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Abstract
We present a new framework to study the time variation of fundamental constants in a model-
independent way. Model independence implies more free parameters than assumed in previous
studies. Using data from atomic clocks based on 87Sr, 171Yb+ and 133Cs, we set bounds on
parameters controlling the variation of the fine-structure constant, α, and the electron-to-proton
mass ratio, µ. We consider variations on timescales ranging from a minute to almost a day. In
addition, we use our results to derive some of the tightest limits to date on the parameter space of
models of ultralight dark matter and axion-like particles.

1. Introduction

The standard model and general relativity are the currently accepted theories of elementary particles and
gravity. Their predictions are largely controlled by a set of free parameters known as fundamental constants,
which are extracted experimentally and assumed independent of time and spatial position. The underlying
origins and potential spacetime variability of the fundamental constants have been rich subjects of
investigation, dating back to Dirac’s large numbers hypothesis [1, 2].

In the years since, dynamical mechanisms, for example from string theory, have been suggested to explain
the constants’ origins. In some regimes, additional scalar fields imply spacetime variations [3–7]. More
generally, many realistic models give rise to variations of fundamental constants (comprehensive reviews may
be found in, e.g. [8, 9]). Models based on quantum field theory, such as Bekenstein [10] or Barrow [11, 12]
models can describe fundamental-constant variations in terms of low-energy effective interactions of
additional scalar fields coupled to the standard model. More recently, variations of the dimensionless
constants due to so-called ultralight fields, which could be related to dark matter [13–15], have revived
significant attention in this idea (for a recent review see, e.g. [16]). Investigating the variability of
fundamental constants is strongly tied to the foundational assumptions and outstanding problems in
modern physics.

This work reports on new developments in studying temporal variations of the dimensionless
fundamental constants. In section 2, a generic approach based on effective field theory, applicable particularly
to the analysis of temporal variations, is described. The explicit spacetime dependence of a generic
dimensionless constant is represented by a series expansion of a scalar field normalized to the energy scale of
new physics responsible for the time variation. A description of scalar-field evolution, including arbitrary
damping effects, is given, along with the number of observable parameters. This setup covers a broad range
of models describing temporal variations in the literature. It also has significant consequences for the
interpretations of measurements, demonstrating that there are more free parameters than typically expected.
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Many previous experiments have used the extreme precision of atomic clocks to investigate time-
variations of fundamental constants. Examples include constraints placed on linear-in-time variations
[17–20], oscillations [21–25] and transients [26, 27]. For cases where the experimental data has been
interpreted to place bounds on theoretical parameters such as coupling constants, specific models for the
scalar fields and their dynamics have always been assumed. Our approach in this paper, however, allows
constraints on time-variation to be presented in a model-independent way, without assuming the functional
form of the scalar field. The model-independent bounds can be interpreted in terms of specific models due
to the framework presented in section 2, where we work with the most generic functional form for the scalar
field and effective field theory methods.

In section 3, measurements are presented from atomic clocks (87Sr, 171Yb+ optical and 133Cs microwave)
at the National Physical Laboratory (NPL), assessing the temporal variability (stability) of the fine-structure
constant, α, and the electron-to-proton mass ratio, µ=me/mp, over a period of about two weeks. The
frequency ratios between 171Yb+, 87Sr and 133Cs clock transitions place constraints on oscillations in α and µ
at and beyond the previous state-of-the-art.

Using these data, in particular the 171Yb+/87Sr and 87Sr/133Cs ratios, in section 4 model-independent
constraints are placed for the first time on low-dimensional couplings of an ultralight scalar field to matter. In
section 5, new constraints are extracted and compared with previous results for the special cases of ultralight
scalar and axion-like dark matter. The prospects of future measurement campaigns are discussed in section 6.

2. Field theory description of varying constants

In this section we introduce our generic framework to describe the spacetime variation of fundamental
constants. This framework relies on the concept of effective field theory methods (see e.g. [28]). It is a tool of
quantum field theory that has been extensively applied to many areas including particle, nuclear, atomic,
condensed matter and gravitational physics. The significance of this approach is that it enables calculations
and predictions, which can be tested in experiments, that are generic and universal.

Describing the spacetime variation of a fundamental coupling constant g(t, x⃗) can be accomplished by
promoting the constant to a series expansion involving a scalar field ϕ(t, x⃗):

g(t, x⃗) = g0 +
1

Λ
ϕ(t, x⃗)+ . . . , (1)

where g0 is the spacetime-independent contribution and Λ is the high-energy scale relevant to the onset of
the physics responsible for the spacetime variation of constants. Coupling ϕ(t, x⃗) to conventional matter
otherwise described by a coupling g0 is thus accommodated by replacing g0 → g(ϕ).

In this paper, we are primarily interested in time-varying fundamental constants and are thus considering
only time-dependent scalar fields. The most generic field equation for a scalar field corresponds to a damped
harmonic oscillator. From an effective field theory point of view, this is the field equation that corresponds to
dimension-four operators: the kinetic term for the scalar field and potential interactions leading to a decay of
the scalar field which can be parameterized by operators of dimensions 3 and 4. The equation of motion for a
damped harmonic oscillator is given by

ϕ̈ +Γϕ̇+m2ϕ = 0, (2)

where ϕ(t) is a time-dependent scalar field,m is the mass and Γ is a damping factor.
The solution to the field equation depends on the boundary conditions. For oscillatory solutions, the

classes of behavior are identified by the relation betweenm and Γ:

ϕ(t) =


ϕ0,1 exp(r1t)+ϕ0,2 exp(r2t), Γ2 − 4m2 > 0 (overdamped),

exp
(
−Γt

2

)
(ϕ0,1 +ϕ0,2t), Γ2 − 4m2 = 0 (critically damped),

ϕ0 exp
(
−Γt

2

)
cos(ωdt− θ) , Γ2 − 4m2 < 0 (underdamped),

(3)

where ϕ0, ϕ0,1, and ϕ0,2 are amplitudes, θ is a phase and

r1,2 =−1

2
Γ± 1

2

√
Γ2 − 4m2, (4)

ωd =
1

2

√
|Γ2 − 4m2|. (5)

2
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Standard effective field theory methods can be used to describe the interactions of ϕ to conventional
matter in a general manner. For example, the interactions of the scalar field with the photon field Aµ and the
electron field ψe can be described by the Lagrangian:

L= (κϕ)
n
(
d(n)γ

1
4FµνF

µν − d(n)me
meψ̄eψe

)
, (6)

for positive integer n, where κ=
√
4πG= 1/(

√
2MP) with G being the Newtonian constant of gravitation,

MP being the reduced Planck mass, and Fµν = ∂µAν − ∂νAµ. Note that we normalize the interactions to the
strength of the gravitational interaction, which is the weakest interaction in nature known to date. However,

the dimensionless couplings d(n)γ and d(n)me control, respectively, the strength of interactions between ϕ and the
photon and the electron. They may be taken as real numbers, and parameterize the magnitude of the time
variation of the fine-structure constant and of the electron mass. The definition used in equation (6) sets the

high-energy scale Λ from equation (1) such that κnd(n)j ≡ g0,j/Λn
j . In that sense, κnd(n)j are the combinations

of parameters that determine the couplings of the scalar field to the different matter components.
The linear scalar-field coupling (n= 1) and quadratic scalar-field coupling (n= 2) are the most relevant

as they are the lowest order effective operators and thus their effects are expected to be the strongest.
Interactions with n⩾ 3 are suppressed by more powers of the scale of the physics responsible for the time
variation and thus very much suppressed if this is a high-energy scale of the order of the Planck scale, for
example.

Note that there are a number of free parameters that need to be fitted to data:

(ϕ0,ωd,Γ,θ,d
(n)
me ,d

(n)
γ ). We can use this fully generic approach to calculate the shift of the fine-structure

constant α due to the scalar field ϕ(t) and obtain in the linear case (n= 1)

∆α

α
= κd(1)γ (ϕ(t2)−ϕ(t1)). (7)

In the physically relevant underdamped regime, we obtain

α̇

α
=−κd

(1)
γ ϕ0
2

exp

(
−Γt

2

)(
Γcos(θ− tωd)+ 2ωd sin(θ− tωd)

)
. (8)

In the quadratic case (n= 2), we have

∆α

α
= κ2d(2)γ (ϕ(t2)

2 −ϕ(t1)
2), (9)

which leads in the underdamped regime to

α̇

α
=−κ

2d(2)γ ϕ20
2

exp

(
−Γt

2

)(
Γcos(θ− tωd)+ 2ωd sin(θ− tωd)

)
. (10)

In all cases, we have five independent parameters: the coupling constants to matter d(n)γ , an amplitude ϕ0,
a damping factor Γ, an oscillation frequency ωd and a phase θ. Note that they may not all be measurable

independently. A measurement of a change of α is only sensitive to the product d(n)γ ϕn0 .

Similarly, the coupling of ϕ to gluons is controlled by the coupling d(n)g and that to quarks is controlled by

the quark coupling constant d(n)mf . These free parameters control the degree of time variation of the proton
mass and of quark masses. We note that the vacuum energy due to gluons, which corresponds to the
Quantum Chromodynamics (QCD)-scale ΛQCD, accounts for approximately 90% of the nucleon massMN.
On the other hand, light-quark massesmu,md andms account for a mere∼10% of the nucleon masses [29].
The proton mass is thus much more sensitive to a time variation of ΛQCD than it is to a variation of the light
quark masses if all of these parameters vary with time. For more details on the QCD couplings, please see
appendix.

The main motivation for this methodology is that a broad range of models is encompassed by this
effective field theory approach. By providing bounds on a time variation of fundamental constants using this
formalism, bounds for specific models can easily be obtained and our results can then be interpreted in
specific models, for example:

• Quintessence-like models, see, e.g. [30–32]: in that case Γ = 3H where H is the Hubble parameter, but
because today H∼ 1/ttoday (where ttoday is the age of the Universe), the damping is irrelevant today. Note
that for quintessence models, the mass of the scalar field is of orderH∼ 10−33 eV and there is some tension

3
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with torsion pendulum experiments (Eöt-Wash see, e.g. [33]) as these experiments exclude new bosons with

masses lighter than 10−2 eV for d(i)j ∼ 1, one needs to consider models with d(i)j ≪ 1.
• Ultralight dark matter (ULDM) [13–15]: we must assume Γ = 0 as dark matter is stable. As described in
detail in section 5, if the scalar field with mass m accounts for all of dark matter, we can relate ϕ0 to the
local density of dark matter ρDM: ϕ0 ≈

√
2ρDM/m. Note that we could have a multi-component dark matter

sector in which case the relation between ϕ0 and ρDM does not hold. This is further discussed in section 5.
• The scalar field could be a generic scalar from some hidden sector [34]. In that case, the amplitude is a free
parameter and Γ ̸= 0 if it can decay today.

• Kaluza-Klein and moduli models: in models with extra dimensions the sizes of compactified extra dimen-
sions can be described by scalar fields (themoduli fields). If the size of extra dimensions changeswith cosmo-
logical time, we could have a time evolution of these scalar fields. In particular, in string theory, all coupling
constants are determined by the expectation values of moduli fields. Coupling constants could thus easily
depend on time [3–5].

• Dilaton fields, see, e.g. [35–37]: they are similar to moduli, but we expect them to couple universally to
matter like gravity does. These models include Brans-Dicke type fields and also scalar fields that are coupled
non-minimally to the curvature scalar e.g. ϕ2R, where R is the Ricci scalar.

• Vacuum evolution models: in some extensions of the Standard Model, the vacuum expectation value of the
Higgs boson can evolve with time [38, 39]. As the vacuum expectation value of the Higgs boson fixes the
weak scale, it will lead to a time variation of all fermion masses as well as that of the electroweak bosons’
masses. This is typical of inflation-type models.

• Quantum gravity: quantum gravity predicts that d(i)j ∼ 1 [40–45]. Clocks have the capacity of probing the
gravitationally generated interactions between very light scalar fields and photons or electrons (i.e. with

d(i)j ∼ 1) and in that sense they can probe quantum gravity.
• Test of grand unified theories [3, 46–49]: in grand unified models, time shifts in α and the strong coupling
constantαs (equivalentlyΛQCD) are related. If time variations of bothα and µwere observed, predictions of
grand unified theories could be directly probed. The same observation applies to shifts in lepton and quark
masses. Because the relations between quark and leptonmasses are verymodel dependent, clocks could help
to determine the correct unification theory using very low energy data without the need to produce super
massive particles.

We thus see that our generic theoretical framework enables us to study a very wide variety of models and also
to test different scenarios of ultra-high-energy physics with very low-energy experiments. This is obviously
only a subset of the models that can be studied with these methods. Note that our approach enables us to
describe both fundamental variations of constants as originally envisaged by Dirac, but also the effective time
evolution of constants where the variation is due to interactions with additional fields, as in the case of, for
example, ULDM. We point out that this framework can also be applied to massive spin-1 and spin-2 fields
with only minor modifications in terms of the way these higher spin fields couple to matter.

It should also be emphasized that while we looked at a damped oscillator model, there are important
other classes of models that could have been considered. Depending on the boundary conditions, other
solutions are possible, e.g. soliton models, transient phenomena, cosmic strings, domain wall, kink solution,
etc. Great care needs be taken when interpreting data as new physics signals could easily get lost when a
specific functional form of the signal is assumed.

Note that for infinitesimal time differences between two measurements of the fundamental constants, we
can consider the first-order shifts

δα

α
≡ d(n)γ (κϕ)n, (11)

δmf

mf
≡ d(n)mf

(κϕ)n,

δΛQCD

ΛQCD
≡ d(n)g (κϕ)n,

with f = e,u,d.
For the data analysis performed in the next section, it is useful to consider fractional frequency shifts in

atomic clocks δν/ν, where ν is the frequency of an atomic transition. Since these fractional frequencies
depend on at least one fundamental constant, new physics in the form of g(ϕ) altering spectral widths could
be imparted on laboratory measurements. As observables involve comparisons with a reference, in this

4
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context fractional frequency ratios are considered. These ratios are related to a linear combination of relative
fundamental constant variations,

δ(ν1/ν2)

ν1/ν2
=
∑
g

(Kg1 −Kg2)
δg

g
, (12)

where Kgi is a sensitivity coefficient particular to the system of interest [50–52]. The frequency of optical and
microwave transitions can be expressed as

νopt = AFopt(α) cR∞,

νMW = Bα2FMW(α)gN (me/mp) cR∞, (13)

where A and B are constants specific to a given transition, Fopt(α) and FMW(α) are relativistic corrections, gN
is the nuclear g-factor, c is the speed of light and R∞ is the Rydberg constant. This work focuses on
optical-to-optical Yb+/Sr and optical-to-microwave Sr/Cs ratios. The former are sensitive to α variations
whereas the latter are sensitive to α,µ and gN variations4. We now turn out attention to the data analysis.

3. Data and analysis framework

3.1. Experimental Setup
In this work we analyze frequency ratio data produced by atomic clocks based on neutral strontium atoms in
a lattice trap (Sr) [55], a singly-charged ytterbium ion in a Paul trap (Yb+) [56], and neutral cesium atoms
launched in a fountain configuration (Cs) [57]. The properties of the atomic and ionic energy transitions are
summarized below in table 1.

The Sr, Yb+, and Cs clock frequencies are all measured relative to an active hydrogen maser (HM). For
the optical clock frequencies from Sr and Yb+, this measurement is made via a frequency comb, referenced
to the 10 MHz output of the maser. The microwave clock frequency from Cs, however, can be measured
directly against the maser. As all the measurements are made during the same observation window, the
frequency ratios Yb+/Sr, Yb+/Cs and Sr/Cs can be calculated in post-processing and are independent of the
maser frequency. The achieved stabilities in the Yb+/Sr, Yb+/Cs and Sr/Cs frequency ratios are all close to the
quantum projection noise limits, determined by the number of atoms interrogated, the clock cycle times and
the quality of the local master oscillator [62]. Figure 1 displays the time series of data used in this work,
plotted as fractional frequency ratios:

r[i/j] =
(νi/νj −R∗

ij)

R∗
ij

, (14)

with reference ratios, R∗
ij = ν∗i /ν

∗
j , defined using the reference frequency values: ν∗Sr = 429,228,004,229,

872.99 Hz, ν∗
Yb+

= 642,121,496,772,645.12 Hz, ν∗Cs = 9,192,631,770 Hz [63], and with the reference value
ν∗HM taken to be 10 MHz. The Sr and Cs data were available between 1st and 14th July 2019, with total
uptimes of 73% and 93% respectively; Yb+ data were available between 1st and 6th July 2019, with a total
uptime of 76%.

3.2. Experimental results: frequency ratio instability
In the presence of general noise processes, the mean and standard deviation of data sets are not guaranteed to
converge as the number of samples increases. It is therefore common practice to estimate the spread of r[i/j]
over different averaging times, τ , using the Allan Deviation, σr(τ), and its extensions. These are more
informative estimators of spread, as they converge for data sets exhibiting the most common kinds of
non-stationary statistics [64, 65]. Specifically in this work, we characterize the instability of our data using
the Modified Allan Deviation (MDEV). The MDEV is given by the square root of the Modified Allan
Variance, which is defined for a data set ofM measurements, yk, averaged over averaging time, τ , as

σ2
y (τ) =

τ 40
2τ 4(M− 3m+ 2)

M−3m+2∑
j=1


j+m−1∑
i=j

(
i+m−1∑
k=i

[yk+m − yk]

)
2

, (15)

4 Very recent works have claimed optical-to-optical ratios are also sensitive to oscillations of nuclear charge radii [53, 54].
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Table 1. Summary of the atomic and ionic energy transitions used to produce high-stability frequency data. KX values are taken from
[51, 58–61] and given to two decimal places.

Species Transition KcR∞ +Kα Kµ Kq

87Sr 1S0−3P0 2+ 0.06 0.00 0.00
171Yb+ 2S1/2−2F7/2 2− 5.95 0.00 0.00
133Cs 2S1/2(F= 3→ F= 4) 2+ 2.83 1.00 0.07

Figure 1. Top and middle: fractional frequency ratios of Sr/HM and Yb+/HM data counted by NPL’s femtosecond frequency
comb, with data averaged over 1 s intervals. Bottom: Fractional frequency ratio of Cs/HM data produced by NPL’s cesium
fountain, NPL-CsF2, with data pre-processed over 600 s intervals. Data were collected between 1 and 14 July 2019 (MJD
58665–58679).

wherem is the averaging factor, such that τ =mτ0, and τ 0 is the original sampling time interval of the data
points [65]. As our frequency data were measured on a frequency counter configured in a Λ-counting mode,
the MDEV was the appropriate statistic to characterize the instability [66–68]. To directly compare instability
estimates from different types of Allan deviation, the estimators may be converted between each other using
the relations documented in [69].

Figure 2 displays the values of σr(τ) calculated at octave intervals of averaging time. For 60 s⩽ τ ⩽
30 000 s, the σr[Yb+/Sr] curve is well approximated by power-law behavior of σr[Yb+/Sr](τ)≈ 1.4× 10−15/√
τ/s. This indicates that the data are well described on these timescales by a white frequency modulation

(WFM) noise process with h0 ≈ 8.3× 10−30 Hz−1, where h0 is a constant value of power spectral density
[64, 65]. This is not true for τ < 60 s, because this is shorter than the time constant for steering the Yb+ clock
laser onto the atomic transition frequency. At these shorter timescales, correlated noise from the clock laser
dominates the instability. For averaging times 600 s⩽ τ ⩽ 80 000 s, the instabilities of Sr/Cs and Yb+/Cs are
well approximated by σr[Sr/Cs] ≈ σr[Yb+/Cs] ≈ 1.6× 10−13/

√
τ/s, corresponding to WFM noise with

h0 ≈ 1.0× 10−25 Hz−1. The small difference in instability between the Yb+/Cs and Sr/Cs ratios can be
attributed to the fact that the two sets of data span different time periods with different uptimes. While
σr[Sr/Cs] appears to increase at the highest averaging time, we attribute this to error introduced by the routine
used to calculate MDEVs, which interpolates gaps in the data record: when downtime is dominated by a
small number of large gaps in the data record (as is the case here), this interpolation can introduce spurious
drifts and inflate the instability estimate at the largest averaging times [70, 71]. Therefore we do not consider
averaging times above τ = 80 000 s.

Some publications [22] have attempted to constrain variations in fundamental constants using frequency
data from hydrogen masers (HMs), reasoning that νHM shares the KX sensitivities of the 2S1/2
(F= 0− F= 1) hyperfine transition in atomic hydrogen to which the maser cavity is tuned. We do not

6
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Figure 2. Characterization of each fractional frequency ratio’s instability using the Modified Allan Deviation, plotted at octave
intervals of averaging time.

follow this approach in this work, as we cannot confirm over which timescales this reasoning holds true in
our commercial maser system; the maser wall shift, the resonant cavity, the voltage-controlled crystal
oscillator, etc., all contribute to the instability of νHM over certain timescales and introduce sensitivity to
additional variables, e.g. temperature [72]. Consequently, we do not use optical-to-maser ratio data (Sr/HM
or Yb+/HM) directly in this work to place constraints on the variations in fundamental constants. Instead,
we use optical-to-cesium ratio data, despite the higher WFM instability in the data sets, as we are confident
in the sensitivities of νCs to variations in the fundamental constants.

On timescales for which the instability of the frequency ratio data is dominated by the behavior of the
atomic transitions, we place constraints on fundamental constants using equation (12) and KX values taken
from table 1. Due to the negligible sizes of∆KYb+/Sr

µ and∆KYb+/Sr
q , we assume that the instability in

fractional changes in α to leading order must be less than σr[Yb+/Sr] scaled by the magnitude of the sensitivity

∆KYb+/Sr
α = |KYb+

α − KSr
α |= 6.01. Thus, we constrain the instability of fractional changes in α to be

σ(∆α/α) = σr[Yb+/Sr]/6.01⩽ 2.3× 10−16/
√
τ/s on timescales of 60 s⩽ τ ⩽ 30 000 s. With σ(∆α/α)

constrained to two orders of magnitude below the noise level of Sr/Cs and Yb+/Cs, we make the further
assumption that any remaining instability in r[Sr/Cs] would be dominated by∆µ/µ rather than∆mq/mq, due
to the small size of∆KSr/Cs

q = |KSr
q − KCs

q | ≈ 0.07 compared with∆KSr/Cs
µ = |KSr

µ − KCs
µ |= 1.00. Under this

assumption, to leading order we may similarly constrain the instability of fractional changes in µ to be no
greater than σr[Sr/Cs] scaled by the magnitude of the sensitivity∆KSr/Cs

µ = 1.00. Thus, we constrain the

instability of fractional changes in µ to be σ(∆µ/µ) = σr[Sr/Cs]/1.00⩽ 1.6× 10−13/
√
τ/s on timescales of

600 s⩽ τ ⩽ 80 000 s. These constraints on the instability of fractional changes in α and µ as a function of
averaging times are shown in figure 3 and summarized in table 2.

These estimates of fractional variations in frequency ratios, and hence α and µ, on different timescales
make no assumptions about the functional form of the variations. These results can be translated into
model-independent limits, which will be discussed in section 4.

3.3. Experimental results: sinusoidal oscillations
If one chooses to focus specifically on oscillatory time variations of fundamental constants, these can be
generically described by a damped harmonic oscillator, given in equation (2). Constraints on damped
oscillatory signals could be obtained for a range of oscillation frequencies, f, by finding the best fit amplitude
of each oscillation frequency, A(f ), and the best fit to the damping factor, Γ. However, it was decided as a first
stage of analysis to fit undamped oscillations (Γ = 0) to reduce the number of parameters that require fitting.
If any significant signals or features were detected as a result of fitting to undamped oscillations, reasonable

7
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Figure 3. Instability estimates for fractional changes in α and µ, where σX(τ)≡ σ(∆X/X)(τ) = σr(τ)/Kr
X on timescales over

which the instability is dominated by the behavior of the atomic transition frequency.

Table 2. Summary of constraints on the instability of fractional changes in α and µ produced in this paper, expressed as Modified Allan
Deviations, σ(∆X/X)(τ).

Instability constraint Parameter space

σ(∆α/α)(τ)⩽ 2.3× 10−16/
√

τ/s 60 s⩽ τ ⩽ 30 000 s
σ(∆µ/µ)(τ)⩽ 1.6× 10−13/

√
τ/s 600 s⩽ τ ⩽ 80 000 s

values of Γ could be inferred from the linewidths of any peaks, and further analysis could be performed to fit
for Γ and constrain damped oscillations to the data. In the case that significant features were observed, we
implemented a routine to fit the data to oscillations weighted by an envelope function, Z(t), which for
Z(t) = exp(−Γt/2) would model underdamped oscillations [73].5 During testing it was observed that this
routine did not perform better than standard periodograms for detecting damped oscillations in the
parameter space of interest, so it was decided to use a standard periodogram.

Similar to the approach taken in recent works [22, 23, 25, 74], we constrain the magnitude of undamped
oscillations in our data by estimating the power spectral density of the fractional frequency ratios, Sr( f), via
the Lomb-Scargle periodogram (LSP) [75, 76]. The LSP is an estimator of Sr( f) for time series that suffer
from irregular sampling or data gaps due to experiment downtime [77]. Calculating the LSP is equivalent to
performing linear least-squares fits of a data set to the amplitude of sinusoids at a range of frequencies; it
allows algorithms in the style of a fast Fourier transform to be used on time series with incomplete or
irregular sampling, without having to account for data gaps by deconvolving the time series with composite
window functions [76, 78].

Power spectral density estimates for the fractional frequency ratios, Sr( f), were calculated using the
implementation of the LSP [75, 76] provided in the Astropy Python package [77]. The Nyquist frequency,
fNy = (2∆tsample)

−1, was chosen as the bandwidth upper limit for ease of comparison with previous works,
and any future works that may have 100% data uptime. However, Sr( f) is not guaranteed to be free of
aliasing for f< fNy when signals are irregularly sampled, as gaps in data sampling introduce spectral leakage

5 Since our longest data set had a length of T= 14 days and our minimum sampling time was ∆t = 60 s, the approximate range of Γ
detectable with our data was between Γmin ∼ 1/T≈ 8.3× 10−7 Hz and Γmax ∼ 1/∆t≈ 1.7× 10−2 Hz. The range of detectable values
for Γ corresponds to a range of lifetimes between 60 s to 1.2× 106 s, using τ∗ = Γ−1. It is interesting to compare this range to lifetimes
corresponding to known forces of nature. Typical lifetimes in Quantum Electrodynamics are of the order of 10−20 s to 10−16 s. For the
weak interactions, one finds 10−13 s to 103 s while for the strong force one finds 10−23 s to 10−20 s. Thus the range of detectable lifetimes
in this work partly overlaps with lifetimes typical of the weak force.
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Figure 4. Power spectral densities of fractional frequency ratios, estimated with the Lomb-Scargle periodogram. The levels of
white frequency modulation (WFM) noise, hi0, are taken from the best fits to the σr(τ) curves presented in figure 2.

below f Ny [75]. The resolution of the frequency grid was not tuned beyond using the default oversampling
factor of n0 = 5 [77]. The fidelity of LSP in detecting oscillations in noisy data was validated by injecting
sinusoidal signals into data sets with similar noise statistics as those of the observed data.

Figure 4 shows Sr( f) for each frequency ratio, with black dashed lines indicating the estimated noise
levels, h0, calculated from values of σr(τ) [69]. Here it can be seen again that while r[Sr/Cs] and r[Yb+/Cs] are
well described by WFM noise, this is not true of r[Yb+/Sr] for f ⩾ (60s)−1 = 1.67× 10−2 Hz, where more
complex power-law behaviour can be seen: the action of the servos steering the probe light frequency onto
the atomic/ionic transition frequencies leads to an approximate Sr( f)∝ f−1.5 behavior. Limits on oscillations
in∆α/α in the frequency range that exhibits WFM noise can be formed by integrating Sr[Yb+/Sr]( f) over the
nominal frequency bin width (δf[Yb+/Sr] = 1/T[Yb+/Sr] = 2.5× 10−6 Hz) to obtain the total power of each bin,
then taking the square-root to obtain the one-sided6 fractional amplitude spectrum, Ar[Yb+/Sr]( f).

Dividing this spectrum by the magnitude of∆KYb+/Sr
α yields the fractional amplitude spectrum of∆α/α

oscillations: Aα( f) = Ar[Yb+/Sr]( f)/6.01≈ 7.6× 10−19. Similarly, we constrain oscillations in∆µ/µ using
Sr[Sr/Cs]( f) (δf[Sr/Cs] = 1/T[Sr/Cs] = 8.7× 10−7 Hz) resulting in a fractional amplitude spectrum of µ as
Aµ( f)≈ A[Sr/Cs]( f)/1.00≈ 2.7× 10−16. Both fractional amplitude spectra Aα( f) and Aµ( f) are shown in
figure 5 for the frequency ranges over which they may be used to constrain oscillations in α and µ.

Constraints on oscillations in α and µ can be extracted from the fractional amplitude spectra Aα( f) and
Aµ( f) by considering the statistics of the LSP estimator. In the absence of prominent peaks, some authors
[23] have placed constraints at the observed power for each frequency bin of the spectra. Following the
approach taken in [21, 22, 25, 74] and others, confidence intervals on the constraints at each frequency bin
were calculated by simulating a large number of control spectra with equivalent noise statistics to the
observed spectra, then using the empirical cumulative distribution function of the simulated power in each
frequency bin to estimate confidence intervals, in this case, at 95% confidence. Whilst we follow this
approach to calculate 95% confidence intervals on our power estimates, using these confidence intervals as
‘limits’ has the disadvantage that the bounds placed on a WFM process could differ across neighboring
frequency bins by an order of magnitude or more, and would likely fluctuate between repeat experiments
even if the noise level in the experiment remained constant.

We believe a more appropriate and reproducible bound for a WFM spectrum is one that is constant
across all frequencies: under the null hypothesis that the power differences across frequency bins are merely

6 The Astropy LSP returns only the f > 0 half of the two-sided amplitude spectrum [77] which must be multiplied by 4 to obtain the
one-sided amplitude spectrum.
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Figure 5. Fractional amplitude spectra for sinusoidal oscillations in α and µ. The solid horizontal lines indicate the estimated
levels of white frequency modulation (WFM) noise of the spectra, and the broken horizontal lines represent the estimated false
alarm levels at the equivalent of 1σ (p ⩽ 0.32) and 5σ (p ⩽ 3.5× 10−7) significance.

the result of fluctuations due to a WFM noise process, we produce a global bound based on an estimate of
the white noise level, with exclusion limits estimated by false alarm levels, AX(p⩽ p0). These false alarm
levels represent the value of AX( f) that would be exceeded with a probability of no more than p0 across all
frequencies in the case of white noise only. While analytic expressions exist for the distribution of Sr( f) for
regularly sampled data (assuming uncorrelated Gaussian errors) [76, 79], in this work we employ
computational methods, as recommended in [77].

Simulating data sets with the same noise and data gaps as the observed spectra, we use the bootstrap
method [80] to estimate bounds at the 68% significance level of Aα(p⩽ 0.32) = 5.6× 10−18 and
Aµ(p⩽ 0.32) = 1.3× 10−15. More appropriate to particle physics would be the equivalents of a 5σ
significance level, which were estimated using the Baluev method [81], yielding Aα(p⩽ 3.5× 10−7)≈
8.9× 10−18 and Aµ(p⩽ 3.5× 10−7)≈ 2.1× 10−15.7 As shown in figure 5, all spectral peaks fall well below
this fractional amplitude, though it should be admitted that this is a fairly strict detection threshold. Though
global bounds across the entire frequency domain of the LSP estimate are more conservative than bounds one
could achieve by setting constraints on individual frequency bins, for the reasons outlined above, we believe
them to be better motivated and more legitimate for processes that appear to be predominantly WFM noise.

With only two peaks slightly exceeding the 1σ false alarm level for Aµ( f), and no spectral peaks exceeding
the 5σ false alarm levels for either Aµ( f) or Aα( f), we have high confidence that all peaks in Aα( f) and
Aµ( f) are consistent with instabilities due to WFM noise processes. Therefore, based on the estimated WFM
noise levels of fractional frequency ratio data, we place constraints on sinusoidal oscillations in α at the 1σ
significance level of Aα( f)⩽ 5.6× 10−18 and at the 5σ significance level of Aα( f)≲ 8.9× 10−18, over the
frequency range 2.5× 10−6 Hz⩽ f ⩽ 1.7× 10−2 Hz. We also place constraints on sinusoidal oscillations in µ
at the 1σ significance level of Aµ( f)⩽ 1.3× 10−15 and at the 5σ significance level of Aµ( f)≲ 2.1× 10−15,
over the frequency range 8.7× 10−7 Hz⩽ f ⩽ 8.3× 10−4 Hz. A summary of these 1σ and 5σ constraints is
shown in table 3.

These constraints on sinusoidal oscillations can be further interpreted in the case of specific models such
as scalar dark matter, which is the focus of section 5.

7 The Baluev method was used in favor of the bootstrap method to estimate the p ⩽ 3.5× 10−7 false alarm levels, as a robust bootstrap
estimate for this level would require> 2.8× 107 simulated spectra for each data set. This large increase in computation time would likely
produce 5σ false alarm levels that were only slightly stricter: the Baluev method overestimates the false alarm level by design, but agrees
reasonably well with the bootstrap method for observation windows with little structure, such as for our data sets [77].
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Table 3. Summary of constraints on the powers of fractional oscillations in α and µ produced in this paper, expressed as Fourier
spectrum amplitude detection thresholds, AX( f), at the 1σ and 5σ significance level.

Amplitude constraint
(1σ significance)

Amplitude constraint
(5σ significance) Parameter space

Aα( f)⩽ 5.6× 10−18 Aα( f)≲ 8.9× 10−18 2.5× 10−6 Hz⩽ f ⩽ 1.7× 10−2 Hz
Aµ( f)⩽ 1.3× 10−15 Aµ( f)≲ 2.1× 10−15 8.7× 10−7 Hz⩽ f ⩽ 8.3× 10−4 Hz

4. Model-independent constraints

As emphasized before, the main strength of our new theoretical description of a time evolution of constants
is that it enables us to set model-independent constraints on the time variation of these constants.
Independent of the shape of the function that describes the time variation, we now set some limits which can
then trivially be interpreted in specific models.

From equation (13), a transition frequency ν may be parameterized as [82]

ν = (const.) (cR∞) αKα(me/ΛQCD)
Kµ(mq/ΛQCD)

Kq , (16)

where Kα,Kµ, and Kq are sensitivity coefficients characteristic of the transition ν andmq ≡ (mu +md)/2.
The quark coefficient Kq = kMN

q + kgNq parameterizes changes in the nucleon mass δMN/MN = kMN
q (δmq/mq)

and the nuclear magnetic moment δgN/gN = kgNq (δmq/mq) in terms ofmq variations. The ratio of two
frequencies r= ν1/ν2 is independent of the dimensionful constants, and varying equation (16) with respect
to α,me/ΛQCD, andmq/ΛQCD noting (11) gives

δr

r
=
(
∆Kαd

(n)
γ +∆Kµ

(
d(n)me

− d(n)g

)
+∆Kq

(
d(n)q − d(n)g

))
(κϕ)n, (17)

where d(n)q is the mass-weighted mean-quark coupling. Using the published values of

KYb+
α =−5.95, KSr

α = 0.06, and KCs
α = 2.83 from [52] and KCs

µ = 1,KCs
q ≈ 0.07 from [82] (and summarized

in table 1) results in the fractional frequency ratios(
δr

r

)
Yb+/Sr

=−6.01d(n)γ (κϕ)n, (18)

(
δr

r

)
Sr/Cs

=−
(
2.77d(n)γ + d(n)me

− d(n)g + 0.07
(
d(n)q − d(n)g

))
(κϕ)n. (19)

As can be observed in figure 2, constraints from Yb+/Sr measurements enable a bound on the coefficient d(n)γ

far below what is possible from Sr/Cs measurements. It is therefore appropriate to neglect d(n)γ in
equation (19), which gives an effective coupling for the Sr/Cs measurements of

d(n)Sr/Cs ≈ d(n)me
− d(n)g + 0.07

(
d(n)q − d(n)g

)
. (20)

Comparing equations (18) and (19) with the data in figure 2, model-independent constraints can be

placed on the magnitudes of the coupling strengths d(n)γ , d(n)Sr/Cs, and the instability of ϕn(t) over different
timescales, σϕn(τ) given by

κn|d(n)γ |σϕn(τ)≲ 2.3× 10−16/
√
τ/s , (21)

for timescales 60 s⩽ τ ⩽ 30 000 s, and

κn|d(n)Sr/Cs|σϕn(τ)≲ 1.6× 10−13/
√
τ/s , (22)

for timescales 600 s⩽ τ ⩽ 80 000 s, where σϕn(τ) is the MDEV of ϕn, defined in equation (15), and the

contribution from (d(n)q − d(n)g ) is assumed to be subdominant. Note that these constraints do not assume
any specific fundamental physics model, nor do they make any assumption about the functional form of
ϕn(t). The constraints in the equations above are only valid for the specified values of τ explored in this
work, and cannot constrain fluctuations on timescales outside this range.

The constraints on σϕn(τ) in equations (21) and (22) can be roughly interpreted as limits on the average
magnitude of fluctuations in ϕn(t) between any two points in time t and (t+ τ). For example, for two times
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separated by τ = 1 000 s, the fluctuation [ϕn(t+ τ)−ϕn(t)] should roughly satisfy κn|d(n)γ |[ϕn(t+ τ)−
ϕn(t)]< 7× 10−18.

Only once the functional form of ϕ is specified is it possible for independent constraints to be placed on
the couplings, which we explore in the special case of ULDM in the following section.

5. Constraints on ULDM

One of the strongest cases for positing additional fundamental scalar fields is the problem of dark matter.
Particle dark matter in the mass range 10−22 eV≲mϕ ≲ 1 eV is known as ULDM, and in recent years
significant efforts have been focused on detecting ULDM through apparent oscillations of fundamental
constants. The upper boundmϕ ≈ 1 eV occurs when the number density n of bosons in the reduced de
Broglie volume (λ/2π)3 satisfies n(λ/2π)3 ≫ 1, resulting in a macroscopic phase-space occupation that
exhibits Bose–Einstein condensation. Wavelengths λ∼O(kpc) span distances comparable to the smallest
dwarf galaxy halos and imply a lower boundmϕ ≈ 10−22 eV [83]. This bound also roughly coincides with
the upper limit of dark matter being completely accounted for bymϕ [84], which is a common assumption
in studies seeking to exclude couplings at a given confidence level.

The Standard Halo Model is assumed for the dark matter density and velocity profiles, where for
coordinates centered on the galaxy vvir ∼ 10−3 is the virial speed (in natural units) of dark matter with
isotropic distribution ⟨⃗vvir⟩= 0⃗. As a result of the Solar System’s motion through the dark matter halo at
speeds comparable to vvir, an Earth-based laboratory experiences a dark matter wind with |⃗k| ≈mϕ vvir ≪
mϕ when neglecting subdominant corrections [85]. In the dark-matter rest frame, oscillations are controlled
by the rest massmϕ = 2πfϕ where f ϕ is the Compton frequency in natural units. Oscillations are coherent in
time for τc ∼ 4π/(mϕ v2vir)≳ 106 Tc ≫ Tdata where the oscillation timescale Tc = 1/fϕ greatly exceeds the
experimental timescale Tdata. As the coherence length λ∼ 2π/(mϕ vvir) is larger than solar-system scales for
all f ϕ of interest, the scalar-field amplitude is approximately constant. Under these conditions, ULDM is
described by a macroscopic, nearly constant-amplitude waveform oscillating at the underlying particle
Compton frequency, up to small velocity corrections∼O(v2vir).

Measurements from the cosmic microwave background indicate dark matter was present in the early
Universe and is strongly constrained to be stable on experimental timescales [86]. The standard theoretical
treatment of ϕ as dark matter assumes cosmological evolution in a flat
Friedmann-Lemaître-Robertson-Walker Universe where (2) follows with Γ = 0. The field has an amplitude
ϕ0 =

√
2⟨ρϕ⟩/mϕ, resulting from time-averaging the energy density ρϕ = (ϕ̇2 +m2

ϕϕ
2)/2 in the

nonrelativistic limit. As all measurements presented in this paper were taken at a single location, the
dynamics of ϕ are described by the solution

ϕ(t)≈
√

2⟨ρϕ⟩
mϕ

cos(mϕ t). (23)

Typically it is assumed that the scalar field comprises the entirety of the dark-matter density inferred at the
solar galactocentric radius R0 ≃ 8 kpc, or the ‘local density’ ρDM(R0)≈ 0.3 GeVcm−3 [87]. This figure
should be taken with caution and has a large influence on the constraints, as densities from solar-system
objects including planetary ephemerides [88] and more recently asteroid data [89] constrain ρDM ≲ (104-
106)× ρDM(R0). The immediate implications are on the sensitivity to the couplings in equations (18)
and (19), since for a generic coefficient (assuming the field saturates the total density) the sensitivity to

d(n)j ∝ 1/ρn/2DM and at best linear (quadratic) constraints would scale downward by∼103 (∼106). However,
they could also be substantially weakened. Constraints would need to be reconsidered in the case of
multicomponent dark matter. For example, interactions between the different components could lead to
nonzero decay widths (i.e. Γ ̸= 0), and the density contribution would be spread across the components
ρDM =

∑
i ⟨ρϕi⟩. The extracted limits would be weaker and scaled by

√
⟨ρϕi⟩/ρDM.

5.1. Scalar couplings
Previous experiments monitoring electronic and microwave frequencies have resulted in constraints on the

scalar couplings d(n)γ ,d(n)mf , and d(n)g assuming dark matter [15, 21–24, 74, 90–93]. In the present work,
constraints may be extracted by using the amplitude spectra AX( f) = Ar( f)/|∆K| for frequency bin f and
relevant sensitivity coefficient∆K from figure 5. Identifying f = fϕ =mϕ/2π for linear couplings and
f = 2fϕ =mϕ/π for quadratic couplings and noting equation (17) gives

d(n)j = ζ
(n)
f AX( f), (24)
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Figure 6. Constraints on d
(1)
γ (top panel) and d

(2)
γ (bottom panel). The best fit from Yb+/Sr (red) along with expected noise level

(black dashed line) and 95% confidence level (C.L.) (light red) lines are displayed. Comparisons with constraints on linear
couplings include Rb/Cs clocks [21], combined Al+/(Yb, Hg+), Yb/Sr clocks [23], Yb/Cs clocks [24], Sr/Si and H/Si cavity
comparisons [22], Dy/Dy spectroscopy [74] and EP tests [95–98]. Comparisons with constraints on quadratic couplings include
clocks [90, 91], EP tests [99] and BBN [91].

where ζ(1)f ≈ 2.0× 1016f/Hz, ζ(2)f ≈ (0.2ζ(1)f )2. Note that the effects of boosting from the dark matter rest
frame to the laboratory frame, which introduces a broadening of the oscillation frequency fϕ → fϕ+

mϕ v2vir.(4π)
−1, have been included in ζ(1)f . As a result, the sum over distinct field modes for measurement

times T≪ τc reduces the sensitivity to the linear n= 1 coefficients by a stochastic factor≈ 3 [94].8 The data
encompasses frequencies 10−6 Hz≲ f ≲ 2× 10−2 Hz, corresponding to masses 4× 10−21 eV≲mϕ ≲
8× 10−17 eV.

The results for linear and quadratic scalar couplings discussed in section 2 are presented for the case of
ULDM in figures 6–9. Note that some works assume the slightly larger estimate ρDM ≈ 0.4 GeVcm−3, which
for purposes of comparison here amounts to a negligible difference. For all figures, the right axes compare

κnd(n)j = 1/Λn
j for a generic dimensionful scale Λj. We choose the scale to be identified with Λj,Λ

′
j for linear

and quadratic couplings, respectively. For the coupling d(1)γ in figure 6, a new exclusion region up to roughly
an order of magnitude improvement over previously published work for 10−20 eV≲mϕ ≲ 10−17 eV is
observed. This improved sensitivity is mostly explained by the difference in K factors between, e.g. Rb/Cs
where |∆KRb/Cs

α | ≈ 0.5 is roughly an order of magnitude smaller than |∆KYb+/Sr
α | ≈ 6. The extracted bounds

also essentially surpass Eöt-Wash [95, 96] and MICROSCOPE [97, 98] equivalence-principle (EP) tests
assuming a light dilaton. We note that recent experimental results [25], also using Yb+ and Sr clocks, have

claimed even tighter constraints than extracted here on the linear photon coupling d(1)γ in this mass range.

For the quadratic coupling d(2)γ , a similar trend with respect to clock studies [90, 91] using Rb/Cs [21]
and 164Dy/162Dy spectroscopy [74] persists and using EP-test results to extract bounds on quadratic
couplings [99] shows greater sensitivity≳4× 10−18 eV. We also include constraints from big bang
nucleosynthesis (BBN) [91] which surpass the sensitivity of other experiments in the probed mass range.

8 To the best of our knowledge, the stochastic factor for quadratic couplings has not been calculated, so we set it equal to one.
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Figure 7. Constraints on d
(1)
me

− d
(1)
g (top panel) and d

(1)
mq

− d
(1)
g (bottom panel). The best fit from Sr/Cs (green) along with

expected noise level (black dashed line) and 95% C.L. (light green) lines are displayed, including comparisons with EP tests and
Rb/Cs [21], Yb/Cs [24], and H/Si [22].

To the best of our knowledge, the only previously published clock-based studies to account for stochastic
degradation factor≈3 were those performed by the BACON collaboration with Al+/(Yb, Hg+) and Yb/Sr
clock comparisons [23], JILA using clock-cavity Sr/Si and H/Si comparisons [22] and NMIJ using Yb/Cs
clock comparisons [24]. Note that EP tests do not rely on assumptions of the amplitude ϕ0 and thus the
contribution of the scalar field to the dark matter abundance. Similarly, though BBN constraints use
⟨ρϕ⟩= ρDM, the field is non-oscillating with constant ϕ0 formϕ ≪ 10−16 eV so coherence considerations
are irrelevant.

Limits on linear and quadratic d(n)me − d(n)g and d(n)q − d(n)g couplings are presented in figures 7 and 8,
respectively. The linear constraints are competitive and similar in shape and magnitude with H/Si, Rb/Cs and
Yb/Cs comparisons over the range of data, however the sensitivity of Rb/Cs extends up to two orders of

magnitude below EP tests aroundmϕ ≈ 10−23 eV. Note that Rb/Cs has no sensitivity to d(n)me − d(n)g .

Regarding the quadratic constraints, Sr/Cs data probes a new region for clocks in the d(2)me − d(2)g panel and
displays roughly two orders of magnitude more sensitivity than EP tests at the low-mass range. Despite this,
BBN still dwarfs the sensitivity by comparison and both EP tests and BBN encompass the range probed for

d(2)q − d(2)g .
The final scalar constraints are extracted on the parameter A from the scalar-Higgs interaction and are

presented in figure 9. The simplest (n= 1) linear couplings have garnered theoretical attention since they can
emerge from the technically natural operator LϕH =−AϕH†H for Higgs doublet H [100]. The sensitivity
coefficient is

KH =
α

2π
Kα − (1− b)Kµ − 1.05(1− b)Kq, (25)

where b∼ 0.2− 0.5 is a dimensionless factor in the Higgs-nucleon Yukawa coupling ghNN = bmN/v,
where v≈ 246 GeV is the Higgs vacuum expectation value and where the nucleon massmN = (mp +mn)/
2≈ 0.94 GeV. To easily compare with existing Rb/Cs limits, we choose b= 0.2 and use the relevant
Sr/Cs values from table 1 of [90]. Using the Sr/Cs spectrum and noting κdH ↔ A/m2

h for Higgs mass
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Figure 8. Constraints on d
(2)
me

− d
(2)
g (top panel) and d

(2)
mq

− d
(2)
g (bottom panel). The best fit from Sr/Cs (green) along with

expected noise level (black dashed line) and 95% C.L. (light green) lines are displayed, including comparisons with EP tests and
Rb/Cs [99], and BBN [90, 91].

mh ≈ 125 GeV in (24) produces the limit. For the ratios considered here, the bulk of the sensitivity comes
from (1− b)Kµ as the electromagnetic portion is suppressed by an additional factor of α (from radiative
corrections) and the sensitivity of quark contributions tomN,gN are suppressed relative tome/mN by around
an order of magnitude. This implies, e.g. optical-optical Yb+/Sr and microwave-microwave Rb/Cs ratios
have weaker sensitivity to A relative to optical-microwave ratios. It is worth noting that b= 0.5 gives almost
no sensitivity to Rb/Cs. Accordingly, Sr/Cs comparisons have more robust potential for constraining A,
however, as the existing Rb/Cs data set is longer, competitive limits with respect to fifth-force searches exist in
the range 10−24 ≲mϕ ≲ 10−20. Note again that the current Rb/Cs limits do not include the stochastic
degradation factor≈3, which would shift the displayed curve upwards accordingly.

5.2. Pseudoscalar couplings
Recently Kim and Perez [101] highlighted that atomic clocks can also provide complementary and
competitive constraints on an axion-like field a coupled to gluons:

La =
g2s

32π2

a

fa
Gb
µνG̃

bµν , (26)

where gs and fa are the strong coupling and axion decay constant, respectively. As a result, the square of the
pion mass undergoes small oscillations quadratic in the field

δm2
π

m2
π

=− mumd

2(mu +md)2
θ2, (27)

wheremu,md are the up and down quarks and θ = a/fa. The nucleon massmN(θ) and the nucleon g-factor
gN(θ) (and hence nuclear g-factor g(θ)) have an inherent dependence onmπ(θ) as parameterized by chiral
perturbation theory [61, 102–104]. Similar to quadratic scalar couplings in the ultralight range, the
oscillatory component of θ is given by
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Figure 9. Constraints on Higgs coupling parameter A. The best fit from Sr/Cs (green) along with expected noise level (black
dashed line) and 95% C.L. (light green) lines are displayed, including comparisons with Rb/Cs [90] and fifth-force searches [100].

θ2(t) =
ρDM
m2

a f
2
a

cos(2mat), (28)

where here ρDM = 0.4 GeV/cm3,ma ̸∝ f−1
a in general and assuming a saturates the local density. The

variation of a microwave transition frequency (13) may be expressed as variations in g(θ) andmp using
equations (27) and (28), giving [86]

δνMW

νMW
≈−0.11

[
∂ lng(θ)

∂ lnm2
π

−
∂ lnmp

∂ lnm2
π

]
ρDM
m2

a f
2
a

cos(2mat). (29)

Comparing with another microwave or optical standard and identifyingma = πf for signal frequency f from
an amplitude spectrum yields the relation

1

fa ·GeV−1 = 10−10

√
m2

15

cr · 10−15

∣∣∣∣δrr
∣∣∣∣, (30)

wherem15 ≡ma/(10−15 eV) and cr is a constant. In [101] microwave-microwave (Rb/Cs, cr ≈ 10−1) and
microwave-optical (H/Si, cr ≈ 1) comparisons are studied. One may also consider Sr/Cs, where due to the
weak dependence of Sr on nuclear quantities |δr/r| ≈ δνCs/νCs and cr ≈ 2× 10−2, including effects of
stochasticity. From equation (30), we plot the Sr/Cs limits along with Rb/Cs and H/Si from [101] as well as
include the constraints from the neutron electric dipole moment (nEDM) in figure 10.

Perhaps most compelling are the high-frequency range constraints achievable on the axion-like coupling
in figure 10 (see blue dashed line). In order to measure and remove density-dependent effects, the cesium
fountain interleaves regular measurements with samples recorded with much higher atom densities. For the
data presented here, this leads to a Cs clock cycle time of 600 s, corresponding to a maximum (Nyquist)
frequency of 833 µHz. However, the cesium fountain could run with lower cycle times, and if the cesium
fountain were operated without compensating density-dependent effects, cycle times of≈5 s could be
achieved, allowing Fourier frequencies up to≈0.1 Hz to be probed, though at the expense of stability at
longer times. This would yield constraints over an additional order of magnitude in frequency space outside
of the large excluded nEDM region. This contrasts with the projections from future experimental proposals,
demonstrating that existing atomic-clock capabilities can provide competitive constraints in axion physics.
Taken together, subsequent studies based on future data campaigns are clearly motivated.
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Figure 10. Constraints on the QCD axion-like coupling fa. The best fit from Sr/Cs (green) along with expected (black dashed line)
and projected (blue dashed line) noise levels, and 95% C.L. (light green) lines are displayed. Comparisons include Rb/Cs [21],
H/Si [22] and nEDM [105].

6. Discussion and conclusion

In this work, we have presented a theoretical framework to describe the time variation of fundamental
constants in a model-independent way. This approach demonstrates that a realistic model for the time
variation of fundamental constants has many free parameters.

Using data acquired from atomic clocks operating at optical (87Sr, 171Yb+) and microwave (133Cs)
frequencies, we constrain the instability of fractional changes in α to be σ(∆α/α)(τ) ⩽ 2.3× 10−16/

√
τ/s

for averaging times 60 s< τ < 30 000 s, and we constrain the instability of fractional changes in µ to be
σ(∆µ/µ)(τ)⩽ 1.6× 10−13/

√
τ/s for averaging times 600 s< τ < 80 000 s. The theoretical framework then

allows us to place constraints on combinations of a new scalar field ϕn(t) and the different interaction

strengths d(n)j coupling that field to other particles: photons, electrons, quarks and gluons. These constraints
are independent of the underlying physics and the functional form of ϕn(t).

As an example of a specific model, we studied ULDM couplings to matter and presented new constraints

on low-dimension dilaton-like operators. The limits on d(1)γ from Yb+/Sr data exclude a new region of
parameter space for masses 10−20eV≲mϕ ≲ 10−17eV, as shown in figure 6. We also refer the reader to new

experimental results [25] using Yb+ and Sr clocks, which claim even tighter constraints on d(1)γ .
In the future, the limits on most of the parameters presented in this paper could readily be extended into

both higher and lower frequency regions. Higher frequency regions could be accessed by operating the clocks
with shorter measurement cycles, and lower frequency regions could be accessed by recording longer data
sets. Furthermore, there are clocks being developed that are more sensitive to variations of fundamental
constants, such as certain highly-charged ion species [106] or molecular clocks [107]. Frequency ratios
between these new types of optical clock could place significantly lower bounds on many of the coupling
strengths between new scalar fields and particles of the Standard Model [108].
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Appendix

The scalar field ϕ can couple to quarks or gluons linearly (n= 1)

L= κϕ

(
d(1)g

4
GµνG

µν − d(1)mf
mf ψ̄fψf

)
, (31)

with κ=
√
4πG, but we could also have quadratic couplings (n= 2)

L= κ2ϕ2

(
d(2)g

4
GµνG

µν − d(2)mf
mf ψ̄fψf

)
. (32)

One can disentangle the different parameters ϕ0 and dj. By considering experiments sensitive to α,
µ=me/mp or αs, one could in principle measure ϕ0 and some of the dj independently. Furthermore, in
general there could be several scalar fields. Some could couple to photons others to gluons. To be very clear,
couplings may not be universal.

The mass of the protonmp is mainly sensitive to the time dependence in the QCD coupling constant.
Remember that the QCD scale is given by ΛQCD = µr exp(2π/(αs(µr)))

1/b3 with b3 =−7 in the Standard
Model and where µr is the energy scale at which αs is measured. Neglecting a possible change in the quark
masses, the proton massmp is proportional to ΛQCD. Using the renormalization group equation for αs we
find

ṁp

mp
≈ Λ̇QCD

ΛQCD
=−2π

β

α̇s

α2
s

, (33)

where in the linear case, we have in the underdamped regime

α̇s

αs
=−

κd(1)g ϕ0
2

exp

(
−Γt

2

)(
Γcos(θ− tωd)+ 2ωd sin(θ− tωd)

)
(34)

and similarly again in the underdamped regime

α̇s

αs
=−

κ2d(2)g ϕ20
2

exp

(
−Γt

2

)(
Γcos(θ− tωd)+ 2ωd sin(θ− tωd)

)
(35)

for the quadratic case.
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