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Abstract
It is a central tenet of quantum mechanics that spatial resolution is limited by the wave nature of
particles. Energies of stationary states reflect delocalized wave functions and cannot be ascribed to
any single point. Yet, electrons confined in nanostructures become localized against the boundary
by strong electric fields. Energies then reflect the local curvature of the nanostructure surface
rather than entire volume. We propose using spectroscopy of Stark-localized states to map
nanostructure surface curvature. By varying field direction, local curvatures are extracted from
absorption spectra. Moreover, the required field strength is shown to be feasible experimentally.
We use nanowires with elliptic cross section as a detailed benchmark providing quantitative error
estimates and practical guide lines.

1. Introduction

Optical spectroscopy is among the most useful techniques for characterization of nanostructures [1–3].
Both energy levels and symmetry properties are revealed by various optical probes. Nanostructures
suspended in vacuum or air are characterized by tall barriers confining electrons to their interior [1–5]. In
turn, electrons and holes in the interior behave essentially as free particles except that their apparent mass is
the effective one. As a consequence, electron and hole eigenstates are solutions of the Helmholtz equation.
Their eigenvalues are, therefore, properties of the entire surface bounding the nanoparticle. Kac famously
asked ‘can you hear the shape of a drum?’ in relation to the equivalent problem of a vibrating membrane
[6]. The answer turned out to be ‘no’ since knowing all eigenvalues is not enough to uniquely determine
shape. Knowing only part of the spectrum leads to even greater shape uncertainty. The question we ask in
the present work is whether or not optical spectroscopy can determine nanostructure surface geometries. As
with the vibrating drum, the answer is clearly ‘no’ if only surfaces restrict eigenstates. Electrons, however,
differ from drums by being highly sensitive to strong electric fields. In the present work, we propose using
the Stark effect in strong electric fields to facilitate local probes of the nanostructure geometry. Thus, a
sufficiently strong Stark field will push electrons and holes against the barrier and, in turn, a weak infrared
field probing transitions between Stark-localized states will reveal the local surface curvature. By varying the
direction of the Stark field, a full mapping of the curvature is possible.

The envisioned experimental setup is sketched in figure 1. We focus on translationally invariant
nanowires in a transverse Stark field, cf figure 1(a). In addition, a weak optical probe field is present. The
polarization of the probe field must have a component perpendicular to both Stark field and nanowire
long-axis in order to probe transitions between confined states as shown in figure 1(b). Note that this setup
would apply equally well to two-dimensional islands and patches such as graphene nanodisks [7] subject to
in-plane fields. A strong Stark field will pull electrons and push holes against the barrier, respectively. The
stronger the field, the more tightly confined the carriers. Eventually, states cease to be delocalized over the
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Figure 1. (a) Schematic setup showing a nanowire in a strong Stark field and weak infrared probe field. (b) The Stark field
pushes carriers against the boundary, such that resonant absorption of a perpendicular probe field becomes sensitive to local
radius of curvature R. Electrons (blue) and holes (red) Stark-localize on opposite sides.

entire cross section but, instead, find themselves confined by the field and the barrier at the point of
maximal Stark effect on the nanowire boundary, as sketched in figure 1(b). Electrons and holes are, thus,
Stark-localized near points on the boundary with maximum displacement in the negative and positive field
direction, respectively. Importantly, confinement in the in-plane direction perpendicular to the Stark field is
governed by the local curvature. Thus, a small radius of curvature translates into tight confinement in the
perpendicular dimension, see figure 1(b). The final ingredient in our proposal is the probe field inducing
transitions between Stark-localized states. As is intuitively clear, such transitions will be highly sensitive to
the local curvature. In fact, as recently demonstrated [8], the system behaves mathematically as a harmonic
oscillator with characteristic frequency determined by the curvature radius R. By scanning the Stark field
direction (or rotating the nanowire), the local curvature along the boundary may finally be mapped.

Our proposal is quite generic but, still, has obvious limitations. Primarily, only convex boundaries can
be mapped in entirety. Any locally concave points, i.e. points intersected by lines joining other boundary
points, cannot be probed because such points never support Stark-localized states. More subtly, our
proposal rests on the assumption that barriers between nanowire and surroundings are sufficiently tall that
carriers remain confined even in large Stark fields, that is, barriers effectively acting as hard walls. Hence,
our proposal applies to free-standing nanowires with a substantial barrier between interior and exterior, as
opposed to heterostructures with barriers formed by varying atomic composition. High quality
free-standing nanowires have been demonstrated in a wide range of materials, see e.g. [9–11]. Below, the
infinite-barrier approximation will be critically examined. As a realistic benchmark, we consider nanowires
with an elliptic cross section. From simulated probe absorption spectra in strong Stark fields in this
geometry, we demonstrate that our proposal is, indeed, feasible. We consequently expect that spectroscopic
studies of Stark-localized electronic states will pave the way for a novel toolbox of significance for
nanostructure characterization.

2. Stark-localization

We now introduce the model applied to describe Stark-localization on the boundary of a two-dimensional
domain. The Stark field �F can take arbitrary orientations within the plane of the domain. For definiteness,
we consider electrons but all considerations apply equally to holes. We assume carriers are introduced via
doping in contrast to interband photo-excitation, which produces electron–hole pairs. Consequently,
electron–hole interactions are not considered. Moreover, we assume that the semiconductor is characterized
by an isotropic effective mass m∗ in the cross-sectional plane (x, y). In a translationally invariant nanowire,
states are of the form ϕ(x, y)eikz with an in-plane part ϕ(x, y) determined by

{
− �

2

2m∗∇
2 + e�F ·�r

}
ϕ(�r ) = Eϕ(�r ). (1)

This equation is supplemented by Dirichlet boundary conditions ϕ(�r ) = 0 on the boundary ∂Ω of the
domain, i.e. nanowire cross section. Formally, Dirichlet boundary conditions correspond to an infinite
barrier between interior and exterior. Physically, this barrier is the electron affinity of the semiconductor
material surrounded by vacuum. As an example, this barrier V is about 4 eV in GaAs and similar inorganic
semiconductors [12]. If the characteristic dimension (‘diameter’) of the cross section is L, it follows that
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Dirichlet boundary conditions apply approximately if eFL � V. This places an upper limit on the
acceptable field strength. A second concern is the dielectric breakdown limit reached by sufficiently high
fields. Both of these restrictions are analyzed in more detail below.

In any inversion-symmetric geometry, the lowest field-dependent correction to the energy is quadratic.
In terms of the nanostructure polarizability tensor ←→α , see references [13–20], we have
E(�F ) = E(0) − 1

2
�F · ←→α · �F + O(F4). The in-plane nanowire polarizability takes a diagonal form

←→α = diag(αxx,αyy) in the principal-axis system, with axes coinciding with mirror lines in symmetric cases
such as ellipses. In general, some geometric information is contained in ←→α . Thus, a tightly confined
principal direction implies a reduced polarizability element. Similarly, highly symmetric cross sections such
as circles [21], hexagons and squares [22] lead to isotropic polarizability tensors. It follows that
angle-resolved low-field Stark spectroscopy provides useful geometric information about symmetries and
nanowire aspect ratio. However, it is clear that only limited detail may be extracted from a single pair of
numbers (αxx,αyy). If more elaborate geometry mapping is desired in Stark spectroscopy, strong fields
beyond the quadratic regime are inevitable. Such intense fields drive electrons into regions, where the dipole
energy e�F ·�r is minimum. We denote the location on the boundary corresponding to the minimum by�rmin.
In the extreme high-field limit, we have previously shown [8] that the low lying energies satisfy

E(�F ) = e�F ·�rmin − z1

(
�

2e2F2

2m∗

)1/3

+

(
�

2eFκ

m∗

)1/2

(ν − 1

2
) + O(F1/3), (2)

where z1 = 2.338 107 410 46 . . . is the first zero of the Airy function Ai(−z) and ν is a positive integer.
Crucially, κ = R−1 in this expression is the local curvature at�rmin. Physically, the curvature term follows
from a harmonic oscillator describing motion along the boundary in the vicinity of�rmin. The potential
energy cost associated with displacement from�r = �rmin increases with both field strength and curvature. It
follows that a convex boundary forces electrons to move against the electric force as they oscillate about
�rmin. As seen from equation (2), the harmonic oscillator frequency ω0 = (eFκ/m∗)1/2 increases as the
square-root (Fκ)1/2 of the product of field and curvature. A weak optical probe with a frequency ω will be
resonantly absorbed if ω ≈ ω0 such that an absorption spectrum provides direct access to the curvature κ.
We stress the crucial point that ω0 depends only on curvature implying that geometry can be determined in
a model-independent way in the high-field regime.

3. Elliptical nanowires

As already mentioned, we will use nanowires with elliptical cross section, such as the one in the inset of
figure 2, as a detailed benchmark and proof of concept. Elliptic boundaries are convenient because they are
convex, smooth and easily adjustable through their major and minor axes a and b corresponding to an
aspect ratio η = a/b. The electric field �F is at an angle θ to the major axis. We simulate the strong-field
Stark response numerically by transforming to a circular domain through the scaling x → x/a and y → y/b.
In this manner, the confinement is circular at the expense of an anisotropic Laplacian, and we have

{
− �

2

2m∗a2

d2

dx2
− �

2

2m∗b2

d2

dy2
+ eaFxx + ebFyy

}
ϕ(�r ) = Eϕ(�r ), ∂Ω : x2 + y2 = 1. (3)

A convenient dimensionless form is found if we introduce E0 ≡ �
2/(m∗b2) as well as ε = E/E0 and

�E = eb�F/E0. Hence, as a result,

{
− 1

2η2

d2

dx2
− 1

2

d2

dy2
+ ηExx + Eyy

}
ϕ(�r ) = εϕ(�r ). (4)

Furthermore, in terms of the normalized energy ε = ε(η, Ex, Ey), an exact scaling relation
ε(η−1, η3Ey, η3Ex) = η2ε(η, Ex, Ey) is readily established. This relation can be viewed as the result of a
rotation by 90 degrees. The exact field-free solutions of equations (3) and (4) are known in terms of
Mathieu functions and their characteristics [23, 24]. Since these cannot be expressed in terms of standard
functions, such exact solutions are of limited use for the present purposes. As an alternative, one may
consider ellipses that only deviate slightly from circles. Thus, for the normalized ground state energy ε(0)(η),
in the limit of low ellipticity [25, 26],

ε(0)(η) =
λ2

2
− λ2

2
(η − 1) +

λ2(6 + λ2)

16
(η − 1)2 + O[(η − 1)3]. (5)
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Figure 2. Comparison of numerical (solid lines) and perturbative (dashed lines) Cartesian polarizabilities for an ellipse. Inset:
cross section of an ellipse with major and minor axes a and b in an electric field.

Here, λ ≡ λ01 ≈ 2.404 83 is the first zero of the 0th Bessel function. Such expansions are useful in the
low-field Stark regime, as we demonstrate below. In strong fields, however, eigenstates deviate substantially
from unperturbed ones, even for nearly circular domains. Accordingly, an accurate numerical approach
based on expansion of Stark-localized eigenstates in a large basis is used throughout. In the appendix, we
describe the basis and matrix elements applied to find eigenstates for arbitrary fields. Briefly, eigenstates of
an isotropic circular cylinder are selected as a numerical basis. These states are labeled by angular
momentum l and radial quantum number n. In all simulations, l and n are restricted to the ranges
−30 � l � 30 and 1 � n � 30, respectively. Hence, the ground state energy λ2/2 of a circular nanowire
with η = 1 is reproduced exactly in this basis. The ground state is a special case of the general eigenvalue
ε(0)

nl = λ2
ln/2, where λln is the nth zero the lth Bessel function, contained in this basis.

Before investigating the strong-field Stark regime, we briefly discuss the more common weak-field case.
This is the regime, in which the electric field may be seen as a weak perturbation, shifting each energy level
by a small amount compared to the characteristic spacing between unperturbed levels. In an
inversion-symmetric geometry, the shift is quadratic in the field and we find for the ground state

ε(η, Ex, Ey) = ε(0)(η) − 1

2
αxx(η)E2

x − 1

2
αyy(η)E2

y + O(E4). (6)

The exact scaling relation implies that αxx(η) = η4αyy(η−1) and αyy(η) = η4αxx(η−1). In the case of a
perfect circle, it is known [21] that αxx(1) = αyy(1) = (4 + λ2)/(6λ4) ≡ α0. A tedious perturbation
expansion leads to the results

αxx(η) = α0 + (η − 1)α1 + (η − 1)2α2 + O[(η − 1)3],

αyy(η) = α0 + (η − 1)(4α0 − α1) + (η − 1)2(6α0 − 3α1 + α2) + O[(η − 1)3]. (7)

Here,

α1 =
1

8
+

16 + λ2

12λ4
≈ 3.6772α0, α2 =

7

24
− 5

24λ2
+

1

λ4
+

1

8(λ2 − 8)
≈ 4.7004α0. (8)

The numerical magnitude of these corrections shows that, in fact, the polarizabilities are sensitive probes
of the global geometry. The comparison in figure 2 demonstrates that the perturbative results equation (7)
hold to good accuracy in the range 0.75 < η < 1.25. Even in this restricted range, a significant variation in
polarizability is observed. In particular, the results show that the major-axis component αxx(η) is doubled
compared to the case of a circle αxx(1) if the aspect ratio is increased to η ≈ 1.21. Hence, slight geometric
deformations lead to substantial changes in the Stark shift. Also, it is apparent that the ratio αxx(η)/αyy(η) is
a sensitive measure of aspect ratio, obviating absolute measurement of dimensions.

Next, we turn to the strong-field regime in order to validate the expansion equation (2). Specifically, we
wish to determine the field strength required for the harmonic oscillator term to describe the ground state
and lowest excitations with acceptable accuracy. Similarly to the normalization applied above, we introduce

4
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Figure 3. Energy shift Δε for the four lowest levels in horizontal (top) and vertical (bottom) Stark fields. Solid curves are
numerical diagonalization results while circles are analytical harmonic oscillator predictions. The ellipse aspect ratio is η = 1.5.

a normalized curvature κ̃ = bκ. Thus, in terms of normalized quantities, the strong-field expansion takes
on a particularly simple form

ε(�E ) = �E ·�rmin/b − z1

(
1

2
E2

)1/3

+ (κ̃E)1/2

(
n − 1

2

)
+ O(E1/3). (9)

The curvature κ = R−1 of an ellipse is (a2 cos2 θ + b2 sin2 θ)3/2/(ab)2 so that, conveniently,
κ̃ = (η2 cos2 θ + sin2 θ)3/2/η2. We first compare the numerical solutions to equation (4) with the expansion
equation (9). To this end, we apply the Bessel basis as described above and consider the Stark shift
Δε ≡ ε(�E ) − ε(0) − �E ·�rmin/b + z1( 1

2E2)1/3. Here, the two universal terms in equation (9) were subtracted
so that the dominant part of Δε is the harmonic oscillator term varying as the square-root of the field
strength. The prefactor κ̃ means, however, that the magnitude of this term depends on orientation of the
field. Generally, low-curvature directions require larger fields in order to fully dominate subleading terms.
For the ellipse, a ratio of η3 is found between horizontal and vertical prefactors κ̃.

For numerical benchmarking, we select an ellipse with an aspect ratio of η = 1.5. Accordingly, a simple
expectation for the critical fields required to enter the strong-field regime would be that vertical fields
exceed horizontal ones by a factor 1.53 ≈ 3.4. In figure 3, we compare the analytical harmonic oscillator
expression (κ̃E)1/2(ν − 1

2 ) to numerical values of Δε in strong fields. It is immediately clear that the
numerical high-field behavior follows a square-root dependence to good accuracy. However, examining the
curves more carefully, we find discrepancies that depend on field strength and orientation. In relatively weak
fields, the harmonic oscillator result overestimates the actual eigenvalues. In the case of a horizontal field
shown in the top panel of figure 3, a normalized field of about E = 1000 is required to limit deviations to
approximately 3% for the energy difference between the two lowest states. In the vertical case, shown in the
bottom panel, the field must be significantly larger in agreement with the curvature-based arguments above.
It must be noted, however, that our proposal rests on the accuracy of energy differences probed by
absorption spectroscopy. Thus, systematic errors common to all levels are of no consequence. Below, the
error associated with transition energies is estimated.

As mentioned in the introduction, the assumption of Dirichlet boundary conditions corresponding to
infinite barriers is only valid if F � V/(eL), where V is the actual surface barrier. In terms of the
normalized field and taking L = b, this requirement is conveniently expressed as

E � V

Ha
× b2

a2
0

× m∗

m0
, (10)
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where Ha ≈ 27.21 eV is the Hartree energy, a0 is the Bohr radius, and m0 is the free electron mass. The
conduction band in GaAs can be seen as an extreme case due to the exceedingly small effective mass [1–3]
m∗ ≈ 0.067m0. Thus, with V = 4 eV, a field of E = 1000 translates into a requirement b 	 17 nm. Hence,
for nanowires in the 10 nm range, such fields will lead to inaccuracies since the finite confinement barrier
can no longer be ignored. In most materials, however, the effective mass is larger leading to relaxed
restrictions. For a 40 nm radius GaAs nanowire, the characteristic confinement energy is
E0 = �

2/(m∗b2) ≈ 0.7 meV. This means that the GaAs dielectric breakdown limit [27] around 30 MV m−1

is reached with a normalized field of approximately E = 1700, placing a strict upper limit on the applicable
field. We stress that the Stark field is static in our setup, thereby suppressing photoemission across the
surface barrier, which is known to occur in intense time-dependent (pulsed) fields [28].

Throughout, we have ignored Coulomb interactions between the conduction electrons. At a sufficiently
high density, this simplification will be invalid. To quantify this restriction, we consider a nanowire with a
finite electron density ρ per unit length and require ρaHO � 1, where aHO = �

1/2/(m∗ eFκ)1/4 is the
characteristic confinement length of the harmonic oscillator, as derived from equation (2), and ρ−1 is a
measure of the average electron–electron separation. This requirement ensures that many-body effects are
negligible compared to differences between Stark shifts and translates into a lower bound for the Stark field
FL = �

2ρ4/(m∗eκ). Similarly to the analysis above, we again consider a GaAs nanowire with radius
b = 40 nm. Thus, taking κ = b−1 as well as ρ = b−1, corresponding to electrons separated approximately by
the nanowire radius, we find a rather small lower bound of FL ≈ 18 kV m−1. We note that GaAs is an
extreme case due to its diminutive effective mass. However, the ρ4 scaling means that, eventually, Coulomb
corrections will be of importance for more highly doped materials, even if the bound is reduced by a larger
effective mass.

4. Stark spectroscopy

A weak probe field of the form Fω cosωt will induce transitions between Stark-localized states. This will
manifest itself as scattering or absorption of the probe beam. From an analysis of scattering or absorption
resonances, transition energies Eνμ = Eν − Eμ may be inferred. For the ideal harmonic oscillator, only
ν = μ± 1 transitions are allowed and ω = ω0 the only resonance observed. We expect this simple picture
to emerge in strong fields, while a much more intricate spectral response is expected in weak fields.
Absorption of the probe field is described by the imaginary part of the frequency-dependent polarizability
α(ω), while scattering is governed by the absolute value. If the probe field is polarized at 45 degrees to a
principal axis, transitions along both axes are probed. In this case, the polarizability of an electron in the
ground state |1〉 is [19]

α(ω) = e2
∑
ν

Eν1
|〈1|x|ν〉|2 + |〈1|y|ν〉|2

E2
ν1 − �2ω2

. (11)

The dipole matrix elements 〈1|�r |ν〉 are readily expanded in the Bessel basis using equation (A4). The
response equation (11) only captures absorption by dopant electrons. Realistically, a bulk contribution,
both electronic and vibrational, should be added. Hence, transitions between Stark-localized states will
appear on top of a background signal.

We envision rotating the nanowire in the Stark field while recording the probe absorption spectrum.
The lowest resonance E21 should ideally be a direct measure of the curvature following the harmonic
oscillator relation E21 = �(eFκ/m∗)1/2. In order to assess the accuracy of this relation, we have simulated
absorption spectra using finite fields oriented at various angles to the nanowire major axis. For simplicity,
we work in normalized units such that ideally ε21 = (κ̃E)1/2 or, equivalently, κ̃ = ε2

21/E for the harmonic
oscillator. Also, the dynamic polarizability is expressed in units of e2b2/E0 = e2b4m∗/�

2. The fourth-power
scaling with dimensions is characteristic of polarizabilities in effective-mass theories [16–20]. We must
distinguish between the actual geometric curvature κ̃ and the inferred curvature ε2

21/E derived from
absorption resonances. Only in the limit of extremely large fields will the two agree. From a comparison at
various finite field strengths we may then quantify the inherent error associated with the inferred curvature.

In figure 4, we present simulated absorption spectra for normalized Stark fields E of magnitude 100 and
1000, oriented at various angles to the ellipse major axis a taking, again, η = 1.5. The photon frequency ω is
normalized by E0, i.e. we substitute �ω/E0 → ω and, moreover, a finite line width is included by adding an
imaginary term i/2 to ω. The top and bottom panels in figure 4 illustrate cases of moderate and strong
Stark fields, respectively. If E = 100, the Stark shift is not quite in the harmonic oscillator limit. As a
consequence, the absorption spectra contain several resonances that shift with orientation of the Stark field.
In contrast, if E = 1000, each spectrum essentially consists of a single peak. An example of the transition
responsible for this peak is shown in the figure inset in figure 4, bottom panel. Here, the ground and first
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Figure 4. Simulated probe absorption in cases of moderate (E = 100, top panel) and strong (E = 1000, bottom panel) Stark
fields. Different orientations of the Stark field between 0◦ and 90◦ are indicated by color. The graph insets compare the inferred
and actual curvatures vs angle. Also, the bottom figure inset illustrates ground and first excited Stark-localized states.

excited Stark-localized states are shown. It is clear that the transition dipole is perpendicular to the Stark
field such that a perpendicular component in the probe field is required.

We now turn to the curvatures inferred from the resonances ε2
21/E in the absorption spectra. These are

shown in red as insets for both moderate and strong Stark fields in figure 4. For comparison, the actual
geometric curvature κ̃ is shown as blue symbols. As is apparent from the insets, the inferred curvature tends
to overestimate the actual one. This is especially pronounced is the moderate field case, while the error
decreases in the strong field. Numerically, the maximum error for E = 1000 is approximately 18% with a
decreasing tendency towards larger angles, reaching 7% at 90◦ orientation. Overall, the inferred curvature
manages to capture the exact angular dependence rather accurately, but quantitative agreement clearly
requires large Stark fields, as expected.

5. Summary

We have suggested probing transitions between Stark-localized states in nanostructures as a tool for
mapping surface curvature. Physically, a strong Stark field pushes carriers against the surface barrier such
that any motion perpendicular to the field is sensitive to the local curvature. In turn, a weak
time-dependent probe induces transitions between Stark-localized states. Finally, an analysis of probe
absorption spectra provides the inferred curvature. Using nanowires with elliptic cross sections as
benchmarks, we have examined the feasibility of our proposal. While weak fields allow for probes of global
properties such as nanowire aspect ratio, a strong field is found to provide much more detailed geometric
information. We establish criteria for the required field strength demonstrating that our proposal is, indeed,
realistic. Finally, an assessment of curvature inferred from probe absorption spectra shows that local
geometric information can be obtained with reasonable accuracy.
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Appendix. Cylindrical Bessel basis

As described in the main text, we transform to a circular domain at the expense of introducing an
anisotropic Laplacian. Moreover, coordinates are scaled such that the radius of the circular domain is unity.
As a convenient normalized basis, we choose the Bessel eigenstates of a circle with isotropic Laplacian

ϕ(0)
nl (�r ) =

eilθJl(λlnr)√
πJl+1(λln)

, ε(0)
nl =

λ2
ln

2
. (A1)

Here, Jl the lth Bessel function, for which λln is the nth zero, i.e. Jl(λln) = 0 with eigenstate index
n = 1, 2, 3, . . . . Moreover, ε(0)

nl is the normalized energy eigenvalue. We require matrix elements for both
kinetic energies and Stark terms. Thus, between states with identical angular momentum l

〈
ϕ(0)

nl

∣∣∣ d2

dx2

∣∣∣ϕ(0)
ml

〉
=

〈
ϕ(0)

nl

∣∣∣ d2

dy2

∣∣∣ϕ(0)
ml

〉
= −1

2
λ2

lnδnm, (A2)

while the corresponding off-diagonal block l′ �= l is

〈
ϕ(0)

nl

∣∣∣ d2

dx2

∣∣∣ϕ(0)
ml′

〉
= −

〈
ϕ(0)

nl

∣∣∣ d2

dy2

∣∣∣ϕ(0)
ml′

〉
= sgn(l′ − l)(l + l′)

λlnλl′m

2(λ2
l′m − λ2

ln)
. (A3)

Similarly, the dipole matrix elements are [20]

〈
ϕ(0)

nl (�r )
∣∣∣x∣∣∣ϕ(0)

ml′(�r )
〉
= δl′,l±1

λlnλl′m

(λ2
ln − λ2

l′m)2
,

〈
ϕ(0)

nl (�r )
∣∣∣y∣∣∣ϕ(0)

ml′(�r )
〉
= i sgn(l − l′)δl′,l±1

λlnλl′m

(λ2
ln − λ2

l′m)2
.

(A4)
Based on these matrix elements, the eigenstates in an electric field are found from numerical

diagonalization.
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