here we present the
formal description of our protocol. It contains two major components: The client’s preparation step, which
obfuscates and generates proper ZX-diagram blocks for each agent. Then, in the execution
step, the client interacts with each agent to implement calculations and retrieve results.

Our protocol does not assume the input state is fully classical. For the case that the input state contains
quantum data, it can be prepared by teleporting the quantum data to the agents, then make the teleport data
into a segment of the ZX-diagram for computations. The client can remain fully classical
to handle the quantum data by relying on a trusted third party to supply the quantum data.

4. Proof of correctness and blindness

In this section, we go through the techniques used to protect the information and give proof of the
correctness and blindness of our protocol. First, we provide the definition of blindness.

Definition 4.1 (blindness). Let P be a quantum delegated computation on input X and let L(X) be any func-
tion of the input. We say that a quantum delegated computation protocol is blind while leaking at most L(X)
if, on client’s input X, for any fixed Y= L(X), the following two hold when given Y

1. The distribution of the classical information obtained by an agent in P is independent of X.
2. Given the distribution of classical information described in 1, the state of the quantum system obtained

by an agent in P is fixed and independent of X.

Definition 4.1 is proposed in [6] as a formal description to characterize blindness. Here X denotes
information that the agent can obtain, and L(X) is any information that can be inferred from given X. Now
that Y= L(X) is given, the agent cannot infer any algorithm information if the protocol is blind. The agent
has two sources of information: the instructions it receives and the measurement outcome it gets. The first
source suggests that the classical instructions obtained by the agent must be independent of the algorithm,
and the second source suggests that the quantum information or measurement outcome must be
independent of the algorithm.

We show the blindness of our protocol by proving the independence between the quantum algorithm
being executed and the information each agent has access to.

Theorem 4.2 (inter-block connectivity independence). Distribution of si,k is independent of the executed
quantum algorithm.

Proof. si,k is only used to identify the preshared entanglement pairs; its choice is independent of the quantum
algorithm.

Theorem 4.3 (inner-block connectivity leakage). Distribution of ˜E(Vi,Vi ′),Vi,Vi ′ ∈ Bm can leak at most
max(deg(Vi)).

Proof. For E(Ṽi, Ṽi ′), the agent Am can recover the deg(Ṽi) by reversely apply rule (f). With the extra
dummy connectivity introduced, the degree recovered here is not necessarily the exact degree from the original
algorithm, however, it is always greater or equal to deg(Ṽi).

Theorem 4.4 (safety of the correction process). The correction process does not leak information.

Proof. The correction process requires the client to modify αi based on the measurement result of previous
spiders. The information may leak out from the connectivity of the ZX-diagram, the phase information of
each spider, and the measurement outcome distribution. We now discuss each aspect separately.

16

New J. Phys. 25 (2023) 103028 S Cao

Protocol 1.MBQC BQC without universal cluster state.

Inputs.
1. G(E,V): a graph-like ZX-diagram describes the quantum algorithm Λ. E, V denote the connections and spiders in
the graph. For classical data described input state, the preparation circuit is included in G.

2. ρ0: the input state of the quantum algorithm.
3. A= {A1 . . .Am},m⩾ 2: the available quantum agents. The number of agentsm can be chosen arbitrarily, provided
it is greater than or equal to 2.

Definitions.
1. G̃(Ẽ, Ṽ). the processed ZX-diagram for execution.
2. Vi: the ith spider in G.
3. αi: the phase of ith spider in G.
4. Ṽj: the jth spider in G̃.
5. α̃j: the phase of jth spider in G̃.
6. βj: the random value generated for phase obfuscation for Vi.
7. bi: a random bit for measurement obfuscation of ith qubits.
8. Bk = {Ṽj}: the kth block of G̃.
9. dj = d(Ṽj): the distance of Vj to its nearest output spider in G̃.
10. n=max(dj): the number of fragmented blocks in G̃.
11. rj: The measurement result of Ṽj.
12. r̃j: The corresponding measurement result of Ṽj without measurement obfuscation.

Goal. Retrieve the measurement distribution of Λ(ρ0).
a. Preparation.

1. The client split each Vi ∈ V spider into two spiders Ṽ2i and Ṽ2i+1 with rule (f), each spider has phase α̃2i and
α̃2i+1. Note that α̃2i and α̃2i+1 are symbols for placeholder, the actual value of will be evaluated in the later steps.

2. The client rearrange the ZX-diagram and group spiders into n blocks Bk = Ṽj where the distance to output spider
dj = k.

3. For each connectivity within the same block, the client uses rule (f) as example 3.12 to move it to the adjacent
block.

4. The client split each Hadamard edge between blocks into two empty spiders and three edges, as shown in example
3.14. The two spiders are assigned to the block that their neighbor spider belongs to.

5. The client analyze G̃ and find a flow.

b. Execution.

1. The client assign block Bj to agent Ai when jmodm= i. Fragment block Bj are found by the rules from section 3.1.
2. For each sample
2.1. The client generate random phase values {βi} and random bit {bj}.
2.2. The client assign α̃2i = αi −βi + b2iπ and α̃2i+1 = βi + b2i+1π.
2.3. The client randomly assigns spiders to qubits and allocates resources from each agent.
2.4. Agents reset all qubits in all the blocks into |+⟩state. For quantum data, teleport the input state into the input

qubits and set all the other qubits into |+⟩ state.
2.5. The client extracts the ZX-diagram into quantum operations with example 3.15. Then request agents to

establish shared entanglement between agents based on {si, j}.
2.6. Follows the flow of G to execute the diagram. Handle Vi in ascending order of the partial order of the flow. For

all spiders Ṽj that splits from Vi

i. The client sends α̃j to the corresponding agent, requesting the agent to measure qubits in XY plane with angle
of−α̃j.

ii. The client get results rj, calculate the r̃j = bj ⊕ rj.
iii. The client calculates the effectively measured phase r=

∑
rj on Vi,

iv. The client make changes to αj for correction based on r and the ZX-diagram with example 2.10.
3. The client returns the sampled distribution of r̃o where Ṽo is a output spider.

1. Correction does not change the connectivity between spiders; therefore it does not invalidate theorems
4.2 or 4.3.

2. Note that the value of αi updates with the measurement outcome from previous steps for correction, and
from theorem 3.10, α̃2i and α̃2i+1 is independent after the correction process updates αi. Therefore, the
correction process will not invalidate the independence between the phase and the actual algorithm.

3. The correction process would change the distribution of the measurement outcome. However, from
theorem 3.23, each agent could not obtain any information from its measurement result.

Therefore, the correction process does not leak information.

17

New J. Phys. 25 (2023) 103028 S Cao

Theorem 4.5 (extraction universality). ZX-diagram generated from the proposed protocol can always be
extracted into practical quantum operations for real-world devices.

Proof. The original graph-like ZX diagram was converted by a quantum circuit. Therefore, it must admit
a focused Pauli flow [28] and can be executed with MBQC [10]. All the rewrite rules used in our protocol
preserve the Pauli flow; therefore the obfuscated diagram must also admit a Pauli flow. Hadamard wires can
be implemented into a CZ gate to extract the ZX-diagram into quantum operations. The regular wire only
comes from splitting the spiders. So, each spider can have at most one regular wire. Such diagrams can be
extracted with method form example 3.24. These rules included all possible diagrams that can be generated
from our protocol.

Theorem 4.6 (universality and correctness). The modified ZX-diagram G̃ is universal for quantum
computation, can always be implemented on a quantum device, and yields the same distribution as G.

Proof. Any arbitrary ZX-diagram G with flow can be converted to G̃ following the protocol and G is universal
for quantum computation. Therefore G̃ is universal and yields the same result as G. Then from theorem 4.5,
any G̃ generated from G with our protocol preserves its flow and can be extracted into quantum operations
can be executed on a quantum device.

Definition 4.7 (ϵ-private [20]). A delegated quantum computation protocol requires the implementation of
a linear map Φi on agent Ai ∈ A given classical information qi. A simulator Si has the same input and output
space as A−Ai, which can simulate the interaction between Ai and A−Ai. The agent Ai interacts with Si,
producing a linear map Ψi. The protocol is ϵ-private if for every agent Ai there exists such simulator Si that
||Φi −Ψi||⋄ < ϵ, where ||Φi −Ψi||⋄ denote the diamond distance between Φi andΨi.

Theorem 4.8 (private). Our protocol is 0-private.

Proof. The graph of each agent constructed gives the Choi–Jamiołkowski state J(Φi) of the linear map Φi

[38], see figure 6. The information obtained by an agent is qi = {Gi,{si}}, where Gi(EN,EH,V) is the graph
fragment assigned to agent Ai. From theorems 3.10, 3.23 and 4.2, qi is randomly distributed and independent
to the quantum algorithm for execution. Therefore J(Φi) is a mixed state with some layout restrictions from
constructing connectivity obfuscation in theorems 3.23 and 4.2. Consider a simulator Si that keeps the pre-
shared entanglement pairs but does nothing on them. See the figure below. The layout of the graph representing
the corresponding Choi–Jamiołkowski state J(Ψi) (the graph in the right solid square) is in fact, identical to
J(Φi) (in the left solid square), therefore ||J(Ψi)− J(Φi)||= 0.

Figure 6. Proof of Theorem 4.8.

From relation 1
n ||Φi −Ψi||⋄ < ||J(Ψi)− J(Φi)|| [39], where n is the size of the system, we conclude for our

protocol is 0-private.

Theorem 4.9 (blindness). Our protocol is 0-private, and the information leakage would be at most
(max(deg(Ṽi)),N(Bk),n) where deg(Ṽi) is the degree (number of wires connected to a spider) of Ṽi,
max(deg(Ṽi)) is the maximum possible degree that Vi could have. N(Bk) is the qubit number of block Bk, n is the
of fragmented blocks in G̃.

18

New J. Phys. 25 (2023) 103028 S Cao

Proof. Client’s input for each agent Am consists of N(Bk),n, α̃i, si,j for all Vi ∈ Bm and Vj ∈ Bl, where Bl is all
adjacent blocks of Bm, E(Ṽi, Ṽi ′) for Vi,Vi ′ ∈ Bm.

1. From theorem 3.10, α̃i is independent from the algorithm.
2. From theorem 4.2, si,j is independent from the algorithm.
3. From theorem 4.3, at most max(deg(Ṽi)) can be inferred by agent from the distribution of E(Ṽi, Ṽi ′).
4. From theorem 3.23, the measurement distribution of each qubit is independent of the algorithm.
5. From theorem 4.4, the correction process does not leak information.
6. Each agent may know the total number of agentsm, and infer the total block number n.
7. From example 3.24, each node can be extracted into quantum operation with or without a Hadamard

gate. The existence of the Hadamard gate is independent of the algorithm.
8. From theorem 4.8, our protocol is 0-private.

Therefore, Am can get only (max(deg(Ṽi)), N(Bk),n) from the classical information it gets.

The same as the UBQC protocol would inevitably disclose the size of the brickwork cluster state, our
protocol also discloses some information about the resources required of the algorithm. UBQC uses a
universal cluster state, which provides some surpluses of entanglement; therefore, UBQC protocol does not
need to worry about the leakage of max(deg(Ṽi)). Our proposal optimized the resource requirement, which
discloses more information about required resources. However, such information can be hidden by
allocating more resources and doing random operations on extra resources as long as it will not affect the
computation result.

The secureness of our protocol requires that communication between different agents is limited. Except
for the shared entanglement generated in advance, agents should not exchange any information during the
execution. Such an assumption is difficult to be fulfilled indefinitely since two agents need to share
entanglement. When there are collusive agents, blindness may be compromised. Here, we show that the
blindness of our protocol would be compromised only when adjacent blocks are executed on two collusive
agents.

Theorem 4.10 (blindness compromise from collusive agents). Information may leak out only when two
adjacent blocks are executed on collusive agents.

Proof. When the attacker obtains information on two adjacent blocks, the attacker can apply the (f) rule to
reverse the spider splitting and find the rotation angle or find a portion of connectivity in the original ZX-
diagram. When attackers obtain information from non-adjacent blocks, it is equivalently to assign those non-
adjacent blocks to the same agent. The attacker obtained the information from that single agent. Therefore
from theorem 4.9 the information can be recovered is still (max(deg(Ṽi)), N(Bk),n).

Although the proposed protocol only requires pre-shared Bell pairs between agents, no information
needs to be exchanged between agents at the run time.

Instead of physically limiting communication, the assumption can still be fulfilled with a decentralization
strategy. For example, two quantum agents can be allocated from two different quantum service providers,
and therefore it would be less likely to have two providers collude and compromise the blindness. More
agents can also be introduced to have less chance of two adjacent blocks executed on collusive agents. Such
relaxation is relatively weak since other strategies might be available if agents are honest and only exchange
information the client allows. This relaxation allows the information exchange between agents even while
executing the algorithm. Our protocol requires no information exchange between agents after the initial
cluster state has been prepared. Our protocol would still be functioning if there were physical methods that
could limit the communication between agents discovered in the future.

5. Aminimal example of our protocol

In this section, we walk through a minimal example to implement a two qubits swap-test algorithm with the
Hong–Ou–Mandel model [40], see figure 7. This algorithm does a CNOT gate and a Hadamard gate. The
state overlap can be calculated based on the joint distribution of O1 and O2. We ignore the measurement
obfuscation step for simplicity.

19

New J. Phys. 25 (2023) 103028 S Cao

Figure 7. The original circuit.

The circuit is written into the ZX-diagram , see figure 8.

Figure 8. Obfuscation step 1: Rewriting to a ZX-Diagram.

And then converted into a graph-like ZX-diagram, see figure 9. Note that α1 = α2 = 0.

Figure 9. Obfuscation step 2: Rewriting to a graph-like ZX-Diagram.

Now, split each spider into two to make phase obfuscation. The value of α̃1 and α̃3 can be random, as
long as α̃2 =−α̃1, α̃4 =−α̃3. See figure 10.

Figure 10. Obfuscation step 3: Phase obfuscation.

Move the connectivity within the same block to another spider, making it an inter-block connectivity, see
figure 11.

Figure 11. Obfuscation step 4: Internal connectivity to external connectivity.

20

New J. Phys. 25 (2023) 103028 S Cao

Grows extra spider and finish the connectivity obfuscation, see figure 12.

Figure 12. Obfuscation step 5: Obfuscating the connectivity between blocks.

To construct the diagram above, each agent only requires a shared Bell state at the beginning, see
Figure 13.

Figure 13. Execution step 1: Preparing shared bell pairs.

Then apply the Hadamard gate as an example 3.24 to convert Hadamard edges to normal edges, see
figure 14.

Figure 14. Execution step 2: Converting pre-shared bell pairs to the correct edge types.

Then apply entanglement operation within each agent, see figure 15.

Figure 15. Execution step 3: Building obfuscated ZX-Diagram.

To execute the algorithm, here we follow the standard MBQC protocol. First, the regular edges are
merged, and the new spider represents the sum of the phase from two old spiders as example 3.6. These
spiders are labeled with the red star symbol, see figure 16.

21

New J. Phys. 25 (2023) 103028 S Cao

Figure 16. Execution step 4: Determining the measurement order.

Here we present a Pauli flow and the corresponding correction set. Define partial order

≺:= {(v1,v2,v6,v7,v8,v8,v4,v10)< (Q1,Q2)}
∪

{(Q1,Q2)< (v3,v9)}
∪

{(v3,v9)< (v5,v11)} (14)

where we define A< B :=
∪
{(a,b)},∀a ∈ A and ∀b ∈ B.

Vertex u Measurement plane λ(u) Correction set f (u) Odd(f(u))

Q1, XY {v1,v3,v5,v7} {Q1,v11}
Q2, XY {v8} {Q2,v9}
v1 X {v2} {Q1,v3}
v2 X {v3,v5,v7} {v2,v11}
v3 XY {v4} {v3,v5}
v4 X {v5} {v4}
v5 XY N/A N/A
v6 X {v7} {v6,v11}
v7 X {v6} {v3,v7}
v8 X {v9,v11} {v8}
v9 XY {v10} {v9,v11}
v10 X {v11,v6} {v10,v3}
v11 XY N/A N/A

Based on the Pauli flow configuration, the algorithm can be executed with four steps. First all the qubits
corresponds to vertices{v1,v2,v6,v7,v8,v8,v4,v10} and then measure {Q1,Q2},then {v3,v9}, and finally
{v5,v11}. As an example here we demonstrate the correction when v2 is measured with unexpected results,
see figure 17. First, we highlight all the vertices from the correction set of v2.

Figure 17. Implementing correction step 1. Determining correction set.

Now we apply (π) and (i1) and (f) to emit red spiders (See figure 18) with pi phase on all the vertices in
the correction set (See figure 19).

Figure 18. Implementing correction step 1: Generating spiders from a neighbor in the correction set.

22

New J. Phys. 25 (2023) 103028 S Cao

Figure 19. Implementing correction step 2: Generating spiders from the entire correction set.

Now push these red spiders through the Hadamard edge, and they become green spiders, see figure 20.

Figure 20. Implementing correction step 3: Propergating the spiders.

Merge green spiders to cancel the unexpected measurement result, see figure 21.

Figure 21. Implement correction step 4: Merging the spiders.

6. Discussion

6.1. Resource cost comparison between UBQC and our protocol
In this section, we quantify the resource requirements for implementing the UBQC and our proposed
protocols and demonstrate the significant advantage of resource cost reduction compared to the UBQC
protocol. Our proposed protocol distinguishes itself from the UBQC protocol primarily in how it
implements connectivity obfuscation of the quantum algorithm. In the context of GBQC, connectivity refers
to the layout of the quantum circuit, while in MBQC, connectivity is represented by the edges of the cluster
state. In the ZX diagram, connectivity is depicted using a similar representation as wires between spiders.
The resources we consider include the total number of qubits utilized by the protocol, the quantity of
pre-shared Bell pairs necessary to establish entanglement between agents, and the overall number of
two-qubit entanglement gates required within each agent.

The UBQC protocol achieves connectivity obfuscation by creating identical graphs for all algorithms,
requiring the preparation of a universal cluster state that is algorithm-independent and information-free.
Such universal cluster states restrict information to be stored in the measurement angles, thereby introducing
redundancy to the graph. In contrast, our proposed protocol obfuscates connectivity by separating the two
endpoints of the wires into two agents, enabling the layout of the ZX-diagram to carry information. Each

23

New J. Phys. 25 (2023) 103028 S Cao

agent is aware of a pre-shared Bell pair between itself and a neighboring agent, however, it is uncertain which
qubit the Bell pair is entangled with, resulting in a loss of information carried by the entanglement of the Bell
pair. An example of resource reduction is shown in example 6.1:

Example 6.1. An example of comparing the required resources to implement an arbitrary gate on two qubits. Here we denote the
blue line as the entanglement generated from local entanglement gates within an agent, and the red lines are entanglement
established by pre-shared Bell pairs or teleportation between agents. Note that this gate does not have to be a two-qubit
entanglement gate; it can be two single qubit gate acts on two qubits separately. (a) The brickwork cluster state is used in the
UBQC protocol for implementing a quantum gate. (b)–(d) The implementation of the protocol proposed in this study. The
entanglement gate can be implemented by both (b) and (c), and the two single qubit gates can be implemented by (d). The
number of qubits and entanglement gates and pre-shared Bell pairs from our protocol (b)–(d) are less than UBQC protocol (a).
The required measurement steps are one fewer than those in the brickwork state. As each column can be measured together, each
block showing in (b)–(d) requires a maximum of four steps to execute. On the other hand, the brickwork state (a) incorporates an
additional step: measuring all remotely entangled qubits (attached by red-colored edges) to implement the teleportation. As for
the number of measurements executing each block, the brickwork typically requires measuring 16 qubits, whereas our protocol
requires a maximum of 10.

Now we move on to more general cases. For simplicity, we suppose the algorithm is decomposed into a
gate set containing only local single-qubit gates and a CZ gate on nearest neighbors. These gates can be
implemented directly with one ‘brick’, the fundamental component in the brickwork cluster state. Denote d
as the circuit depth, w as the circuit width or the number of qubits and t as the number of two-qubit gates.
For the worst that all gates are two-qubit gates, there are 1

2dw two-qubit gates. Therefore t⩽ 1
2dw. Here the

entanglements between different agents are established by pre-shared Bell pairs, and entanglements within
the same agent are implemented by entanglement gates performed by the agent. The transmission of
quantum data between agents and clients is also considered using a Bell pair.

For the brickwork state, each ‘brick’ includes eight qubits and eight internal entanglement operations.
Each ‘brick’ hosts two qubits from the original algorithm. For both single-agent and multi-agent versions,
each qubit needs to share a Bell pair with another agent or the client. In total, the qubits required to
implement brickwork state is 1

2w× 8× d+w= (4d+ 1)w. For the semi-classical client UBQC, the
brickwork state can be constructed and executed in sequence to recycle qubits. This strategy reduces the
requirement qubit number to 2w+ 1. The amount of Bell pairs is (4d+ 1)w. The amount of local
entanglement gates is 1

2w× 8× d. For the single-agent version, an extra qubit is required; for the multi-agent
version (4d+ 1)w qubits are required.

For our proposal, without any simplification, each qubit is split into three, and the qubits in the input
and output blocks are split into two. Each two-qubit gate requires two more qubits, two more internal
entanglements, and one extra external entanglement. For each dummy connection, two extra qubits, one Bell
pair, and two local entanglements gates are required. Therefore our proposal requires 3(d− 2)w+ 2t qubits,
(d− 1)w+ t Bell pairs, 2(d− 2)w+ 2t local entanglement gates.

See the table below to summarize the comparison.

Number of Single-agent UBQC Multi-agent UBQC Our proposal

Agents 1 ⩾ 2 ⩾ 2
Qubits 2w+ 1 2(4d+ 1)w 3(d− 2)w+ 2t
Bell pairs (4d+ 1)w (4d+ 1)w (d− 1)w+ t
Local entanglement gates 8dw 8dw 2(d− 2)w+ 2t

24

New J. Phys. 25 (2023) 103028 S Cao

There are extra advantages to our protocol compared to UBQC. First, our protocol can implement
non-nearest-neighbor entanglement directly. With the UBQC protocol, two qubits must be swapped to an
adjacent position to perform the two-qubit gate, which adds extra cost to the implementation. Secondly,
although the brickwork cluster state is universal, it is not intuitive to directly implement gates such as
controlled single-qubit arbitrary rotation. Such gates can be decomposed into a ZX-diagram and directly
implemented. Also, the quantum circuits can be simplified first with existing techniques from
ZX-calculus [28] before applying our protocol. The graph-like ZX-diagram can be optimized until it only
contains nodes representing non-Clifford operations. Such optimization can be considered the classically
simulatable part of the quantum algorithm simplified from the diagram. Suppose the non-Clifford operation
count is c, then the optimal qubit number would be 2c, and the entanglement number would depend on the
algorithm. Such a method can significantly reduce the resource requirement of our protocol.

6.2. Compatibility with existing verification protocols
The universality of ZX-diagram provides compatibility with most of the existing verification protocols.
However, since some verification protocols require a universal cluster state, combining these verification
protocols would invalidate our resource requirement advantage compared to the UBQC protocol. Here we
discuss the ‘first-order’ compatibility of verification protocols [41]. The rigorous compatibility and full
analysis of security with detailed proof, however, is beyond the topic of this paper.

Verification can be implemented by embedding a quantum circuit into the original algorithm that gives a
deterministic result when the algorithm has been faithfully computed. The authentication-based verification
method [42] extends the quantum authentication schemes as the embedded circuit. The trap-based
verification method [5, 43] utilize tapped wires or stabilizer codes for the embedded circuit. These embedded
circuits can be converted into ZX-diagram and processed with our protocol. It is worth mentioning that
work from [34] makes it even more convenient to embed the stabilizer codes based on ZX-diagram.

Verification can also be implemented with the run and test scheme. The agent is asked to do calculations
multiple times. The client randomly selects some of these calculations as test runs that run an algorithm in
which the measurement distribution is known. The proposal from [18] suggests running the circuit in
different initial states indistinguishable from the agent and using some of them as the tests. This method is
compatible with our protocol since the initial state can be prepared arbitrarily and indistinguishable from the
agent. The proposal from [44] implement the test run with the same cluster state as the computation but
modifies the measurement angle. Since our protocol no longer uses a universal cluster state, this proposal is
invalid. However, we can still use the ZX calculus to find phases for the same diagram layout but it gives a
known probability distribution. If each spider’s phase is chosen carefully, the ZX-diagram can be efficiently
simulated [28].

Verification can be implemented with entanglement-based protocols. Proposals from [45, 46] make use
of CHSH games and proposals from [47] utilize a self-testing graph states for verification. These methods all
use self-testing results and pass the verification when the winning rate agrees with the prediction of quantum
mechanics. These proposals are all compatible with ours; however, the self-testing graph protocol requires
implementing a complicated graph state, which would invalidate our advantage compared to the UBQC
protocol.

7. Conclusion

We propose a multi-agent BQC protocol based on ZX-calculus in this work. The quantum algorithm is first
written into a ZX-diagram and then modified to be extracted into an MBQC-style algorithm. Then the
algorithm is executed across multiple agents. We show that the information leakage to every agent is
minimal, and our protocol’s security can be guaranteed under the assumption that communication between
agents is limited. Our proposal does not require a universal cluster state compared to the UBQC protocol.
This advantage makes our protocol more flexible and efficient.

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

The author thanks the support from UKRI [EP/W027992/1], and the Eric and Wendy Schmidt AI in Science
Postdoctoral Fellowship, a Schmidt Future program. We thank Miriam Backens for providing the proof of
theorems 3.13 and 3.16 from her work before publication. We thank John van de Wetering for reviewing this

25

New J. Phys. 25 (2023) 103028 S Cao

work and providing constructive comments. We thank Anne Broadbent, Lia Yeh, Niel de Beaudrap,
Quanlong Wang, Xiao Yuan, Brian Vlastakis, and Peter Leek for insightful discussions. We acknowledge the
usage of the PyZX package [48] and the TikZiT tool. For the purpose of Open Access, the author has applied
a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission.

ORCID iD

Shuxiang Cao https://orcid.org/0000-0001-7178-4250

References

[1] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 A quantum engineer’s guide to superconducting
qubits Appl. Phys. Rev. 6 021318

[2] Bruzewicz C D, Chiaverini J, McConnell R and Sage J M 2019 Trapped-ion quantum computing: progress and challenges Appl.
Phys. Rev. 6 021314

[3] Kloeffel C and Loss D 2013 Prospects for spin-based quantum computing in quantum dots Annu. Rev. Condens. Matter Phys.
4 51–81

[4] Slussarenko S and Pryde G J 2019 Photonic quantum information processing: a concise review Appl. Phys. Rev. 6 041303
[5] Fitzsimons J F 2017 Private quantum computation: an introduction to blind quantum computing and related protocols npj

Quantum Inf. 3 23
[6] Broadbent A, Fitzsimons J and Kashefi E 2008 universal blind quantum computation Proc.—Annual IEEE Symp. on Foundations of

Computer Science (FOCS) pp 517–26
[7] Michielsen K, Nocon M, Willsch D, Jin F, Lippert T and De Raedt H 2017 Benchmarking gate-based quantum computers Comput.

Phys. Commun. 220 44–55
[8] Briegel H J, Browne D E, Dür W, Raussendorf R and Van den Nest M 2009 Measurement-based quantum computation Nat. Phys.

5 19–26
[9] Raussendorf R, Harrington J and Goyal K 2006 A fault-tolerant one-way quantum computer Ann. Phys., NY 321 2242–70
[10] Gross D, Eisert J, Schuch N and Perez-Garcia D 2007 Measurement-based quantum computation beyond the one-way model Phys.

Rev. A 76 052315
[11] Kissinger A and van de Wetering J 2019 universal MBQC with generalised parity-phase interactions and Pauli measurements

Quantum 3 134
[12] Nielsen M A 2006 Cluster-state quantum computation Rep. Math. Phys. 57 147–61
[13] Mahadev U 2022 Classical verification of quantum computations SIAM J. Comput. 51 1172–229
[14] Brakerski Z 2018 Quantum FHE (almost) as secure as classical Advances in Cryptology—Crypto 2018 ed H Shacham and

A Boldyreva (Springer International Publishing) pp 67–95
[15] Cojocaru A, Colisson L, Kashefi E andWallden P 2019 Qfactory: classically-instructed remote secret qubits preparation Advances in

Cryptology—Asiacrypt 2019 ed S D Galbraith and S Moriai (Springer International Publishing) pp 615–45
[16] Morimae T and Fujii K 2013 Blind quantum computation protocol in which Alice only makes measurements Phys. Rev. A

87 050301
[17] Sano Y 2020 Blind quantum computation using a circuit-based quantum computer (arXiv:2006.06255)
[18] Broadbent A 2018 How to verify a quantum computation Theory Comput. 14 1–37
[19] Fisher K A, Broadbent A, Shalm L K, Yan Z, Lavoie J, Prevedel R, Jennewein T and Resch K J 2014 Quantum computing on

encrypted data Nat. Commun. 5 1–7
[20] Broadbent A 2015 Delegating private quantum computations Can. J. Phys. 93 941–6
[21] Coecke B and Kissinger A 2018 Picturing quantum processes Diagrammatic Representation and Inference (Lecture Notes in

Computer Science vol 10871 LNAI) (Springer) pp 28–31
[22] Biamonte J and Bergholm V 2017 Tensor networks in a nutshell (arXiv:1708.00006)
[23] Peng T, Harrow AW, Ozols M and Wu X 2020 Simulating large quantum circuits on a small quantum computer Phys. Rev. Lett.

125 150504
[24] Backens M 2016 Completeness and the ZX-calculus (arXiv:1602.08954)
[25] Jeandel E, Perdrix S and Vilmart R 2020 Completeness of the ZX-calculus Log. Methods Comput. Sci. 16 72
[26] de Witt C S and Zamdzhiev V 2014 The ZX-calculus is incomplete for quantum mechanics Electron. Proc. Theor. Comput. Sci.

172 285–92
[27] Backens M, Miller-Bakewell H, de Felice G, Lobski L and van de Wetering J 2020 There and back again: a circuit extraction tale

(arXiv:2003.01664)
[28] Duncan R, Kissinger A, Perdrix S and van de Wetering J 2019 Graph-theoretic simplification of quantum circuits with the

ZX-calculus (arXiv:1902.03178)
[29] Aaronson S and Gottesman D 2004 Improved simulation of stabilizer circuits Phys. Rev. A 70 052328
[30] Danos V and Kashefi E 2006 Determinism in the one-way model Phys. Rev. A 74 052310
[31] Browne D E, Kashefi E, Mhalla M and Perdrix S 2007 Generalized flow and determinism in measurement-based quantum

computation New J. Phys. 9 250–250
[32] Duncan R and Perdrix S 2010 Rewriting measurement-based quantum computations with generalised flow Automata, Languages

and Programming (Lecture Notes in Computer Science) (Springer) pp 285–96
[33] Duncan R 2012 A graphical approach to measurement-based quantum computing Quantum Physics and Linguistics (Oxford

University Press) pp 50–89
[34] Backens M 2013 The ZX-calculus is complete for stabilizer quantum mechanics New J. Phys. 16 093021
[35] Duncan R and Perdrix S 2010 Rewriting measurement-based quantum computations with generalised flow Automata, Languages

and Programming ed S Abramsky, C Gavoille, C Kirchner, F Meyer auf der Heide and P G Spirakis (Springer) pp 285–96
[36] McElvanney T and Backens M 2022 Complete flow-preserving rewrite rules for MBQC patterns with Pauli measurements

(arXiv:2205.02009)

26

https://orcid.org/0000-0001-7178-4250
https://orcid.org/0000-0001-7178-4250
https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5088164
https://doi.org/10.1063/1.5088164
https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1063/1.5115814
https://doi.org/10.1063/1.5115814
https://doi.org/10.1038/s41534-017-0025-3
https://doi.org/10.1038/s41534-017-0025-3
https://doi.org/10.1016/j.cpc.2017.06.011
https://doi.org/10.1016/j.cpc.2017.06.011
https://doi.org/10.1038/nphys1157
https://doi.org/10.1038/nphys1157
https://doi.org/10.1016/j.aop.2006.01.012
https://doi.org/10.1016/j.aop.2006.01.012
https://doi.org/10.1103/PhysRevA.76.052315
https://doi.org/10.1103/PhysRevA.76.052315
https://doi.org/10.22331/q-2019-04-26-134
https://doi.org/10.22331/q-2019-04-26-134
https://doi.org/10.1016/S0034-4877(06)80014-5
https://doi.org/10.1016/S0034-4877(06)80014-5
https://doi.org/10.1137/20M1371828
https://doi.org/10.1137/20M1371828
https://doi.org/10.1103/PhysRevA.87.050301
https://doi.org/10.1103/PhysRevA.87.050301
https://arxiv.org/abs/2006.06255
https://doi.org/10.4086/toc.2018.v014a011
https://doi.org/10.4086/toc.2018.v014a011
https://doi.org/10.1038/ncomms4074
https://doi.org/10.1038/ncomms4074
https://doi.org/10.1139/cjp-2015-0030
https://doi.org/10.1139/cjp-2015-0030
https://arxiv.org/abs/1708.00006
https://doi.org/10.1103/PhysRevLett.125.150504
https://doi.org/10.1103/PhysRevLett.125.150504
https://arxiv.org/abs/1602.08954
https://doi.org/10.23638/LMCS-16(2:11)2020
https://doi.org/10.23638/LMCS-16(2:11)2020
https://doi.org/10.4204/EPTCS.172.20
https://doi.org/10.4204/EPTCS.172.20
https://arxiv.org/abs/2003.01664
https://arxiv.org/abs/1902.03178
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.74.052310
https://doi.org/10.1103/PhysRevA.74.052310
https://doi.org/10.1088/1367-2630/9/8/250
https://doi.org/10.1088/1367-2630/9/8/250
https://doi.org/10.1088/1367-2630/16/9/093021
https://doi.org/10.1088/1367-2630/16/9/093021
https://arxiv.org/abs/2205.02009

New J. Phys. 25 (2023) 103028 S Cao

[37] McElvanney T and Backens M 2023 Flow-preserving ZX-calculus rewrite rules for optimisation and obfuscation (arXiv:2304.
08166)

[38] Choi M-D 1975 Completely positive linear maps on complex matrices Linear Algebr. Appl. 10 285–90
[39] Gilchrist A, Langford N K and Nielsen M A 2005 Distance measures to compare real and ideal quantum processes Phys. Rev. A

71 062310
[40] Garcia-Escartin J C and Chamorro-Posada P 2013 SWAP test and Hong-Ou-Mandel effect are equivalent Phys. Rev. A 87 052330
[41] Gheorghiu A, Kapourniotis T and Kashefi E 2019 Verification of quantum computation: an overview of existing approaches Theory

Comput. Syst. 63 715–808
[42] Aharonov D, Ben-Or M, Eban E and Mahadev U 2017 Interactive Proofs for Quantum Computations (arXiv:1704.04487)
[43] Fitzsimons J F and Kashefi E 2017 Unconditionally verifiable blind quantum computation Phys. Rev. A 96 517
[44] Hayashi M and Morimae T 2015 Verifiable measurement-only blind quantum computing with stabilizer testing Phys. Rev. Lett.

115 220502
[45] Gheorghiu A, Kashefi E and Wallden P 2015 Robustness and device independence of verifiable blind quantum computing New J.

Phys. 17 083040
[46] Reichardt B W, Unger F and Vazirani U 2013 Classical command of quantum systems Nature 496 456–60
[47] McKague M 2016 Interactive proofs for BQP via self-tested graph states Theory Comput. 12 1–42
[48] Kissinger A and van de Wetering J 2019 PyZX: large scale automated diagrammatic reasoning (arXiv:1904.04735)

27

https://arxiv.org/abs/2304.08166
https://arxiv.org/abs/2304.08166
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1103/PhysRevA.71.062310
https://doi.org/10.1103/PhysRevA.71.062310
https://doi.org/10.1103/PhysRevA.87.052330
https://doi.org/10.1103/PhysRevA.87.052330
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://arxiv.org/abs/1704.04487
https://doi.org/10.1103/PhysRevA.96.012303
https://doi.org/10.1103/PhysRevA.96.012303
https://doi.org/10.1103/PhysRevLett.115.220502
https://doi.org/10.1103/PhysRevLett.115.220502
https://doi.org/10.1088/1367-2630/17/8/083040
https://doi.org/10.1088/1367-2630/17/8/083040
https://doi.org/10.1038/nature12035
https://doi.org/10.1038/nature12035
https://doi.org/10.4086/toc.2016.v012a003
https://doi.org/10.4086/toc.2016.v012a003
https://arxiv.org/abs/1904.04735

	Multi-agent blind quantum computation without universal cluster states
	1. Introduction
	2. Background
	2.1. UBQC
	2.2. ZX-calculus
	2.2.1. ZX-diagram
	2.2.2. Graph-like ZX-diagram

	2.3. Flow and determinism in MBQC

	3. BQC from ZX-calculus
	3.1. Defining blocks
	3.2. Phase obfuscation
	3.3. Connectivity obfuscation
	3.4. Measurement result obfuscation
	3.5. Circuit extraction
	3.6. Summarize the protocol

	4. Proof of correctness and blindness
	5. A minimal example of our protocol
	6. Discussion
	6.1. Resource cost comparison between UBQC and our protocol
	6.2. Compatibility with existing verification protocols

	7. Conclusion
	References

