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Abstract
We employ frames consisting of rank-one projectors (i.e. pure quantum states) and their induced
informationally complete quantum measurements to represent generally mixed quantum states by
quasi-probability distributions. In the case of discrete frames on finite dimensional systems this
results in a vector like representation by quasi-probability vectors, while for the continuous frame
of coherent states in continuous variable (CV) systems the approach directly leads to the celebrated
representation by Glauber–Sudarshan P-functions and Husimi Q-functions. We explain that the
Kolmogorov distances between these quasi-probability distributions lead to upper and lower
bounds of the trace distance which measures the distinguishability of quantum states. We apply
these results to the dynamics of open quantum systems and construct a non-Markovianity witness
based on the Kolmogorov distance of the P- and Q-functions. By means of several examples we
discuss the performance of this witness and demonstrate that it is useful in the regime of high
entropy states for which a direct evaluation of the trace distance is typically very demanding. For
Gaussian dynamics in CV systems we even find a suitable non-Markovianity measure based on the
Kolmogorov distance between the P-functions which can alternatively be used as a witness for
non-Gaussianity.

1. Introduction

A topical issue in the quantum theory of open systems [1] is the definition, detection and quantification of
non-Markovian dynamics, i.e. dynamical processes determined by memory effects [2–4]. One approach
to the definition of non-Markovianity in the quantum regime is based on the concept of an information
flow between the open system and its environment [5]. According to this concept Markovian dynamics is
characterized by a continuous flow of information from the open system to its environment, while
non-Markovian behavior features a flow of information from the environment back to the open system.
To formulate these ideas in mathematical terms one has to introduce a suitable measure for the information
inside the open system. A natural such measure is given by the trace distance [6] between pairs of open
system states, since this distance has a direct interpretation in terms of the distinguishability of the quantum
states [7]. Thus, a quantum process is said to be Markovian if the trace distance and, hence, the
distinguishablility decreases monotonically in time and, vice versa, it is non-Markovian if the trace distance
shows a non-monotonic behavior, implying a temporary increase of the distinguishability which
characterizes the information backflow. We note that there are also entropic measures for this information
with similar properties [8, 9]. As a further concept one introduces the dynamical maps Λt, t⩾ 0, which
describe the evolution in time of the density matrix ρ of the open system as ρ(t) = Λt[ρ(0)]. This map is
known to be completely positive and trace preserving (CPTP) and has the important property to be a
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contraction for the trace distance [6, 10]. This leads to the following measure for the degree of memory
effects of a certain pair of initial states ρ1 and ρ2 of the open system [5, 11],

N (ρ1,ρ2,{Λt}) :=
ˆ

σ⩾0

dt σ(ρ1,ρ2, t) (1)

with σ(ρ1,ρ2, t) :=
d

dt
dtr

(
Λt[ρ1],Λt[ρ2]

)
, (2)

quantifying the total backflow of information form the environment into the system. Obviously, this
quantity depends on the chosen pair of initial states. To make this quantity independent of the initial state
pair and to obtain a function which only depends on the family of dynamical maps, one can take the
maximum over all initial state pair leading to the non-Markovianity measure

N ({Λt}) := max
ρ1,ρ2

N (ρ1,ρ2,{Λt}). (3)

This information flow approach to quantum non-Markovianity has been applied to many theoretical
models and experimental systems (see, e.g. the reviews [2, 3] and references therein). However, most
applications deal with relatively simple open systems, describing for example a qubit or a small number of
interacting qubits (e.g. a spin-chain) linearly coupled to bosonic or fermionic reservoirs with a structured
spectral density. For more complicated systems not only the determination of the dynamical evolution is
much more involved, even if it can be represented in terms of an exact or approximate master equation,
but also the calculation of the trace distance between the quantum states can become highly demanding,
especially for infinite dimensional continuous variable (CV) systems. In this paper we want to tackle these
difficulties by investigating non-Markovianity measures or at least non-Markovianity witnesses which are
more suitable for CV systems, employing representations of quantum states by means of quasi-probability
distributions.

To this end, we start in section 2 by introducing a vector-like representation of quantum states based on
generalized bases on bounded operators consisting of a set of fixed but not mutually orthogonal pure states
which we will address as quantum frames. We show that for any quantum state its decomposition into such a
quantum frame can be understood as a quasi-probabilistic mixture, and we will recapitulate how one can
connect these quantum frames to so called informationally complete positive operator valued measure
(IC-POVM) [12, 13], a class of quantum measurements especially useful in quantum tomography and
even experientially realizable [14, 15]. The frame based and the IC-POVM based representation of a
quantum state can then be used in section 3 to define distance measures for quantum states by applying
the Kolmogorov distance for probability distribution. We then will show how to use these measures in
order to approximate the trace distance.

While section 2 considers finite dimensional quantum systems only, we will reformulate in section 4
the idea for the continuous quantum frame of coherent states in CV systems and its connection to the
Glauber–Sudarshan P-function and the Husimi Q-function [16]. Again we apply the Kolmogorov distance to
these quasi-probability distributions in order to approximate the trace distance between given quantum
states. We also discuss the performance of this approximation with the help of a class of randomly generated
Gaussian states [17]. On the basis of this approximation we will construct in section 5 a suitable witness for
the non-Markovianity in CV systems using P- and Q-functions section 5.1 and illustrate this by means of the
example of a non-Markovian quantum oscillator section 5.2. In section 5.3 we focus on a special class of
dynamical maps which preserve the Gaussianity of an initial quantum state and discuss the time evolution of
the Kolmogorov distance between P-functions under those maps. This will lead us to a novel measure for
non-Markovianity for the case of Gaussian dynamics, since the Kolmogorov distance turns out to be
contracting under Gaussian CPTP maps. Finally we draw our conclusions in section 6 and give an outlook
on possible future studies, where one could apply the witnesses and measures of non-Markovianity
developed here.

2. Quantum frames and IC-POVM

We begin with a brief introduction to frames in general Hilbert spaces in order to clarify the terminology and
to sketch basic concepts. For more details, the reader is referred to reference [18]. A frame F = {| fi⟩} ⊂ H in
a Hilbert spaceH is a set of vectors satisfying span{F}=H. The immediate question now is: what is the
difference to a basis inH? The answer is the following:
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• Firstly, a basis has to be a minimal set spanning H while a frame might be overcomplete. In this sense a
frame is just a generalized notion of a basis.

• Secondly, when speaking of a basis we usually mean an orthonormal basis (ONB) for which ⟨ fi| f j⟩= δi j.
Although mathematically a basis is neither required to be orthogonal nor normalized, we will use the term
frame to stress that orthonormality of its elements is not assumed.

The possible non-orthogonality causes the major technical differences between ONBs and frames. An
important object in frame theory is the frame operator S :H→H defined by

S|v⟩=
∑
i

⟨ fi|v⟩| fi⟩. (4)

In case of an ONB the frame operator is simply the identity operator while for general frames it is not.
Later on, this frame operator will provide the link between a frame induced decomposition and a frame
induced measurement of a state. Furthermore, we can define a canonical dual frame via the frame operator as

F̃ :=
{
| f̃ i⟩= S−1| fi⟩

}
with |v⟩=

∑
i

⟨ f̃ i|v⟩| fi⟩. (5)

Again, in the case of an ONB we find F̃ = F and, hence, an ONB can be addressed as aminimal and
self-dual frame. However, although orthogonality simplifies decomposition and spanning significantly, it
might be of advantage to use non-orthogonal bases with certain other useful properties instead as we will do
in this paper (see below). Even further, it might be desirable to have a spanning set, i.e. a frame, which covers
some part of the vector space at hand more densely such that vectors one wants to decompose are already
closer (in a certain sense) to some frame elements and have decompositions more pronounced on a single
such element.

Let us now consider a quantum system with finite-dimensional Hilbert spaceH. We denote the space of
bounded operators onH by B(H), which becomes a Hilbert spaces on its own via the Hilbert–Schmidt
scalar product

⟨A,B⟩HS := tr
[
A†B

]
. (6)

The physical states of the quantum system are represented by density matrices ρ which are Hermitian
and positive operators with trace one [6]. Pure states of the system are represented by rank-one projections
ρ= |φ⟩⟨φ|, where |φ⟩ ∈ H is a normalized state vector. Any density operator has a spectral decomposition of
the form ρ=

∑
i pi |i⟩⟨i| with p⃗= (. . ., pi, . . .)T a probability distribution and {|i⟩} an ONB inH. Note that

two different mixed quantum states not only differ in their probability distribution p⃗ but typically have
different ONBs in their spectral decomposition, too. By contrast, the concept of frames allows the following
definition which will give a decomposition into a fixed set of pure states.

Definition 1. A frameF := {|ψi⟩⟨ψi|} ⊂ B(H) consisting of pure quantum states is called a quantum frame.

In the following we will assume F to be minimal (i.e. the |ψi⟩⟨ψi| form a basis in B(H) which, however,
cannot be orthogonal). Accordingly, any density matrix can be decomposed as

ρ=
∑
i

fi |ψi⟩⟨ψi|, (7)

where we have

ρ† = ρ⇔ fi ∈ R ∀i (8)

tr [ρ] = 1 ⇔
∑
i

fi = 1 (9)

⟨φ|ρ|φ⟩⩾ 0 ⇔
∑
i

fi |⟨ψi|φ⟩|2 ⩾ 0. (10)

Note that the last line has to be fulfilled for all |φ⟩ ∈ H in order to ensure the positivity of ρ. The
coefficients f i are referred to as frame decomposition coefficients (FDCs). We see that using quantum frames
we can decompose any mixed quantum state quasi-probabilistically (i.e. all f i are real and sum up to one but

3
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Figure 1. Example of the quantum frame FSIC = {|α⟩⟨α|, |β⟩⟨β|, |γ⟩⟨γ|, |δ⟩⟨δ|} inducing a symmetric-IC or SIC-POVM
[13] on a qubit (dimH= 2) represented by the Bloch sphere. The frame is minimal (i.e. can be regarded as a non-ONB of
B(H)) and due to its symmetry takes the shape of a regular tetrahedron in the Bloch sphere.

might be negative) into a fixed set of pure states. Furthermore, f⃗ = (. . . , fi, . . .)T is a vector like representation
of the mixed quantum state at hand which we will call the frame vector and indicate by means of

f⃗ ≃ ρ (11)

the one-to-one correspondence between the frame vector and the density matrix. The frame operator is
represented by

Si j = tr
[
|ψi⟩⟨ψi||ψ j⟩⟨ψ j|

]
= |⟨ψi|ψ j⟩|2, (12)

where S f⃗ is the frame vector of S(ρ).
A given quantum frame F = {|ψi⟩⟨ψi|} can also be associated to a rank-one or IC-POVM given by

{Ei := 1
ci
|ψi⟩⟨ψi|} such that

∑
i Ei = 1 [12, 13]. Such an IC-POVM is a mathematical expression of a

tomographic quantum measurement mapping a quantum state ρ to a probability distribution p⃗ with [6]

pi = tr [Eiρ] =
∑
j

f j
1

ci
tr
[
|ψi⟩⟨ψi||ψ j⟩⟨ψ j|

]
=
∑
j

1

ci
Si j f j =:

∑
j

Mi j f j, (13)

where we have introduced the matrixM with elementsMi j =
1
ci
Si j. This means that Ei is the effect operator of

outcome i while pi is the probability to measure this outcome if the system at hand is prepared in state ρ. The
term informationally complete refers to the fact that due to the underlying frame structure different quantum
states always have different IC-POVM probability distributions as well, i.e. the vector p⃗ encodes complete
information about its quantum state ρ and hence is a vector like representation of it, too,

p⃗≃ ρ, (14)

as used e.g. in [19, 20] (indeed, it is the decomposition into the canonical dual frame of F which does not
consist of pure quantum states anymore), or similarly in [21]. Assuming a minimal quantum frame the
matrixM is bijective and we find

M f⃗ = p⃗ and f⃗ =M−1 p⃗. (15)

One can understand the frame vector f⃗ as a decomposition based representation of ρ since it tells us how
to construct the quantum state at hand using the given frame. Yet the IC-POVM probability vector p⃗ is a
measurement based representation and encodes the results of measuring ρ using the frame-corresponding
IC-POVM and the link between both representations is the frame operator S reshaped as the matrixM, as
can be seen from equation (13). Again, the difference between both representations is caused by the
non-orthogonality of quantum frames.

We also want to point out once more that, although f⃗ might have single negative entries, p⃗ will always
have non-negative entries since it captures the actual probabilities corresponding to the tomographic
measurement with the IC-POVM at hand. Accordingly, f⃗ can only be guarantied to be quasi-probabilistic
while p⃗ is always properly probabilistic. However, we will use the term quasi-probability distributions further
on as the more general class which of course includes proper probability distributions as well.

A prominent and even experimentally realized example (see, e.g. [14, 15]) for quantum frame based
IC-POVMs are symmetric-IC-POVMs (or SIC-POVMs) which are associated to a minimal frame with

|⟨ψi|ψ j⟩|2 = 1+n·δi j
1+n and ci = n ∀i, where dimH= n [13], see figure 1.

4
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3. Distance measures for quantum states

In section 2 we have introduced a frame based quasi-probabilistic decomposition of density matrices into a
fixed set of pure states forming a so-called quantum frame. In this section we use these representations to
introduce distance measures for quantum states and compare them with the trace distance which is known as
a measure for the distinguishability of quantum states.

The trace distance between two quantum states ρ and σ defined by [6, 7]

dtr(ρ,σ) :=
1

2
||ρ−σ|| ≡ 1

2
tr|ρ−σ|, (16)

where ||A|| denotes the trace norm of an operator A, while the modulus is given by |A|=
√
A†A [22].

Defining the selfadjoint operator∆= ρ−σ and introducing its spectral decomposition∆=
∑

i λi |i⟩⟨i|,
we can thus write the trace distance as a sum over the moduli of the eigenvalues λi of ∆,

dtr(ρ,σ) =
1

2

∑
i

|λi|. (17)

The trace distance between two quantum states ρ and σ can be shown to be a measure for the
distinguishability of these states [6, 7] and has the following useful properties:

• 0⩽ dtr(ρ,σ)⩽ 1 and dtr(ρ,σ) = 1 ⇔ ρ⊥ σ
• dtr(V[ρ],V[σ]) = dtr(ρ,σ) for any unitary transformation V
• dtr(Λ[ρ],Λ[σ])⩽ dtr(ρ,σ) for any positive trace preserving (PTP) map Λ

We will use the trace distance later in section 5 to quantify the information flow between an open system
and its environment and, hence, to quantify non-Markovianity.

According to equation (17) we have to determine the spectrum of∆= ρ−σ in order to compute the
trace distance between two quantum states ρ and σ. However, in many practical applications this can be a
demanding problem, in particular in the case of high-dimensional or even infinite-dimensional Hilbert
spaces. If, for example, the quantum states at hand represent mixtures of many basis states of a CV system
(see below), it can be a hard task to compute a full matrix representation of ∆ and evaluate its eigenvalues.

One possible strategy to avoid these difficulties — which we will investigate in this paper — is to use the
vector like frame and IC-POVM based representations of the quantum states under consideration. Since
both are quasi-probabilistic one can apply distance measures for classical probability distributions to them,
e.g. the Kolmogorov distance [6]

dkol( p⃗, q⃗) :=
1

2

∑
i

|pi − qi|, (18)

where p⃗ and q⃗ are two probability distributions. Please note that, although originally developed for proper
probability distributions only, the Kolmogorov distance applies as a distance measure for the even larger
class of quasi-probability distributions, too, since positivity, symmetry and triangular inequality also
hold. Though, in contrast to proper probability distributions the Kolmogorov distance between two
quasi-probability distributions might take values greater than one.

With these definitions one finds the following chain of inequalities,

dkol( p⃗1, p⃗2)⩽ dtr(ρ1,ρ2)⩽ dkol( f⃗ 1, f⃗ 2), (19)

which states that the trace distance between any pair of quantum states is bounded from below by the
Kolmogorov distance of the corresponding quasi-probability vectors, and from above by the Kolmogorov
distance between the corresponding frame vectors. The proof is rather straight forward and given in
appendix A. Furthermore, please note that the left inequality can also be deduced from the more general
statement [6]

dtr(ρ1,ρ2) = max
{Ei}∈POVMs

dkol
(
p⃗{Ei}(ρ1), p⃗{Ei}(ρ2)

)
(20)

where the maximum is taken over all possible POVMs (not just IC-POVMs) and p⃗{Ei}(ρ)means the
probability distribution of a POVM {Ei} applied to a quantum state ρ.

Figure 2 illustrates the inequalities (19) for a SIC-POVM and its minimal and symmetric frame FSIC for a
qubit. For randomly generated pairs of quantum states the different distance measures are plotted over the
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Figure 2. A sample plot of 1000 randomly generated qubit state pairs ρ1 and ρ2. Plotted are the Kolmogorov distance between

their frame vectors f⃗ i, their probability vectors p⃗i and the average
1
2
(dkol( f⃗ 1, f⃗ 2)+ dkol

(
p⃗1, p⃗2)

)
of both using the a symmetric

minimal frame and its corresponding SIC-POVM over the trace distance dtr(ρ1,ρ2). The plot of trace distance over trace distance
represented by the diagonal is shown for orientation as well.

trace distance. First we see that in accordance with (19) the Kolmogorov distance between the frame vectors
and between the SIC-POVM probability distributions — encoded in their probability vectors p⃗— is always
above and below the trace distance, respectively. Furthermore, we find that with increasing trace distance the
spreading of the Kolmogorov distances between frame vectors and between probability vectors increases as
well. This is due to the fact that almost orthogonal state pairs allow for a larger variety of positioning
relatively to the convex hull of the quantum frame F at hand. Either one of the two states is within the
convex hull and its orthogonal complement is not, or both states are outside the convex hull. By definition
states within the convex hull have frame vectors consisting of entries fi ∈ [0,1] only, while states outside the
convex hull must have at least one negative entry and the sum of the other entries must be greater than one
to compensate this negativity. Accordingly, the absolute values | fi| of the FDCs of a state inside the convex
hull are on average smaller than in case of states outside the convex hull. Thus, if at least one state lies within
the convex hull the Kolmogorov distance between the frame vectors will be smaller than in the case when
both states are outside the convex hull. Further, this also explains that there is no general functional relation
between trace distance and Kolmogorov distance between frame vectors since two pairs of quantum states
might have the same trace distance but the Kolmogorov distance between their frame vectors might be
different anyway. The same holds for probability vectors, though less pronounced since their Kolmogorov
distances have to be smaller in general compared the distances between their corresponding frame vectors
and hence, the probability vectors are closer to each other by construction. Interestingly, we find that the
average of both Kolmogorov distances, i.e. 1

2

(
dkol( f⃗ 1, f⃗ 2)+ dkol( p⃗1, p⃗2)

)
, spreads as well with increasing

trace distance but almost symmetrically around the trace distance.

4. Coherent states as continuous quantum frame

We extend the concepts and investigations of section 3 to CV systems, employing coherent states often used,
e.g. in quantum optical systems, which actually form a continuous quantum frame [23] as will be explained
below. We start with a brief summary of the features which are relevant for our purposes, further details may
be found in references [16, 17, 24, 25].

Let us consider a CV system, describing a set of continuous degrees of freedom of a quantum mechanical
system, for example a number k of independent harmonic oscillators or bosonic field modes. As usual we
denote the vacuum or ground state by |0⟩ and the annihilation and creation operators of the ith mode by ai
and a†i , respectively. The Weyl displacement operator is given by D(α⃗) =

⊗k
i=1 exp[αi a

†
i −α∗

i ai] with
α⃗ ∈ Cn and α⃗∗ its complex conjugate. A coherent state of a single mode is defined as [16]

|α⟩ := D(α)|0⟩= e−|α|2/2
∞∑
n=0

αn

√
n!
|n⟩ (21)

6
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with |n⟩ the number states (Fock basis) of this single mode. For a multi-mode CV system a coherent state is
accordingly a tensor product of single mode coherent states

|α⃗⟩ := |α1⟩|α2⟩ . . . |αk⟩ (22)

The coherent state are eigenstates of the annihilation operator, a|α⟩= α|α⟩. Furthermore, the real and
imaginary part of the complex number α describes the expectation values of position q and of momentum p
of the coherent state. In fact, choosing appropriate units for position and momentum we have

q=
√
2 ℜ(α) and p=

√
2 ℑ(α). (23)

Thus, we can regard the Ck as a representation of the phase space of the multi-mode system at hand
where the ith complex plane represents the phase space of mode i.

Using (23) we can express the Weyl displacement operator and coherent states in proper phase space
coordinates x⃗ := (q1, p1, . . . ,qk, pk)T. Let qi and pi be position and momentum operator of mode i,
respectively, which are connected to creation and annihilation operators via the relations

qi =
√
2(a†i + ai) and pi =

√
2(a†i − ai). (24)

Using the symplectic form of the phase space

Ω=
k⊕

i=1

ω with ω =

(
0 1
−1 0

)
(25)

and X⃗ := (q1, p1, . . . ,qk, pk)
T we can finally write [16]

D(−x⃗) := D
(
α⃗(⃗x)

)
= exp

[
−i x⃗T Ω X⃗

]
, (26)

where α⃗(⃗x) simply means the complex vector representing the point x⃗ in phase space as described by (23).
Accordingly, one can equivalently define a single mode i coherent states as

|⃗xi⟩ := |αi(⃗xi)⟩= e−|⃗xi|2/4
∞∑
n=0

(qi + ipi)n√
2nn!

|n⟩. (27)

Although coherent states and characteristic functions (see below) are usually introduced using the
complex plane representation, we will continue using proper phase space vectors x⃗ since this vector
representation simplifies the notation of Gaussian states (see below). For simplicity we also assume only a
single mode further on but the concepts can easily be extended to multi-mode systems.

For mixed quantum states in CV systems there is a useful representation by characteristic functions and
quasi-probability distributions [16, 17]. The characteristic function of a mixed quantum state ρ is defined by

χs
ρ(⃗x) = tr [ρD(−x⃗)]e

s
4 |⃗x|

2

, (28)

where s ∈ [−1,1]. Its Fourier transform is the corresponding quasi-probability distribution

W s
ρ(⃗x) =

1

(2π)2

ˆ
R2

d⃗y χs
ρ(⃗y)e

−i y⃗TΩT x⃗. (29)

Note that these distributions are real-valued, integrate to one but might be locally negative. For s= 0 one
finds the so calledWigner function W0

ρ =Wρ [26], in the case s=−1 we obtain the Husimi Q-function
W−1

ρ = Qρ [27], while s= 1 yields the Glauber–Sudarshan P-function W1
ρ = Pρ [28, 29].

As already mentioned, coherent states also form a continuous quantum frame closely related to the
P- and Q-functions. It can be shown [16] that

ρ=

ˆ
R2

d2x Pρ(⃗x)|⃗x⟩⟨⃗x| (30)

and, invoking the completeness relation 1= 1
π

´
R2 d2x|⃗x⟩⟨⃗x|, one also finds

Qρ(⃗x) =
1

π
⟨⃗x|ρ|⃗x⟩= tr [E (⃗x)ρ] , (31)

7
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where

E (⃗x) = 1

π
|⃗x⟩⟨⃗x| (32)

are the elements of the continuous IC-POVM associated with the frame of coherent states. Thus, in the
context of coherent states as quantum frame we find that the P-function and the Q-function are analogous to
the frame vector f⃗ and to the IC-POVM probability distribution p⃗ of section 2, respectively. This analogy
also explains why the Q-function is a real probability distribution for any ρ, i.e. takes only non-negative
values for any quantum state. Furthermore, we can use (30) and (31) to express the transformation from one
distribution to the other as

Q(⃗x) =M[P](⃗x) =

ˆ
R2

d2y m(⃗x, y⃗)P(⃗y), (33)

where

m(⃗x, y⃗) =
1

π
|⟨⃗x|⃗y⟩|2 = 1

π
e−|⃗x−⃗y|2/2. (34)

The transition kernelm(⃗x, y⃗) represents the continuous version of the matrixMij in (13) and again

basically consists of the kernel expression of the frame operator s(⃗x, y⃗) = |⟨⃗x|⃗y⟩|2 = e−|⃗x−⃗y|2/2. And again
one can derive the same chain of inequalities between the trace distance of two quantum states and the
Kolmogorov distance between their Q- and P-functions

dkol(Q1,Q2) ⩽ dtr(ρ1,ρ2) ⩽ dkol(P1,P2). (35)

Here, the Kolmogorov distance of two continuous distributions R1 and R2 over phase space is defined by

dkol(R1,R2) =
1

2

ˆ
R2

d2x |R1(⃗x)−R2(⃗x)|. (36)

Again one can find the proof for both inequalities in appendix B, though the second inequality can also
been found in [30].

We also want to stress the point of P- and Q- function both playing two rather independent roles. On
the one hand they represent the continuous version of frame vector and IC-POVM probability vector for
the continuous quantum frame of coherent states and on the other hand they are also respectively the
symmetrically (s= 1) and anti-symmetrically (s=−1) ordered quasi-probability distributions over the
phase space of the CV system at hand. By contrast the Wigner function is just the normal ordered (s= 0)
quasi-probability distribution over phase space and has no meaning so far in context of coherent states as
continuous quantum frame. Accordingly, theWigner function is not considered further on within this article.

A special class of quantum states in CV systems are so called Gaussian states which are usually defined by
having a characteristic function for s= 0 that takes a Gaussian form [17]

χ0
ρ(⃗x) = exp

[
−1

4
x⃗TΩTσΩx⃗ + i x⃗TΩTd⃗

]
, (37)

where σ captures the statistical moments of second order (covariances) and d⃗ the statistical moments of first
order (mean values) of the operators q= X1 and p= X2

σi j = ⟨XiX j +X jXi⟩− 2⟨Xi⟩⟨X j⟩ and di = ⟨Xi⟩. (38)

In case of a Gaussian product state in a multi-mode system the characteristic function can be separated as
a product of independent single-mode Gaussian states

χ0
ρ(⃗x) =

k∏
i=1

exp

[
−1

4
x⃗Ti ω

Tσiωx⃗i + i x⃗Ti Ω
Td⃗i

]
(39)

where σi and d⃗i is the covariance matrix and displacement of the ith mode and the complete covariance
matrix and displacement is given as direct sum σ =

⊕k
i=1σi and d⃗=

⊕k
i=1 d⃗i.

With

χs
ρ(⃗x) = χ0

ρ(⃗x) e
s
4 |⃗x|

2

(40)

8
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we see immediately that for any value of s the characteristic function will be Gaussian as well and since
Gaussianity is preserved under Fourier transformation same is true for any quasi-probability distribution.
Using |⃗x|2 = x⃗Tx⃗= x⃗TΩTΩx⃗ one finds

χs
ρ(⃗x) = exp

[
−1

4
x⃗TΩT(σ− s1)Ωx⃗ + i x⃗TΩTd⃗

]
(41)

= exp

[
−1

4
x⃗TΩTσsΩx⃗ + i x⃗TΩTd⃗

]
(42)

with σs := σ− s1 and by this

W s
ρ(⃗x) =

1

π
√
detσs

exp

[
−
(⃗
x− d⃗

)T
σ−1

s

(⃗
x− d⃗

)]
. (43)

Note that for coherent states |⃗x⟩⟨⃗x| we have σ = 1 and d⃗= x⃗ such that the P function reduces to
P|⃗x⟩⟨⃗x|(⃗y) =W s=1

|⃗x⟩⟨⃗x|(⃗y) = δ(⃗y− x⃗) as expected. Further on we define σP := σ1 and σQ := σ−1 as the
covariance matrices for P and Q function over phase space. These definitions together with σs := σ− s1
lead to

σQ = σP + 2 ·1, (44)

i.e. for a given Gaussian quantum state its P- and Q-function are both Gaussian shaped, centered around the
same mean value d⃗ and the Q-function is broadened compared to the P-function by an offset of 2 ·1 in the
covariance matrix.

Figure 3 shows a sample plot for a CV-system similar to figure 2 for the qubit. For simplicity we restrict
ourselves to Gaussian quantum states as introduced above with their P-function given as

P(⃗x) =
1

π
√
detσP

exp

[
−
(⃗
x− d⃗

)T
σ−1

P

(⃗
x− d⃗

)]
. (45)

We plot the Kolmogorov distances dkol(P1,P2), dkol(Q1,Q2) and their difference dkol(P1,P2)−
dkol(Q1,Q2) over dkol(P1,P2) for different scenarios of state pairs. As stated above each Gaussian state
is uniquely defined by the displacement of its center d⃗ and its covariance matrix σP. The displacement
and the covariance matrix is expressed as

d⃗= d

(
cos(φd)
sin(φd)

)
and σP = S(φ)

(
σ00 0
0 σ11

)
S(φ)T, (46)

where S(φ) is a rotation by φ in the phase plane. Thus we can characterize any Gaussian state by its randomly
drawn parameters d, φd, σii and φ.

In figure 3 we observe a transition of the differences between the two distances for increasing values of
σii. If on the one hand the σii are small the state ρ=

´
R2 d2xP(⃗x)|⃗x⟩⟨⃗x| has a low von Neumann entropy (see

below) and we can approximate it by means of the matrix representation ρmn = ⟨m|ρ|n⟩ using only a small
number of Fock basis states |m⟩. This is the scenario plotted in figure 3(a) from which one can immediately
see that the difference between dkol(P1,P2) and dkol(Q1,Q2) is rather large and, hence, both distances do not
yield a good approximation of the trace distance dtr. This effect can be explained by the relation (44) between
the covariance matrices of the P-function and the Q-function. In case of small diagonal entries in σP the
offset of 2 ·1 widens the distribution significantly. As a consequence, although two close but very thin
P-functions might have a Kolmogorov distance of almost one, their corresponding Q-functions will show
significant overlap and hence a much smaller Kolmogorov distance. However, note that in this low entropy
regime a direct evaluation of the trace distance by means of a truncated Fock space representation is typically
feasible and much more efficient.

On the other hand, if the σii are large this results in a large von Neumann entropy and due to the broad
distribution a large number of relevant entries in the Fock-state representation. Figure 3(d) shows this case
and we see that dkol(P1,P2) and dkol(Q1,Q2) are always very close to each other. Again, we can understand
this effect by using (44) since now the width σP is already so large that the offset of 2 ·1 does not cause a
significant change. Accordingly, in this large entropy regime the Kolmogorov distance approximates the trace
distance quite well. This is of particular interest since the Fock-state matrix representation will include such a
huge number of relevant entries that a direct computation of the trace distance would turn out to be highly

9
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Figure 3. A sample plot of dkol(P1,P2) and dkol(Q1,Q2) as well as their difference over dkol(P1,P2) for 1000 randomly drawn pairs
of Gaussian quantum states in four different scenarios. According to (46) each Gaussian state is defined by its parameters d, φd,
σ00, σ11 and φ which are drawn uniformly from the intervals indicated in the captions to each subplot. The first scenario
(a) describes a low entropy regime, while the last scenario (d) is characterized by large entropies, involving a much broader
distributions of excited Fock states. The scenarios (b) and (c) illustrate the transition between both regimes.

challenging. The plots in figures 3(b) and (c) indicate the transition between the low and high entropy
regimes, which might also be characterized as quantum and classical like regimes.

The connection of the different scenarios of figure 3 to the von Neumann entropy is illustrated in
figure 4, where one finds for the state pairs of figure 3 a plot of their differences of Kolmogorov distances
between P- and Q-functions over their average von Neumann entropy 1

2 (Sv.N.(ρ1)+ (Sv.N.(ρ2)). The von
Neumann entropy of a Gaussian state can be computed using the symplectic eigenvalues of its Wigner
functions covariance matrix σ0 =: σ [16]. The symplectic eigenvalues±v of σ are the eigenvalues of the
matrix iΩσ which come as a pair of two real numbers differing only in their sign [16], i.e. we can define
the symplectic eigenvalue v as the positive one (in case of more than one mode we find one symplectic
eigenvalue for each mode). The von Neumann entropy then reads [16]

Sv.N.(ρ) =−tr{ρ log2ρ}=
v+ 1

2
log2

(
v+ 1

2

)
− v− 1

2
log2

(
v− 1

2

)
. (47)

Of course the von Neumann entropy of two states in a pair might differ but since both states are generated
using parameters from the same intervals, their von Neumann entropies are typically of the same order of
magnitude. One finds a clear transition from large scattering in case of low entropies to very small scattering
in case of high entropy. The four clusters seen in figure 4 correspond to the four scenarios shown in figure 3.

Finally, we have to make some general remarks concerning the plots of figure 3. Firstly, we see that even
the Kolmogorov distance of the P functions — in contrast to the Kolmogorov distance of the frame vectors in
the qubit case of figure 2 — is bounded by one. This is simply due to the fact that the plot is restricted to

10
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Figure 4. Difference between the Kolmogorov distances between P- and Q-functions dkol(P1,P2)− dkol(Q1,Q2) for each pair
plotted over their average von-Neumann entropy 1

2
(Sv.N.(ρ1)+ (Sv.N.(ρ2)) computed numerically by using (47).

Gaussian states for which even the P-function and the W-function are proper probability distributions.
Secondly, we have to note that due to our restriction to Gaussian states we have to be a bit careful when
drawing general conclusions about the behavior of Kolmogorov distances between quasi-probability
distributions in an entropic transition. Nevertheless, Gaussian states are often understood as prototypical
states of CV systems and are widely used in many fields [17, 25, 31–33]. Thus, any knowledge of their
behavior in an entropic transition is certainly of value and interest and might hint to more general
statements of further investigations.

5. Non-Markovianity and CV systems

5.1. Witnessing non-Markovianity with P- and Q-functions
In this section we will use the distance measures introduced above in order to detect and quantify
non-Markovianity, i.e. memory effects in the dynamics of open quantum systems described by a family of
dynamical maps {Λt}. To this end, we employ the notion of quantum non-Markovianity based on the
information flow between the open system and its environment. As explained in the introduction, this
information flow is quantified by the trace distance between a pair of quantum states which represents a
measure for the distinguishability of these states. However, as already mentioned in section 3 the calculation
of the trace distance can become very demanding, in particular for CV systems. Though, based on the
approximation of the trace distance by the Kolmogorov distances between P- and Q-functions as explained
in section 4, we can define an easily accessible witness of non-Markovianity in such CV systems. In fact, if
we find

dkol
(
Q1(t),Q2(t)

)
> dkol

(
P1(s),P2(s)

)
for some t> s (48)

we conclude from the inequalities (35) that the trace distance dtr
(
ρ1(τ),ρ2(τ)

)
increases for some τ ∈ [s, t],

i.e. non-Markovian effects emerge during this time interval. In a different context a similar strategy has been
proposed in [34].

5.2. Example: non-Markovian damped oscillator
We discuss the criterion (48) with the help of the example of a damped harmonic oscillator given by the
master equation

d

dt
ρ(t) =−iω[a†a,ρ] + γ−(t)

(
aρ(t)a† − 1

2

{
a†a,ρ(t)

})
+γ+(t)

(
a†ρ(t)a− 1

2

{
aa†,ρ(t)

})
(49)

with constant frequency ω and time dependent emission and absorption rates γ−(t) and γ+(t), respectively.
If γ±(t)⩾ 0 for all t⩾ 0 the dynamical map is CP divisible and, hence, describes a Markovian dynamics [3].
We therefore allow temporarily negative rates setting γ±(t) := γ± sin(Ωt). Transforming the master equation

11
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Figure 5. Plot of dkol(P1(t),P2(t)) and dkol(Q1(t),Q2(t)) for the master equation (50) withΩ= 2π, γ− = 10π and γ+ = 2π.

The initial states are both Gaussian with d⃗1,2 =±6 and σ1,2 = 21 as displacement and covariance matrix of their P-functions.

to the interaction picture we thus have

d

dt
ρ(t) = γ− sin(Ωt)

(
aρ(t)a† − 1

2

{
a†a,ρ(t)

})
+γ+ sin(Ωt)

(
a†ρ(t)a− 1

2

{
aa†,ρ(t)

})
. (50)

In the following we assume γ− ⩾ γ+ and set γ0 := γ− − γ+ ⩾ 0. As is shown in appendix C the master
equation (50) can easily be solved for Gaussian initial states by determining the mean values ⟨a⟩(t), ⟨a2⟩(t)
and ⟨a†a⟩(t) which directly yield the time evolution of d⃗(t) and σP(t):

d⃗(t) = d⃗(0)D(t) (51)

σP(t) = σP(0)D(t)
2 +

2γ+
γ0

(
1−D(t)2

)
1, (52)

where we have introduced

D(t) := e−
γ0
2Ω

(
1−cos(Ωt)

)
. (53)

The condition γ0 ⩾ 0 ensures that D(t)⩽ 1, and we see that γ±/Ω can be understood as a measure for
the size of the coupling (for emission and absorption, respectively).

Figure 5 shows an example of the time evolution of the Kolmogorov distances between P- and
Q-functions for the non-Markovian damped oscillator. We can immediately see that the criterion (48) can be
applied here to prove non-Markovianity of the dynamics. It can even be used to obtain a lower boundNmin

for the trace distance based non-Markovianity measure defined by (1). In order to approximate this measure
for a time interval [s, t] between a minimum of dkol(P1,P2) and a following maximum of dkol(Q1,Q2) we use
inequalities (48) to get

N (ρ1,ρ2,{Λτ |τ ∈ [s, t]})⩾ dtr
(
ρ1(s),ρ2(s)

)
− dtr

(
ρ1(t),ρ2(t)

)
⩾ dkol

(
Q1(t),Q2(t)

)
− dkol

(
P1(s),P2(s)

)
=:Nmin(ρ1,ρ2,{Λτ |τ ∈ [s, t]}). (54)

For example, in the case shown in figure 5 we can use [s, t] = [0.5,1.0] which givesN (ρ1,ρ2,{Λτ |
τ ∈ [0.5,1.0]}) ⩾ 0.876.

Figure 6 shows the lower boundNmin of the non-Markovianity as a function of the parameters γ+

γ−
and

γ−
Ω for the same initial states as used in figure 5. As one can see for γ+

γ−
→ 1 as well as for γ−

Ω → 0 the

witnessed non-MarkovianityNmin approaches zero. This can be understood if we rewrite expression (53) for
D(t), which mainly controls the dynamics and the non-Markovianity of the process, as follows

D(t) = exp

[
−1

2

γ−
Ω

(
1− γ+

γ−

)(
1− cos(Ωt)

)]
. (55)
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Figure 6. Color plot of the lower bound of the non-MarkovianityNmin for the dynamics given by the master equation (50) over
varying parameters

γ+

γ−
and

γ−
Ω

. The initial states are the same as those used in figure 5.

Figure 7. Plot of the evolution of Kolmogorov distances for different parameter values for the dynamics given by (50). For all plots
the initial states are chosen according to figure 5 andΩ= 2π always. Thus, subplot (a) can be found in the upper left corner,
subplot (b) in the lower left corner, subplot (c) in the bottom middle and subplot (d) in the right middle part of figure 6
respectively.

13
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In figure 7 one can find the evolution of the two Kolmogorov distances for different parameters reflecting
four different areas in the plot of figure 6. Subfigures (b) and (c) are both cases in which we can witness
almost no non-Markovianity, although for completely different reasons. In the case of (b) the approximation
of the trace distance by the two Kolmogorov distances is for the whole time interval rather inaccurate since
both Kolmogorov distances differ significantly. Hence, we just cannot witness a lot of non-Markovianity
although there might be much more. Yet, in the case of (c) the approximation is sufficiently accurate but the
dynamics shows just a small amount of non-Markovianity due to the weak coupling to the environment.
The maximal non-Markovianity can be witnessed in subplot (a) reflecting the ideal parameter range for
witnessing non-Markovianity, while in subplot (d) the witness works sufficiently well, too, yet the dynamics
only leads to a medium amount of non-Markovianity.

5.3. Gaussian evolution of P-function Kolmogorov distance
Gaussian states are of special interest e.g. in quantum optics where they are often seen as a typical class of
almost classical states (since for all values of s one finds an actually positive functionW s

ρ) as well as in CV
quantum information since they are easily experimentally realizable and controllable [17, 35]. Accordingly,
one often focuses on CPTP dynamical maps which preserve the Gaussian character of the input state and are
hence addressed as Gaussian quantum channels [16, 17, 36].

For any CPTP dynamical map Λ on a CV system we can define its action on P-functions as

Λ[Pρ](⃗x) = PΛ(ρ)(⃗x), (56)

which yields the explicit representation

PΛ(ρ)(⃗x) =

ˆ
R2

d2y λ(⃗x, y⃗)Pρ(⃗y), (57)

where

λ(⃗x, y⃗) = PΛ(|⃗y⟩⟨⃗y|)(⃗x) (58)

is the P-function of the image under Λ of the coherent state |⃗y⟩⟨⃗y|. The kernel λ can be understood as
continuous analog of the transition matrix mapping an input distribution to an output distribution for a
discrete classical stochastic process [37]. This leads us to the following theorem.

Theorem 1. For any pair of quantum states ρ1 and ρ2 on a CV quantum system the Kolmogorov distance
between their Glauber–Sudarshan P-functions P1 and P2 is contracting under any Gaussian quantum channel.

Proof. Let P′ = Λ[P] be the image of P under a Gaussian quantum channel Λ. We find

dkol(P
′
1,P

′
2) =

1

2

ˆ
R2

d2x

∣∣∣∣ˆ
R2

d2y λ(⃗x, y⃗)(P1(⃗y)− P2(⃗y))

∣∣∣∣ (59)

⩽ 1

2

ˆ
R2

d2x

ˆ
R2

d2y |λ(⃗x, y⃗)| · |P1(⃗y)− P2(⃗y)| (60)

=
1

2

ˆ
R2

d2x

ˆ
R2

d2y λ(⃗x, y⃗)|P1(⃗y)− P2(⃗y)| (61)

=
1

2

ˆ
R2

d2y

(ˆ
R2

d2x PΛ(|⃗y⟩⟨⃗y|)(⃗x)

)
︸ ︷︷ ︸

=1

|P1(⃗y)− P2(⃗y)| (62)

= dkol(P1,P2), (63)

where we have used the fact that coherent states are Gaussian and, hence, λ(⃗x, y⃗) = PΛ(|⃗y⟩⟨⃗y|)(⃗x) has to be again
a Gaussian state for a Gaussian channel Λ, and is therefore a positive function.

This theorem has several interesting consequences. First, it implies that any increase of the Kolmogorov
distance between two P-functions is due to a violation of the CPTP property or to a violation of Gaussianity
preservation. Let us first suppose we have a family of dynamical maps {Λt} which is known to preserve
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Gaussianity for all t. We can then use the Kolmogorov distance of the P-functions instead of the trace
distance in the definition of non-Markovianity [3, 5] which leads to the novel non-Markovianity measure

NP(ρ1,ρ2,{Λt}) :=
ˆ

δ⩾0

dt δ(ρ1,ρ2, t) (64)

with δ(ρ1,ρ2, t) :=
d

dt
dkol

(
Λt[P1],Λt[P2]

)
. (65)

This quantity measures the backflow of information for a certain pair of quantum states by means of the
Kolmogorov distance of the corresponding P-functions P1 and P2. By maximizing over all possible pairs of
initial states we obtain

NP({Λt}) := max
ρ1,ρ2

NP(ρ1,ρ2,{Λt}). (66)

This is a measure of the non-Markovianity of a given family of Gaussian dynamical maps {Λt} which is
analogous to the trace distance based measure defined by equations (1)–(3), but which is significantly easier
to use in the case of CV systems. An example is given by the non-Markovian damped oscillator discussed in
the previous section 5.2 which is obviously described by a Gaussianity preserving family of dynamical maps.
We emphasize again that this measure only requires the dynamical maps Λt to be Gaussianity preserving,
while the initial states are allowed to be arbitrary although we chose them to be Gaussian in figure 5 for
reasons of computational simplicity. A further example is the Caldeira–Leggett model of quantum Brownian
motion [38, 39], which may be treated analogously to the procedure used in [40].

Finally we suggest another application of theorem 1. If we know for sure that the dynamical map is CP
divisible (see, e.g. [3]) any increase of the Kolmogorov distance between the P-functions provides a witness
for the non-Gaussianity of the dynamical map. Note that this criterion of the increase of the Kolmogorov
distance only represents a sufficient condition for non-Gaussianity since we might think of a CPTP map
which maps a coherent state to a non-Gaussian state with nevertheless positive P function. Since the proof
relies only on the positivity of λ(⃗y, x⃗) and not on its Gaussianity, this would result in a contraction of the
Kolmogorov distance as well.

6. Conclusion

In this paper we used a vector like representations of quantum states by (quasi) probability distributions
based on quantum frames and their induced IC-POVMs. The first we called the frame vector f⃗ and the latter
the IC-POVM probability vector p⃗ of a quantum state ρ. To distinguish two quantum states ρ1 and ρ2 the

Kolmogorov distance (as a distance measure for probability distributions) was applied to both f⃗ 1,2 and p⃗1,2
to find an upper bound (by dkol( f⃗ 1, f⃗ 2)) and a lower bound (by dkol( p⃗1, p⃗2)) of the trace distance between
ρ1 and ρ2.

Having discussed these bounds for the case of a SIC-POVM and its symmetric quantum frame on a
qubit, we applied this idea to the continuous quantum frame given by the coherent states in a CV system. We
saw that the frame vector f⃗ has to be replaced by the Glauber–Sudarshan P-function and the probability
vector p⃗ by the Husimi Q-function — both two widely used quasi-probability distributions for quantum
states. As for the discrete case an inequality chain holds for these continuous quasi-probability distributions,
providing again upper and lower bounds for the trace distance. We illustrated the performance of these
bounds for a class of randomly generated Gaussian states and demonstrated that the bounds become steadily
tighter for high entropy states. Thus, for large-entropy quantum states one can approximate successfully their
trace distance by the Kolmogorov distances between their P- and Q-functions. This is of particular interest
since the numerical computation of the trace distance of quantum states becomes highly demanding in the
regime of large entropies, while on the other hand an efficient determination of the trace distance is relatively
easy for low entropy states in a suitable basis of the state space. Thus, the method proposed here is in a
certain sense complementary to the direct determination of the trace distance by diagonalization in
low-dimensional Hilbert spaces.

Building on these result we constructed a witness for the non-Markovianity of the dynamics of open
quantum systems which is based on the Kolmogorov distances between P- and Q-functions and applied it to
the model of a non-Markovian oscillator. The witness was also shown to lead to a lower bound for the
non-Markovianity measure based on the trace distance which is again particularly efficient in the regime of
high entropy states. Furthermore, we showed that the Kolmogorov distance between P-functions has to
contract under any Gaussian CPTP map (Gaussian quantum channel). Based on this we derived a proper
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non-Markovianity measure for Gaussian quantum dynamical maps, i.e. maps that preserve the Gaussianity
of quantum states. Finally, we suggested another application of the contraction property, namely to use it as a
witness for non-Gaussianity in case one knows for sure the dynamical map to be Markovian.

For future work we suggest to apply the non-Markovianity measure for Gaussian dynamics to more
complex systems, e.g. the Caldeira–Leggett model of quantum Brownian motion, or to the dynamics of open
systems described by more realistic non-Markovian quantum master equations. Beyond the regime of
Gaussian dynamics one can of course still use our non-Markovianity witness, which might be a possible
approach to investigate non-Markovian interacting many-body systems. To this end, it will be helpful to find
a more detailed characterization of the scenarios in which this witness works especially efficient and to
investigate if the observed quality of the approximation for high entropy quantum states actually holds in
more general situations.
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Appendix A. Proof of equation (19)

We start with the first inequality which states that the Kolmogorov distance between two IC-POVM
probability vectors is smaller or equal to the trace distance between the quantum states at hand. Introducing
the spectral decomposition of∆ := ρ1 −ρ2 =

∑
a∆a|a⟩⟨a| we obtain

dkol.( p⃗1, p⃗2) =
1

2

∑
i

∣∣p1i − p2i
∣∣= 1

2

∑
i

|tr [Eiρ1]− tr [Eiρ2]| (A.1)

=
1

2

∑
i

|tr [Ei∆]|= 1

2

∑
i

∣∣∣∣∣tr
[∑

a

∆aEi |a⟩⟨a|

]∣∣∣∣∣ (A.2)

⩽ 1

2

∑
i,a

|∆atr [Ei |a⟩⟨a|]︸ ︷︷ ︸
⩾0

|= 1

2

∑
i,a

|∆a| tr [Ei |a⟩⟨a|] (A.3)

=
1

2

∑
a

|∆a| tr

[∑
i

Ei |a⟩⟨a|

]
︸ ︷︷ ︸

=tr[1|a⟩⟨a|]=1

=
1

2

∑
a

|∆a|︸ ︷︷ ︸
=tr|∆|

(A.4)

=
1

2
tr|ρ1 −ρ2|= dtr(ρ1,ρ2). (A.5)

Note that we actually do not need {Ei} to be an IC-POVM associated to a quantum frame. In fact, the
first inequality is actually true for any POVM.

For the second inequality stating that the trace distance between two quantum states is smaller or equal
to the Kolmogorov distance between their quantum frame vectors we use ρ1 −ρ2 =

∑
i ( f

1
i − f 2i )|ψi⟩⟨ψi|

to get

dtr(ρ1,ρ2) =
1

2
∥ρ1 −ρ2∥=

1

2

∥∥∥∥∥∑
i

( f 1i − f 2i )|ψi⟩⟨ψi|

∥∥∥∥∥ (A.6)

⩽ 1

2

∑
i

||( f 1i − f 2i )|ψi⟩⟨ψi||| (A.7)

=
1

2

∑
i

| f1i − f 2i | · |||ψi⟩⟨ψi||| (A.8)
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=
1

2

∑
i

| f1i − f 2i |= dkol( f⃗ 1, f⃗ 2), (A.9)

where we have used that the trace norm satisfies the triangular inequality and that the trace norm of a
rank-one projection is equal to one. □

Appendix B. Proof of equation (35)

The proof runs similar to the one of appendix A. Based on the completeness relation [16]

1

π

ˆ
d2α |α⟩⟨α|= 1 (B.1)

we define for simplicity E(α) = 1
π |α⟩⟨α|, i.e. we have Qρ(α) = tr [E(α)ρ], as well as again

∆ := ρ1 −ρ2 =
∑

i ∆i |i⟩⟨i|. The first inequality is then obtained as follows,

dkol(Q1,Q2) =
1

2

ˆ
d2α |Q1(α)−Q2(α)|=

1

2

ˆ
d2α |tr [E(α)∆] | (B.2)

=
1

2

ˆ
d2α

∣∣∣∣∣∣∣
∑
i

∆i tr [E(α)|i⟩⟨i|]︸ ︷︷ ︸
⩾0

∣∣∣∣∣∣∣ (B.3)

⩽ 1

2

ˆ
d2α

∑
i

|∆i|tr [E(α)|i⟩⟨i|] (B.4)

=
1

2

∑
i

|∆i|tr
[ˆ

d2αE(α)|i⟩⟨i|
]
=

1

2

∑
i

|∆i|tr [1|i⟩⟨i|]︸ ︷︷ ︸
=1

(B.5)

= dtr(ρ1,ρ2). (B.6)

To prove the second inequality we use ρ1 −ρ2 =
´
d2α

(
P1(α)− P2(α)

)
|α⟩⟨α| which yields

dtr(ρ1,ρ2) =
1

2
∥ρ1 −ρ2∥=

1

2

∥∥∥∥ˆ d2α
(
P1(α)− P2(α)

)
|α⟩⟨α|

∥∥∥∥ (B.7)

⩽ 1

2

ˆ
d2α |P1(α)− P2(α)| · ∥|α⟩⟨α|∥= dkol(P1,P2), (B.8)

where we have again used properties of the trace norm. □

Appendix C. Solution of the master equation

The master equation is given by

d

dt
ρ(t) = γ− sin(Ωt)

(
aρ(t)a† − 1

2

{
a†a,ρ(t)

})
+ γ+ sin(Ωt)

(
a†ρ(t)a− 1

2

{
aa†,ρ(t)

})
, (C.1)

and for any time independent operator ô we have

d

dt
⟨ô⟩= d

dt
tr [ôρ] = tr

[
ô
d

dt
ρ

]
. (C.2)

Furthermore, we know that for Gaussian states the Wigner functionW(q, p) over the phase space with is
defined by its displacement vector and covariance matrix

di = ⟨Xi⟩ and σi j = ⟨XiX j +X jXi⟩− 2⟨Xi⟩⟨X j⟩ (C.3)
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with X⃗= (q, p)T = 1√
2

(
a+ a†,−i(a− a†)

)T
. Accordingly we find

d0 =
1√
2

(
⟨a⟩+ ⟨a†⟩

)
and d1 =

−i√
2

(
⟨a⟩− ⟨a†⟩

)
(C.4)

as well as

σ00 = var(a)+ var
(
a†
)
+ 2

(
⟨a†a⟩− ⟨a†⟩⟨a⟩

)
+ 1 (C.5)

σ11 =−var(a)− var
(
a†
)
+ 2

(
⟨a†a⟩− ⟨a†⟩⟨a⟩

)
+ 1 (C.6)

σ01 = σ10 =−i
(
var(a)− var

(
a†
))

(C.7)

with var(ô) = ⟨ô2⟩− ⟨ô⟩2. Using (C.2) we now find

d

dt
⟨a⟩(t) = γ−(t)tr

[
aaρa† − 1

2
(aa†aρ+ aρaa†)

]
+ γ+(t)tr

[
aa†ρa− 1

2
(aaa†ρ+ aρaa†)

]
(C.8)

= γ−(t)tr

[
a†aaρ− 1

2
aa†aρ− 1

2
a†aaρ

]
+ γ+(t)tr

[
aaa†ρ− 1

2
aaa†ρ− 1

2
aa†aρ

]
(C.9)

=
γ−(t)

2
tr
[
−[a,a†]aρ

]
+
γ+(t)

2
tr
[
a[a,a†]ρ

]
(C.10)

= −γ−(t)− γ+(t)

2
⟨a⟩(t) (C.11)

with γ±(t) = γ± sin(Ωt) and in the last step we have used [a,a†] = 1. Similar calculations also lead to

d

dt
⟨a†⟩(t) =−γ−(t)− γ+(t)

2
⟨a†⟩ (C.12)

d

dt
⟨a2⟩(t) =−(γ−(t)− γ+(t))⟨a2⟩ (C.13)

d

dt
⟨(a†)2⟩(t) =−(γ−(t)− γ+(t))⟨(a†)2⟩. (C.14)

To obtain ⟨a†a⟩ we proceed as follows,

d

dt
⟨a†a⟩= γ−(t)tr

[
a†aaρa− 1

2
a†aa†aρ− 1

2
a†aρa†a

]
+ γ+(t)tr

[
a†aa†ρa− 1

2
a†aaa†ρ− 1

2
a†aρaa†

]
(C.15)

= γ−(t)tr
[
a† [a†,a] aρ

]
+ γ+(t)tr

[
aa†aa†ρ− 1

2
(aa† + [a†,a])aa†ρ− 1

2
aa†(aa† + [a†,a])ρ

]
(C.16)

= −γ−(t)tr
[
a†aρ

]
+ γ+(t)tr

[
a†aρ+ [a,a†]ρ

]
(C.17)

= −γ−(t)⟨a†a⟩+ γ+(t)
(
⟨a†a⟩+ 1

)
. (C.18)

With γ0 = γ− − γ+ and D(t) = e
γ0
Ω

(
cos(Ωt)−1

)
these differential equations get solved by

⟨a⟩(t) = ⟨a⟩0D(t) (C.19)

⟨a†⟩(t) = ⟨a†⟩0D(t) (C.20)

⟨a2⟩(t) = ⟨a2⟩0D(t)2 (C.21)
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⟨(a†)2⟩(t) = ⟨(a†)2⟩0D(t)2 (C.22)

⟨a†a⟩(t) =
(
⟨a†a⟩0 −

γ+
γ0

)
D(t)2 +

γ+
γ0
, (C.23)

which finally yields

d⃗(t) = d⃗(0)D(t) (C.24)

σ(t) = σ(0)D(t)2 +
2γ+
γ0

(
1−D(t)2

)
1+1. (C.25)

Since σ = σ0 is the covariance matrix of the Wigner function and σP = σ1 = σ0 −1 one finally gets the
covariance matrix of the P-function

σP(t) = σP(0)D(t)
2 +

2γ+
γ0

(
1−D(t)2

)
1, (C.26)

while the displacement is the same for Wigner function and P-function.
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