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Abstract
The quantum speed limit indicates the maximal evolution speed of the quantum system. In this
work, we determine speed limits on the informational measures, namely the von Neumann
entropy, maximal information, and coherence of quantum systems evolving under dynamical
processes. These speed limits ascertain the fundamental limitations on the evolution time required
by the quantum systems for the changes in their informational measures. Erasing of quantum
information to reset the memory for future use is crucial for quantum computing devices. We use
the speed limit on the maximal information to obtain the minimum time required to erase the
information of quantum systems via some quantum processes of interest.

1. Introduction

In quantum information theory, the speed limit aims to address the question, ‘what is the maximal rate of
change of the state of a quantum system in a physical process’. It provides the minimum time needed for a
quantum system to evolve from a given initial state to the target state. Therefore, it sets the fundamental
lower bound on the evolution time of the quantum system [1–4]. Determination of quantum speed limit
(QSL) is important in the areas of quantum metrology [5], quantum control [6], quantum
thermodynamics [7, 8], etc. For instances, it plays a crucial role in determining the minimum charging time
of quantum batteries [9] and finding the minimum time required to implement quantum gates in quantum
computation [10]. Recently, the reverse QSL has been derived using the geometry of the quantum state
space, and its application in the quantum battery was also discussed [11]. The study of QSLs on
informational measures is relevant for both fundamental and applied aspects, given the rapid progress in
the area of quantum technologies and need to control the dynamics of quantum systems.

Quantum superposition is one of the key features of the quantum theory and the amount of
superposition present in a particular state is measured by quantum coherence. Quantum coherence is a
crucial resource for several quantum information processing tasks [12], including quantum computation
[13–16] and quantum thermodynamics [17, 18], where the energy eigenbasis forms a natural choice for the
reference basis (e.g., [18]). Quantification of resources such as the entanglement and the coherence are
well-established approaches. It has been shown that the incoherent operations can convert any degree of
coherence with respect to a reference basis into entanglement [19]. The notion of coherence naturally arises
in the context of QSL, as shown in the references [20–22]. So a natural question that arises is ‘how fast the
quantum coherence of the given quantum state can be generated or destroyed in a physical process’. We
have studied fundamental limits on the time required for the change in information content and quantum
coherence which answers these questions. One of the consequences of our main results is that it sets speed
limit for the quantum erasure operations, where the quantum states are reset to a fixed state.
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QSL was first obtained by Mandelstam and Tamm, which is based on the quantum fluctuations in
energy [1]. Later, another bound was obtained by Margolus and Levitin based on the mean energy [2]. The
maximum of these two bound is tight as shown in reference [3]. If the quantum system evolves along the
shortest geodesic, then the QSL is saturated and the kind of Hamiltonian that may drive the system along
the geodesic was discussed in reference [23]. QSL has been widely studied for unitary dynamics [1–4, 21,
24–57], open system dynamics [58–63], and arbitrary dynamics [64]. Recently, resource speed limit [65]
has been introduced, which describes how quickly quantum resources can be generated or degraded by
physical processes. In reference [66], QSL of quantum entanglement has been studied, using a geometric
measure of entanglement. Therefore, the study of QSL for quantum state as well as various resources
associated with a quantum system is of prime importance.

In this paper, we derive speed limits for the von Neumann entropy, maximal information, and quantum
coherence for quantum systems undergoing arbitrary dynamical processes. These speed limits depict
fundamental limitations on the minimal time required for the changes in the entropy, maximal
information, and quantum coherence of quantum systems undergoing dynamical processes. Here, a
dynamical process refers to a completely positive trace preserving (CPTP) map acting on a quantum system.
Our result suggests a new bound on the rate of information production [64]. As an application, we show
that the speed limit on the maximal information provides the minimum time required to erase information
of a quantum system in the context of Landauer’s erasure [67–69]. Similarly, the speed limit on the
information can also be applied for the thermalization process. We discuss speed limits on information and
coherence and illustrate their applications by presenting some examples of dynamical processes of interest.
Thus, we believe that our results will have applications in quantum computing, quantum communication,
quantum control, and quantum thermodynamics.

Our work is organised as follows. In section 2, we discuss the preliminaries and background required to
arrive at the main results of this paper, which are presented in section 3. In section 3.1, we obtain the speed
limit on entropy and information. We discuss limitations on the minimal time required for erasing
processes based on the speed limits on the information. In section 3.2, we derive the speed limit on (basis
dependent) quantum coherence. In section 3.3, we also discuss the speed limit bounds based on
instantaneous evolution speed for informational measures. Finally, in the last section, we provide the
conclusions.

2. Preliminaries

Let H denote the separable Hilbert space, where dim(H) may be finite or infinite. The state of a quantum
system is represented by a density operator ρ, which satisfies following properties: ρ = ρ†, ρ � 0, and
tr[ρ] = 1. The identity operator is denoted by 𝟙. The physical transformation of the state of a system is
given by a completely positive, trace-preserving map, which is also called quantum channel. Time-evolution
of a quantum system evolving under a given dynamical process is given by the master equation

ρ̇t :=
dρt

dt
= Lt(ρt), (1)

where ρt is the state of the system at time t = t and Lt is the Liouvillian super-operator [70], which in
general can be time dependent or time independent.

The von Neumann entropy S(ρ) of a quantum system in the state ρ is defined as

S(ρ) := − tr{ρ ln ρ}. (2)

The entropy S(ρ) can be interpreted as the average information content of a quantum system in the state ρ,
which can be defined on finite- or infinite-dimensional Hilbert space. The maximal information I(ρ) of a
finite-dimensional quantum system with the Hilbert space of dimension d and in the state ρ is defined as
[71]:

I(ρ) := ln(d) − S(ρ). (3)

We call I(ρ) as the maximal information as it can be interpreted as the maximum amount of information
that can be gained by performing optimal measurements on the quantum system [71]. It also provides a
measure of objective information for a quantum state ρ [72].

We now recall theorem 1 of reference [73] below which we use in this work.

Lemma 1 ([73]). For any quantum dynamical process with dim(H) < +∞, the rate of entropy change is given
by

d

dt
S(ρt) = −tr{ρ̇t ln ρt}, (4)

2
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whenever ρ̇t is well-defined. The above formula also holds when dim(H) = +∞ given that ρ̇t ln ρt is
trace-class and the sum of the time derivative of the eigenvalues of ρt is uniformly convergent on some
neighborhood of t, however small.

The operator norm ‖A‖op, the Hilbert–Schmidt norm ‖A‖HS, and the trace norm ‖A‖tr of an operator
A are defined as ‖A‖op :=λmax where λmax is the maximum of the absolute value of eigenvalues of A when A

is Hermitian, ‖A‖HS :=
√

tr(A†A), and ‖A‖tr = tr(
√

A†A), respectively.
We recall standard definitions relevant in the context of coherence from reference [74], where a resource

theoretical framework for quantifying the quantum coherence was proposed. Let us consider a quantum
system associated with a finite-dimensional Hilbert space Hd such that dim(Hd) = d. Let {|i〉}d−1

i=0 be the
reference eigenbasis of Hd. The state of the quantum system described by density operator ρ ∈ D(Hd),
where D(Hd) is convex set of density operators. The subset of incoherent states I ⊂ D(Hd) consist of the
family of diagonal density matrices ω =

∑
i pi|i〉〈i| (with 0 � pi � 1 and

∑
i pi = 1) in the reference

eigenbasis {|i〉}d−1
i=0 . In brief, any reasonable measure of the quantum coherence C(ρ) must fulfill the

following conditions as introduced in references [74, 75]: (i) must be non-negative real number for all state
ρ, with C(ρ) = 0 iff ρ ∈ I; (ii) do not increase under the mixing of quantum states (convexity) C(

∑
k pkρk)

�
∑

k pkC(ρk), with ρk ∈ D(H), 0 � pk � 1 and
∑

k pk = 1; (iii) must be monotonic under incoherent
completely positive and trace-preserving (ICPTP) map (i.e., incoherent quantum channel),
C(ΦICPTP(ρ)) � C(ρ) for all ΦICPTP maps; (iv) must be monotonic under selective measurements i.e.
C(ρ) �

∑
k pkC(ρk), where ρk = EkρE†

k/pk (with pk = tr(EkρE†
k)) are the states after measurement for

arbitrary Kraus operators {Ek}, which obey the condition
∑

kE†
kEk = 𝟙 and EkIE†

k ⊂ I.
There are several widely known (basis dependent) quantum coherence measures such as the relative

entropy of coherence [74], the l1 norm of coherence [74], the geometric coherence [19], and the robustness
of coherence [76], etc. We are using the relative entropy of coherence because of its operational meaning as
the distillable coherence [77, 78]. In addition, it is also easier to work and compute compared to some other
measures of coherence. For a given state ρ, the relative entropy of coherence defined as

C(ρ) := S(ρD) − S(ρ), (5)

where ρD :=
∑

i〈i|ρ|i〉|i〉〈i| is the density operator that is diagonal in the reference basis, obtained by
dephasing off-diagonal elements of ρ. The reference basis is fixed and independent of time. The von
Neumann entropy S(ρD) for the diagonal density operator ρD reduces to the Shannon entropy
H({pi}) := −

∑
i pi ln pi, where the probability distribution {pi} is given by pi := 〈i|ρ|i〉. We call a quantum

channel, i.e., a CPTP map, to be completely dephasing with respect to the reference basis {|i〉} if it acts on a
density operator ρ and yields ρD =

∑
i〈i|ρ|i〉|i〉〈i|.

Apart from the basis dependent notion of coherence measure (5), in reference [79], the maximal
information I(ρ) (3) is argued to be basis independent coherence measure with reference to only incoherent
state 𝟙

d .

3. Quantum speed limit

In general, QSLs illustrate fundamental limitations on the evolution of quantum systems due to given
quantum dynamics. In this section, we present the speed limits on the entropy S(ρ), maximal information
I(ρ), and quantum coherence C(ρ).

Entropy is a widely studied fundamental quantity in quantum information theory. Entropy of a state can
be interpreted as an average (expected) information content of the given quantum state. The joint evolution
of the system and environment is considered to be a unitary operation in quantum theory. It is known that
the unitary process keeps entropy invariant. However, the local evolution of the system alone can be
non-unitary, i.e., some noisy physical process. This non-unitarity process causes a flow of information
between the system and the environment, which can change the entropy of the system. The rate of the
entropy change is also related to the rate of the change for some entanglement measures of the system (e.g.,
see section 3 of reference [73]). These aspects of the entropy motivate us to define lower bounds on the
minimal time require for the entropy change, i.e., speed limits on the entropy.

Quantum coherence is a fundamental non-classical property of quantum systems, which act as a
resource for several quantum processing tasks (e.g., [12, 18]). So the natural question arises ‘how fast can
the quantum coherence in the given quantum state be generated, destroyed or erased by some physical
process’. To answer this question, the resource speed limit was introduced in reference [65], which is also
applicable for quantum coherence. There the resource speed limit is defined using the divergence-based
measures. The bound obtained in reference [65] is challenging to calculate in general as it requires
optimization over all free states. Here, we have obtained QSL on coherence using the relative entropy of

3



New J. Phys. 24 (2022) 065003 B Mohan et al

coherence, which is arguably easier to calculate. We also derive QSL on the maximal information I(ρ) which
can also be interpreted as a basis independent measure of coherence [79] and a measure of objective
information of given quantum state [72].

Our method of obtaining speed limits is similar to the technique used in references [58, 80]. We briefly
discuss concerns and other method based on reference [81] to derive other speed limits in section 3.3.

3.1. Quantum speed limit for information
We now discuss the first main result of this work that provides a lower bound on evolution time of entropy,
T � TESL using the Hilbert Schmidt norm. The second main theorem of this work provides a lower bound
on evolution time of the entropy or equivalently for the information, T � TISL using the operator norm.

Theorem 1. For an arbitrary quantum dynamics describable as time-evolution, the minimum time needed for
the state ρt to attain entropy S(ρT), where ρT := ρt=T, starting with the initial entropy S(ρ0), where ρ0 := ρt=0,
is lower bounded by

T � TESL =
|S(ρT) − S(ρ0)|
Λrms

T ‖ ln ρt‖2
HS

, (6)

where Λrms
T :=

√
1
T

∫ T
0 ‖Lt(ρt)‖2

HSdt is the root mean square evolution speed of the quantum system,

‖ ln ρt‖2
HS :=

√
1
T

∫ T
0 ‖ ln ρt‖2

HSdt, and Lt is the Liouvillian super-operator. This theorem holds for both
finite-dimensional and infinite-dimensional systems [73].

Proof. The entropy of time evolved state ρt given by

S(ρt) = −tr{ρt ln ρt}. (7)

After differentiating the above equation with respect to time t, we obtain [73]

d

dt
S(ρt) = −tr{ρ̇t ln ρt} = −tr{Lt(ρt) ln ρt}. (8)

Let us now consider the absolute value of the above equation and apply the Cauchy–Schwarz inequality
|tr(AB)| �

√
tr(A†A)tr(B†B). We then obtain the following inequality

∣∣∣∣ d

dt
S(ρt)

∣∣∣∣ = |tr{Lt(ρt) ln ρt}| � ‖Lt(ρt)‖HS‖ ln ρt‖HS. (9)

The above inequality (9) is the upper bound on that the rate of change of the entropy of the quantum
system evolving under given dynamics. After integrating above equation with respect to time t, we obtain

∫ T

0
dt

∣∣∣∣ d

dt
S(ρt)

∣∣∣∣ �
∫ T

0
‖Lt(ρt)‖HS‖ ln ρt‖HSdt. (10)

Now applying the Cauchy–Schwarz inequality on the right-hand side of the above inequality, we get

∫ T

0
dt

∣∣∣∣ d

dt
S(ρt)

∣∣∣∣ �
√∫ T

0
‖Lt(ρt)‖2

HSdt

√∫ T

0
‖ ln ρt‖2

HSdt. (11)

From the above inequality, we get the desired bound:

T � |S(ρT) − S(ρ0)|
Λrms

T ‖ ln ρt‖2
HS

. (12)

�

The lower bound of TESL in (6) is positive if the entropy of the system changes under the dynamical
process and is zero if there is no change in the entropy. The change in entropy is zero when either the
dynamics of the quantum system is unitary [70, 73, 82] or the initial state is the fixed point of the governing
dynamics. The TESL is zero when the state is not evolving under the dynamics, i.e., when it is a fixed point of
the governing dynamics. The minimal time TESL would be zero when entropy change is zero even if the state
undergoes non-trivial transformation under dynamics, i.e., there is a change in the state during the process.

4
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We now derive the second main result of this work that provides a lower bound on evolution time of
information or basis-independent coherence T � TISL.

Theorem 2. For an arbitrary quantum dynamics of a finite-dimensional system describable as time-evolution of
its state, the minimum time needed for the state ρt to attain information I(ρT), where ρT := ρt=T, starting with
the initial information I(ρ0), where ρ0 := ρt=0, is lower bounded by

T � TISL =
|I(ρT ) − I(ρ0)|
Λrms

T ‖ ln ρt‖2
op

, (13)

where Λrms
T :=

√
1
T

∫ T
0 ‖Lt(ρt)‖2

trdt is the root mean square evolution speed of the quantum system,

‖ ln ρt‖2
op :=

√
1
T

∫ T
0 ‖ ln ρt‖2

opdt, and Lt is the Liouvillian super-operator.

Proof. We adapt the proof arguments of theorem 1 to arrive at the above bound. Detailed proof is provided
in appendix B, which somewhat differs from the proof of theorem 1. �

Note that |I(ρT) − I(ρ0)| = |S(ρ0) − S(ρT)| for any finite-dimensional system evolving under the
dynamics that preserves its dimension. Therefore, the inequality (13) also provides speed limit on entropy
change using the operator norm. The entropy does not change when either the dynamics is unitary [70, 73,
82] or the initial state is the fixed point of the governing dynamics. Then the change in maximal
information is zero, and TISL is also zero. However, the minimal evolution time for state evolution is
non-zero in the unitary process. The above two results will have important applications in quantum
computing and quantum communication where change in the entropy is inevitable. Our results show that
quantum theory imposes limits on the rate of change of the entropy and information. The maximal rate of
information production has interesting applications ranging from black hole to quantum communication.
For example, the Bekenstein bound [83, 84] says the rate with which information can be retrieved from
black hole. Our results show that the rate of information (entropy) gain [85, 86] in a quantum system obeys
nontrivial bound for general physical processes.

We will show that the maximum rate of the information change satisfies a new bound. The inequality
(B5) can be expressed as

I =

∣∣∣∣dI(ρt)

dt

∣∣∣∣ � Λrms
T ‖ ln ρt‖2

op, (14)

where
∣∣ dI(ρt )

dt

∣∣ := 1
T

∫ T
0 dt

∣∣ dI(ρt)
dt

∣∣. The above equation provides the upper bound on that the rate of change of
the information change of the quantum system for arbitrary quantum dynamics [64].

Minimum time for Landauer’s erasure.—The process of resetting an input bit to a fixed bit value is one of
the most elementary operation in classical as well as quantum computing. Resetting a bit has a
thermodynamic cost. The Landauer erasure principle says that to erase a single qubit we must spent kBT ln 2
amount of energy or equivalently, we have to spent some amount of entropy [67–69]. In recent years, there
have been a great surge of interest in trying to improve and generalise the Landauer principle for
information erasure [87–92]. Notably, a universal bound on the energy cost of resetting operation has been
proved for finite time [93, 94]. Once we know that the bit reset happens in finite time, it is natural to ask is
there any non-trivial bound on the speed of erasing an input bit. The results proved in theorems 1 and 2
can answer an important question: how fast one can erase information in a physical system?

Suppose, we have an arbitrary qubit initially prepared in the state |ψ〉. The erasure operation will
transform |ψ〉 → |Σ〉, where |Σ〉 is a fixed state (often called a blank state). This transformation cannot be
realised by reversible operation and hence involves some energy cost as put forth by Landauer. Now, let us
consider a general state of the system at time t = 0 which is given by ρ0 and the input state has information
I(ρ0) = ln d − S(ρ0), where ρ0 acts on the Hilbert space of dimension d. Under the action of the erasure
operation, which is a CPTP map (quantum channel), any quantum state gets mapped to a fixed state i.e.,
ρ0 → |Σ〉〈Σ|. For example, the fixed state can be the ground state of a two-level system which is a pure state
with the lowest energy. Since the final state is a fixed pure state and the effective dimension of the final state
is one (as the fixed state lives in a one-dimensional subspace), we have I(ρT) = 0. Therefore, the bound (13)
can be used to state that the minimum time required to erase information is given by

TErasure =
I(ρ0)

Λrms
T ‖ ln ρt‖2

op

. (15)

Thus, while Landauer’s erasure principle says how much minimum energy one needs to spend to erase a
single bit or qubit, our result answers the question on what is the minimum time needed to erase a single

5
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bit or qubit. In the example below, we use the above bound to answer the question how fast erasure
happens in thermalisation process.

Erasing information via thermalization.—Let us consider a two-level atom with ground state |1〉〈1| and
excited state |0〉〈0|, which is weakly interacting with a heat (thermal) bath at a fixed temperature. This
interaction of the atom with the heat bath would transform the state of the atom to a thermal state.
Depending on the Hamiltonian of the atom, the larger the gap between two energy levels, closer the thermal
state is with the ground state. This is the idea behind erasing of the information in the system via
thermalization [95, 96]. The jump operators of the heat bath for a two-level system are given as
L− =

√
γ0(N + 1)σ− and L+ =

√
γ0Nσ+, where σ− = |1〉〈0| and σ+ = |0〉〈1| are the lowering and raising

operators to the system, N is the mean number of photons in the resonant bath, γ0 denotes the spontaneous
emission rate of the bath, and γ = γ0(2N + 1) is the total emission rate. The Lindblad master equation [97]
governs the time evolution of atom and it is given by

∂ρt

∂t
= γ0(N + 1) (σ−ρtσ+ − 1

2
{σ+σ−, ρt}+ γ0N

(
σ+ρtσ− − 1

2
{σ−σ+, ρt}

)
. (16)

If the atom the initially in a state ρ0 = |ψ(0)〉〈ψ(0)|, where |ψ(0)〉 = cos θ
2 |0〉+ sin θ

2 |1〉, then solution of
the Lindbland equation is given by [98]

ρt =
1

2

(
1 − γ0

γ
+ e−γt

(
γ0

γ
+ cos θ

))
|0〉〈0|+ 1

2

(
1 +

γ0

γ
− e−γt

(
γ0

γ
+ cos θ

))
|1〉〈1|

+
1

2
e−γt sin θ(|1〉〈0|+ |0〉〈1|). (17)

To estimate bound (13), we require the following quantities:

I(ρ0) = ln 2, (18)

I(ρt) = ln 2 +

(
γ − e−γt

√
δ
)

2γ
ln

⎡
⎣
(
γ − e−γt

√
δ
)

2γ

⎤
⎦+

(
γ + e−γt

√
δ
)

2γ
ln

⎡
⎣
(
γ + e−γt

√
δ
)

2γ

⎤
⎦ , (19)

‖L(ρ)‖tr =
1

2
γ0 e−γt ×

√
(2 N + 1)2 sin2 θ +

4(γ0 + γ(2N + 1) cos θ + 2γ0N)2

γ2
, (20)

‖ ln ρt‖op = max{|λ1|, |λ2|}, (21)

where δ = γ2 + γ2
0 (1 − 2 eγt + e2γt) + 2γγ0(1 − eγt) cos θ. λ1 and λ2 are eigenvalues of ln ρt.

In figure 1, we plot TISL vs T ∈ [0.5, π
3 ] for thermalization process and we have considered γ0 = 1,

N = 100, γ = 201 and θ = π
3 . Inspecting equation (17) we see that the state ρt requires an infinite amount

of time to thermalize. That is, the thermalization process takes an infinite amount of time to erase
information from the quantum system. Here in figure 1 we plot the bound (13) for finite time duration and
the bound (13) is not tight. In appendix C, we give a proof that for open system dynamics, in general the
bound cannot be reached.

With the recent advances in quantum technology, it may be possible to test the speed limit for the
erasure operation. This may play an important role in intermediate-scale-noisy quantum computer where
we do not have many physical qubits and we would like to reset our memory much faster in order to reuse
them for another task.

3.2. Quantum speed limit for coherence
We now derive the third main result of this work that provides a lower bound on evolution time of
basis-dependent coherence T � TCSL, where the reference basis {|i〉}d−1

i=0 is fixed, independent of time.

Theorem 3. For an arbitrary quantum dynamics of a finite-dimensional quantum system describable as
time-evolution of its state, the minimum time needed for the state ρt to attain coherence C(ρT), where
ρT := ρt=T, starting with the initial coherence C(ρ0), where ρ0 :=ρt=0, is lower bounded by

T � TCSL =
|C(ρT ) − C(ρ0)|

Λrms,D
T ‖ ln ρD

t ‖2
HS + Λrms

T ‖ ln ρt‖2
HS

, (22)

6
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Figure 1. Here we depict TISL vs T and we have considered γ0 = 1, N = 100, γ = 201, and θ = π
3 . The process of erasure takes

finite time and the example considered here does not saturate the bound.

where Λrms,D
T :=

√
1
T

∫ T
0 ‖Lt(ρD

t )‖2
HSdt is the root mean square evolution speed of the classical part of quantum

system, Λrms
T :=

√
1
T

∫ T
0 ‖Lt(ρt)‖2

HSdt is the root mean square evolution speed of the quantum system,

‖ ln ρD
t ‖2

HS :=
√

1
T

∫ T
0 ‖ ln ρD

t ‖2
HSdt, ‖ ln ρt‖2

HS :=
√

1
T

∫ T
0 ‖ ln ρt‖2

HSdt, and Lt is the Liouvillian super-operator.

Proof. The relative entropy of coherence of the time evolved quantum state ρt is given as

C(ρt) = S(ρD
t ) − S(ρt). (23)

After differentiating above equation with respect to time t [i.e., employing (lemma 2, appendix A)], we
obtain

d

dt
C(ρt) = −tr{Lt(ρ

D
t ) ln ρD

t }+ tr{Lt(ρt) ln ρt}. (24)

Taking the absolute value of the terms in the above equation and applying the triangular inequality, we get∣∣∣∣ d

dt
C(ρt)

∣∣∣∣ � |tr{Lt(ρ
D
t ) ln ρD

t )}|+ |tr{Lt(ρt) ln ρt}|. (25)

Then applying the Cauchy–Schwarz inequality, we obtain the following inequality∣∣∣∣ d

dt
C(ρt)

∣∣∣∣ � ‖Lt(ρ
D
t )‖HS‖ ln ρD

t ‖HS + ‖Lt(ρt)‖HS‖ ln ρt‖HS. (26)

The above inequality represents the upper bound on that the rate of change of the basis-dependent
coherence of the quantum system for arbitrary quantum dynamics. After integrating above equation with
respect to time t, we obtain∫ T

0
dt

∣∣∣∣ d

dt
C(ρt)

∣∣∣∣ �
∫ T

0
‖Lt(ρ

D
t )‖HS‖ ln ρD

t ‖HSdt +

∫ T

0
‖Lt(ρt)‖HS‖ ln ρt‖HSdt. (27)

Let us apply the Cauchy–Schwarz inequality on the right-hand side of the above inequality, we get

∫ T

0
dt

∣∣∣∣ d

dt
C(ρt)

∣∣∣∣ �
√∫ T

0
‖Lt(ρD

t )‖2
HSdt

√∫ T

0
‖ ln ρD

t ‖2
HSdt +

√∫ T

0
‖Lt(ρt)‖2

HSdt

√∫ T

0
‖ ln ρt‖2

HSdt. (28)

The above inequality can be written as

T � |C(ρT ) − C(ρ0)|
Λrms,D

T ‖ ln ρD
t ‖2

HS + Λrms
T ‖ ln ρt‖2

HS

. (29)

�

7
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The QSL on coherence applies to both coherence generation and coherence degradation processes. In
particular, our bound in (22) can answer how fast a system undergoes decoherence. For any completely
dephasing process, the above bound (22) is interpreted as the speed limit of decoherence, which means the
minimum time required for a coherent state to become an incoherent state. If during the evolution diagonal
part of ρt in the reference basis is static then Λrms,D

T becomes zero. The change in coherence is zero when
either the dynamics of the quantum system are coherence-preserving or the initial state is a fixed point of
the dynamics. The minimal time TCSL is zero when the change in coherence is zero even if there is a change
in the state during the dynamics.

Next, we apply our bound on the speed of coherence in a couple of quantum dynamics of interest,
namely the pure dephasing process and dissipative process (e.g., [99]).

Pure dephasing process.— Let us consider a two-level atom with the ground state |1〉〈1| and the excited
state |0〉〈0| interacting with a dephasing environment. The corresponding dephasing jump operator is given
by L =

√
γ
2σz , where σz is the Pauli-Z operator and γ is a real parameter denoting the strength of

dephasing. The Lindblad master equation [97] governs the time evolution of atom, and it is given by
dρt

dt
= L(ρt) =

γ

2
(σzρtσz − ρt). (30)

If the atom the initially in a state ρ0 = |ψ(0)〉〈ψ(0)|, where |ψ(0)〉 = cos θ
2 |0〉+ sin θ

2 |1〉, then solution of
the Lindbland equation is given by

ρt = cos2 θ

2
|0〉〈0|+ sin2 θ

2
|1〉〈1|+ e−γt sin

θ

2
cos

θ

2
(|1〉〈0|+ |0〉〈1|). (31)

To estimate bound (22), we require the following quantities:

|C(ρt) − C(ρ0)| = 1

2

[
ln
(

e−γt
√

sin2 θ + e2γt cos2 θ + 1
)
+ ln

(
1

4
− 1

4
e−γt

√
sin2 θ + e2γt cos2 θ

)

+ 2 e−γt
√

sin2 θ + e2γt cos2 θ × coth−1

(
eγt√

sin2 θ + e2γt cos2 θ

)]
, (32)

‖L(ρt)‖2
HS =

1

2
γ2 e−2γt sin2 θ, (33)

‖L(ρD
t )‖2

HS = 0, (34)

‖ ln ρD
t ‖2

HS =

[
ln

(
sin2 θ

2

)]2

+

[
ln

(
cos2 θ

2

)]2

, (35)

‖ ln ρt‖2
HS =

⎡
⎣ln

(
2 +

√
2 e−γt

√
(e2γt − 1) cos 2θ + e2γt + 1

)
4

⎤
⎦

2

+

⎡
⎣ln

(
2 −

√
2 e−γt

√
(e2γt − 1) cos 2θ + e2γt + 1

)
4

⎤
⎦

2

. (36)

Here, we have calculated coherence in the computational basis {|0〉, |1〉}. The diagonal component of ρt in
the reference basis is static during the pure dephasing process, therefore Λrms,D

T is zero. In figure 2, we plot
TCSL vs T ∈ [0, π

3 ] for pure dephasing dynamics and we have considered γ = 2 and θ ∈ { π
2 , π

3 , π
4 }. Note

that, for the pure dephasing process, the speed limit of basis-dependent coherence can be interpreted as the
speed limit of decoherence.

In figure 2, we can see that in the dephasing process, the maximally coherent state has a higher speed
limit time of decoherence compared to other states. According to equation (31) the dephasing time for the
state ρt is infinite. That is, the dephasing process takes an infinite amount of time to erase coherence from
the quantum system. In figure 2, we plot the bound (22) for finite time duration and the bound (22) is not
tight in general (see appendix C).

Dissipative process.— Now, we illustrate the QSL for the coherence under dissipative process. Let us
consider a two-level atom with ground state as |1〉〈1| and excited state as |0〉〈0| interacting with a dissipative
environment. The corresponding jump operator is given by L− =

√
γ
2σ−, where σ− is the lowering

operator and γ denotes the dissipation rate. The Lindblad master equation [97] governs the time evolution
of atom and it is given by

dρt

dt
=

γ

2

(
σ−ρtσ+ − 1

2
{σ+σ−, ρt}

)
, (37)

8
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Figure 2. Here we depict TCSL vs T and we have considered γ = 2, and θ ∈ { π
2 , π

3 , π
4 }.

where σ+ = |0〉〈1| and σ− = |1〉〈0| are the raising and the lowering operators, respectively.
If the atom the initially in a state ρ0 = |ψ(0)〉〈ψ(0)|, where |ψ(0)〉 = cos θ

2 |0〉+ sin θ
2 |1〉, then solution

of the Lindbland equation is given by

ρt = e−
γt
2 cos2 θ

2
|0〉〈0|+

(
1 − e−

γt
2 cos2 θ

2

)
|1〉〈1|+ e−

γt
4 sin

θ

2
cos

θ

2
(|1〉〈0|+ |0〉〈1|). (38)

To estimate bound (22), we require the following quantities:

C(ρ0) = −sin2 θ

2
ln

(
sin 2 θ

2

)
− cos2 θ

2
ln

(
cos2 θ

2

)
, (39)

C(ρt) = −e−
γt
2 cos2 θ

2
ln

(
e−

γt
2 cos2 θ

2

)
−
(

1 − e−
γt
2 cos2 θ

2

)
ln

(
1 − e−

γt
2 cos2 θ

2

)

+
1

2

(
ln

(
1

16

(√
2α e−

γt
2 + 2

))
+ ln

(
2 −

√
2α e−

γt
2

))

+

√
α

2
e−

γt
2 tanh−1

(
e−

γt
2

√
eγt − 4

(
e
γt
2 − 1

)
cos 4

θ

2

)
, (40)

‖L(ρt)‖2
HS =

1

32
γ2e−γt

(
16 cos4 θ

2
+ e

γt
2 sin2 θ

)
, (41)

‖L(ρD
t )‖2

HS =
1

2
γ2e−γt cos4 θ

2
, (42)

‖ ln ρD
t ‖2

HS =

[
ln

(
e−

γt
2 cos2 θ

2

)]2

+

[
ln

(
1 − e−

γt
2 cos2 θ

2

)]2

, (43)

‖ ln ρt‖2
HS =

[
ln

(
1

4

(
2 −

√
2 e−

γt
2
√
β
))]2

+

[
ln

(
1

4

(
2 +

√
2 e−

γt
2
√
β
))]2

, (44)

where α = 3 + 4 cos θ + cos 2θ − 8 e
γt
2 cos4 θ

2 + 2 eγt and β = 3 − 4
(

e
γt
2 − 1

)
cos θ −

(
e
γt
2 − 1

)
cos 2θ − 3 e

γt
2 + 2 eγt .

Here, we have calculated coherence in the computational basis {|0〉, |1〉}. In figure 3, we plot TCSL vs
T ∈ [0, π

3 ] for dissipative dynamics and we have considered γ = 2 and θ ∈ { π
2 , π

3 , π
4 }. We can observe that a

maximally coherent state has a higher speed limit time of decoherence compared to other states for the
dissipative process. According to equation (38) the dissipation time for the state ρt is infinite. That is, the
dissipative process takes an infinite amount of time to erase coherence from the quantum system. In
figure 2, we plot the bound (22) for finite time duration. The plot shows that the bound (22) is not tight as
expected (see appendix C).

9



New J. Phys. 24 (2022) 065003 B Mohan et al

Figure 3. Here we depict TCSL vs T and we have considered γ = 2, and θ ∈ { π
2 , π

3 , π
4 }.

3.3. Bounds based on instantaneous speed
The method used to derive the previous bounds for QSL for information and coherence is often used in the
QSL literature [58, 80]. It may be noted that these methods can have some limitations when the evolution
speed is not constant. In that case, then the notion of time averaged speed is introduced. This issue was
addressed in reference [81] by deriving so called the action QSLs. The concept of action QSL incorporates
the geodesic path between the initial and final state and the notion of instantaneous evolution speed is used
instead of the average evolution speed of the quantum system [81]. Here, we opt method of speed limit of
action to derive the speed limit for the von Neumann entropy and maximal information. The QSL based on
instantaneous evolution speed for the entropy read as

T � |S(ρT) − S(ρ0)|2∫ T
0 (‖Lt(ρt)‖HS‖ ln ρt‖HS)2dt

. (45)

The QSL based on instantaneous evolution speed for information reads as

T � |I(ρT ) − I(ρ0)|2∫ T
0 (‖Lt(ρt)‖tr‖ ln ρt‖op)2dt

. (46)

The detailed proof of these two bounds discussed in the appendix D.
In the QSLs based on instantaneous evolution speed, the notion of time appears naturally and we do not

require to introduce the notion of time as ad hoc. This is the key difference between previously obtained
speed limits (bounds in (6) and (13)) and speed limits based on instantaneous evolution speed. However,
the speed limits based on instantaneous evolution speed has its own limitations. For example, it will be hard
to achieve the bound or saturate the bound. As one can see, saturation happens when the speed is constant.
This condition is very unlikely to hold for open system dynamics where typically the instantaneous speed is
time-dependent.

For the sake of completeness, we have also obtained the QSL bound based on instantaneous evolution
speed for coherence in the appendix E.

4. Conclusion

Understanding of how fast one can create or erase information and coherence is important to control
quantum systems for desirable information processing tasks. The limitations on the rate at which
information measures change is crucial in engineering of processors to manipulate states of the quantum
systems in quantum computers and communication devices. In this work, we have derived the fundamental
limits on how fast the entropy, information, and quantum coherence can change for arbitrary physical
processes described by completely positive maps. We obtained lower bounds on the minimal evolution time
for the change in the entropy, maximal information, and quantum coherence. The QSL for information also
sets a generic bound on the rate of information production. We showcase an application of our main result

10
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by answering the question on the minimum time required to erase the information of a given quantum
state, where erasure could be under a general resetting operation or via thermalization process. The QSL on
coherence for dephasing process answers the question how fast system can undergo decoherence. We have
illustrated the QSL for coherence for pure dephasing as well as dissipative processes.

Unlike the QSL for state evolution under unitary dynamics, an important aspect of the QSLs for
information given in (13) and (22) is that, in general, they cannot be made tight (see appendix C). If we
demand that the inequality is saturated, then the time evolved density operator may not remain a positive
operator for general open system dynamics. This is also evident from the examples of non-unitary quantum
dynamics we have considered in this paper. We also provide a condition when the inequality may be
saturated. As a future work, it would be interesting to find speed limits on informational measures that are
tighter than the current bounds.

All the bounds derived in our paper (theorems 1–3) make use of the geometric approach, where the
lower bounds to entropy, information and coherence depend on the time averaged notion of the root mean
square evolution speed. One may ask if it possible to obtain QSLs where the bounds do not depend on the
average speed. In this respect, the action speed limits have been proved where a different derivation based
on the notion of action allowed to incorporate the notion of instantaneous evolution speed into the QSL
bound. Toward the end of our paper, we have also presented similar bounds for entropy, maximal
information, and coherence. In future, we will explore more on the physical applications of the geometric
QSL and instantaneous speed based QSL. The speed limits, presented in this work, may find application in
the study of quantum thermodynamics, open quantum systems, quantum control theory, and engineering
quantum technologies.
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Appendix A. Rate of coherence change

We consider the density operator ρD
t that is incoherent state in the reference basis {|i〉}d−1

i=0 , which is fixed
and independent of time, and formed after the action of completely dephasing channel on the density
operator ρt:

ρD
t =

∑
i

〈i|ρt|i〉|i〉〈i|. (A1)

We now present a lemma that we use in section 3.2.

Lemma 2. The rate of change of coherence C(ρt) := S(ρD
t ) − S(ρt) is given by

d

dt
C(ρt) = −tr{Lt(ρ

D
t ) ln ρD

t }+ tr{Lt(ρt) ln ρt}. (A2)

Proof. The rate of change of entropy of the completely dephased density operator ρD
t is given as:

dS(ρD
t )

dt
= −tr

[
dρD

t

dt
ln ρD

t

]
(A3)

= −tr

⎡
⎣∑

i,j

〈i|Lt(ρt)|i〉|i〉〈i| ln〈 j|ρt| j〉| j〉〈 j|

⎤
⎦ (A4)

= −tr

⎡
⎣∑

i,j

〈i|Lt(ρt)|i〉 ln〈 j|ρt | j〉δi,j|i 〉〈 j|

⎤
⎦ (A5)

= −
∑

i

〈i|Lt(ρt)|i〉 ln〈i|ρt |i〉. (A6)
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From the identity (A1), we have,

Lt(ρ
D
t ) =

dρD
t

dt
=

∑
i

〈i|Lt (ρt)|i〉|i〉〈i|. (A7)

Invoking the identity (A7) in the identity (A6) and using identity of the rate of entropy change in lemma 1,
we get the desired identity (A2). �

Appendix B. Proof of theorem 2

The information content I(ρt) of the time evolved density operator ρt is given by

I(ρt) = ln(d) − S(ρt). (B1)

After differentiating the above equation with respect to time t, we obtain

d

dt
I(ρt) = tr{Lt(ρt) lnρt}. (B2)

Let us take the absolute value of above equation and apply the Hölder’s inequality, then we obtain the
following inequality ∣∣∣∣ d

dt
I(ρt)

∣∣∣∣ � ‖Lt(ρt)‖tr‖ lnρt‖op. (B3)

After integrating above equation with respect to time t, we obtain

∫ T

0
dt

∣∣∣∣ d

dt
I(ρt)

∣∣∣∣ �
∫ T

0
‖Lt(ρt)‖tr‖ lnρt‖opdt. (B4)

We apply the Cauchy–Schwarz inequality on the right-hand side of the above inequality, we get

1

T

∫ T

0
dt

∣∣∣∣dI(ρt)

dt

∣∣∣∣
�

√
1

T

∫ T

0
‖Lt(ρt)‖2

trdt

√
1

T

∫ T

0
‖ lnρt‖2

opdt. (B5)

From the inequality (B5) we can obtain the following bound

T � |I(ρT ) − I(ρ0)|
Λrms

T ‖ lnρt‖2
op

. (B6)

Appendix C. On the saturation of speed limits

For any two normal operators A and B, the following equality holds if and only if A and B are linearly
dependent, i.e., A = cB where c ∈ C:

|tr(AB)| =
√

tr(A† A)tr(B†B). (C1)

For the saturation of the QSLs for the information which are derived invoking the Cauchy–Schwarz
inequality (e.g., (9)), a necessary criterion is that the involved density operator ρt and its Liouvillian
Lt(ρt) = ρ̇t should be such that the Cauchy–Schwarz inequality itself is saturated.

Note that any density operator ρt can be expressed as

ρt =
exp(−K(t))

tr[exp(−K(t))]

for some Hermitian operator K(t), which gives − ln ρt = K(t) + tr[exp(−K(t))]𝟙. For the Cauchy–Schwarz
inequality to be saturated in (9), we need to have for some a ∈ R

Lt(ρt) = ρ̇t = a(K(t) + tr[exp(−K(t))]𝟙), (C2)

12
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which implies

ρT = ρ0 + a

∫ T

0
(K(t) + tr[exp(−K(t))]𝟙)dt. (C3)

The above identity in general is not true as adding a Hermitian operator to a positive operator may not keep
the positivity. In other words, if we demand that the inequality is saturated, then the time evolved density
operator may not remain a positive operator for general open system dynamics. Thus, the equality
condition for QSLs for information cannot be reached in general. Though, this may hold only in special
cases as the second term on the right-hand side has to be a positive operator and needs to be traceless for
the identity to hold. Our proof also gives a condition when the equality may hold. For example, if the open
system dynamics not only keeps ρt positive, but also keeps −lnρt positive through out the evolution, then
equality may be achieved. This is a highly non-trivial task and we leave this as a future problem.

Appendix D. Derivation of quantum speed limit based on instantaneous evolution
speed for information

The Cauchy–Schwarz inequality for any two continuous functions states that

∫ T

0
f (t) g(t)dt �

√∫ T

0
f (t)2dt

√∫ T

0
g(t)2dt,

where f(t) and g(t) are real functions that are continuous on the closed interval [0, T].
We apply the Cauchy–Schwarz inequality on the right-hand side of the inequality (10), by setting g = 1,

we obtain ∫ T

0
dt

∣∣∣∣dS(ρt)

dt

∣∣∣∣ �
√∫ T

0
(‖Lt(ρt)‖HS‖ lnρt‖HS)2dt

√∫ T

0
dt. (D1)

After integrating above equation with respect to time t, we obtain

|S(ρT) − S(ρ0)| �
√

T

√∫ T

0
(‖Lt(ρt)‖HS‖ lnρt‖HS)2dt. (D2)

The above inequality can be re-written in the following form

T � |S(ρT) − S(ρ0)|2∫ T
0 (‖Lt(ρt)‖HS‖ lnρt‖HS)2dt

. (D3)

Similarly, for maximal information, one can obtain the following bound

T � |I(ρT ) − I(ρ0)|2∫ T
0 (‖Lt(ρt)‖tr‖ lnρt‖op)2dt

. (D4)

Hence, the proofs.

Appendix E. Derivation of quantum speed limit based on instantaneous evolution
speed for coherence

Let us apply the Cauchy–Schwarz inequality on the right-hand side of the inequality (27), by setting
g(t) = 1, we obtain

∫ T

0
dt

∣∣∣∣ d

dt
C(ρt)

∣∣∣∣ �
√∫ T

0
‖Lt(ρD

t )‖2
HS‖ lnρD

t ‖2
HSdt

√∫ T

0
dt +

√∫ T

0
‖Lt(ρt)‖2

HS‖ lnρt‖2
HSdt

√∫ T

0
dt. (E1)

After integrating above equation with respect to time t, we obtain

|C(ρT) − C(ρ0)| �
√

T

⎡
⎣
√∫ T

0
‖Lt(ρD

t )‖2
HS‖ lnρD

t ‖2
HSdt +

√∫ T

0
‖Lt(ρt)‖2

HS‖ lnρt‖2
HSdt

⎤
⎦ . (E2)
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The above inequality can be re-written in the following form

T � |C(ρT) − C(ρ0)|2

[
√
ΛD

T +
√
ΛT ]2

, (E3)

where ΛD
T =

∫ T
0 ‖Lt(ρD

t )‖2
HS‖ lnρD

t ‖2
HSdt and ΛT =

∫ T
0 ‖Lt(ρt)‖2

HS‖ lnρt‖2
HSdt.

ORCID iDs

Brij Mohan https://orcid.org/0000-0001-6606-5374
Siddhartha Das https://orcid.org/0000-0002-4523-5781
Arun Kumar Pati https://orcid.org/0000-0002-7761-9149

References

[1] Mandelstam L and Tamm I 1945 The uncertainty relation between energy and time in non-relativistic quantum mechanics J.
Phys. USSR 9 249

[2] Margolus N and Levitin L B 1998 The maximum speed of dynamical evolution Physica D 120 188
[3] Levitin L B and Toffoli T 2009 Fundamental limit on the rate of quantum dynamics: the unified bound is tight Phys. Rev. Lett. 103

160502
[4] Anandan J and Aharonov Y 1990 Geometry of quantum evolution Phys. Rev. Lett. 65 1697
[5] Campbell S, Genoni M G and Deffner S 2018 Precision thermometry and the quantum speed limit Quantum Sci. Technol. 3

025002
[6] Campbell S and Deffner S 2017 Trade-off between speed and cost in shortcuts to adiabaticity Phys. Rev. Lett. 118 100601
[7] Mukhopadhyay C, Misra A, Bhattacharya S and Pati A K 2018 Quantum speed limit constraints on a nanoscale autonomous

refrigerator Phys. Rev. E 97 062116
[8] Funo K, Shiraishi N and Saito K 2019 Speed limit for open quantum systems New J. Phys. 21 013006
[9] Campaioli F, Pollock F A and Vinjanampathy S 2018 Quantum batteries Thermodynamics in the Quantum Regime: Fundamental

Aspects and New Directions ed F Binder, L A Correa, C Gogolin, J Anders and G Adesso (Berlin: Springer) pp 207–25
[10] Ashhab S, de Groot P C and Nori F 2012 Speed limits for quantum gates in multiqubit systems Phys. Rev. A 85 052327
[11] Mohan B and Pati A K 2021 Reverse quantum speed limit: how slowly a quantum battery can discharge Phys. Rev. A 104 042209
[12] Giovannetti V, Lloyd S and Maccone L 2011 Advances in quantum metrology Nat. Photon. 5 222
[13] Jeong H and Kim M S 2002 Efficient quantum computation using coherent states Phys. Rev. A 65 042305
[14] Ralph T C, Gilchrist A, Milburn G J, Munro W J and Glancy S 2003 Quantum computation with optical coherent states Phys. Rev.

A 68 042319
[15] Yoo S, Bang J, Lee C and Lee J 2014 A quantum speedup in machine learning: finding an N-bit Boolean function for a

classification New J. Phys. 16 103014
[16] Srivastava C, Das S and Sen U 2021 Resource theory of quantum coherence with probabilistically nondistinguishable pointers and

corresponding wave-particle duality Phys. Rev. A 103 022417
[17] Kammerlander P and Anders J 2016 Coherence and measurement in quantum thermodynamics Sci. Rep. 6 22174
[18] Singh U, Das S and Cerf N J 2021 Partial order on passive states and Hoffman majorization in quantum thermodynamics Phys.

Rev. Res. 3 033091
[19] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Measuring quantum coherence with entanglement Phys. Rev. Lett.

115 020403
[20] Marvian I, Spekkens R W and Zanardi P 2016 Quantum speed limits, coherence, and asymmetry Phys. Rev. A 93 052331
[21] Mondal D, Datta C and Sazim S 2016 Quantum coherence sets the quantum speed limit for mixed states Phys. Lett. A 380 689
[22] Rossatto D Z, Pires D P, de Paula F M and de Sá Neto O P 2020 Quantum coherence and speed limit in the mean-field Dicke

model of superradiance Phys. Rev. A 102 053716
[23] Pati A K and Joshi A 1993 A geometric meaning to the probabilities of two-state quantum systems Europhys. Lett. 21 723
[24] Gislason E A, Sabelli N H and Wood J W 1985 New form of the time-energy uncertainty relation Phys. Rev. A 31 2078
[25] Eberly J H and Singh L P S 1973 Time operators, partial stationarity, and the energy-time uncertainty relation Phys. Rev. D 7 359
[26] Bauer M and Mello P 1978 The time-energy uncertainty relation Ann. Phys., NY 111 38
[27] Bhattacharyya K 1983 Quantum decay and the Mandelstam–Tamm-energy inequality J. Phys. A: Math. Gen. 16 2993
[28] Leubner C and Kiener C 1985 Improvement of the Eberly–Singh time-energy inequality by combination with the

Mandelstam–Tamm approach Phys. Rev. A 31 483
[29] Vaidman L 1992 Minimum time for the evolution to an orthogonal quantum state Am. J. Phys. 60 182
[30] Uhlmann A 1992 An energy dispersion estimate Phys. Lett. A 161 329
[31] Uffink J B 1993 The rate of evolution of a quantum state Am. J. Phys. 61 935
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[41] Zieliński B and Zych M 2006 Generalization of the Margolus–Levitin bound Phys. Rev. A 74 034301
[42] Zander C, Plastino A R, Plastino A and Casas M 2007 Entanglement and the speed of evolution of multi-partite quantum systems

J. Phys. A: Math. Theor. 40 2861
[43] Andrews M 2007 Bounds to unitary evolution Phys. Rev. A 75 062112
[44] Kupferman J and Reznik B 2008 Entanglement and the speed of evolution in mixed states Phys. Rev. A 78 042305
[45] Yurtsever U 2010 Fundamental limits on the speed of evolution of quantum states Phys. Scr. 82 035008
[46] Shuang-Shuang F, Nan L and Shun-Long L 2010 A note on fundamental limit of quantum dynamics rate Commun. Theor. Phys.

54 661
[47] Jones P J and Kok P 2010 Geometric derivation of the quantum speed limit Phys. Rev. A 82 022107
[48] Chau H F 2010 Tight upper bound of the maximum speed of evolution of a quantum state Phys. Rev. A 81 062133
[49] Zwierz M 2012 Comment on ‘geometric derivation of the quantum speed limit’ Phys. Rev. A 86 016101
[50] Deffner S and Lutz E 2013 Energy-time uncertainty relation for driven quantum systems J. Phys. A: Math. Theor. 46 335302
[51] Fung C-H F and Chau H F 2013 Time-energy measure for quantum processes Phys. Rev. A 88 012307
[52] Poggi P M, Lombardo F C and Wisniacki D A 2013 Quantum speed limit and optimal evolution time in a two-level system

Europhys. Lett. 104 40005
[53] Fung C-H F and Chau H 2014 Relation between physical time-energy cost of a quantum process and its information fidelity Phys.

Rev. A 90 022333
[54] Andersson O and Heydari H 2014 Quantum speed limits and optimal Hamiltonians for driven systems in mixed states J. Phys. A:

Math. Theor. 47 215301
[55] Mondal D and Pati A K 2016 Quantum speed limit for mixed states using an experimentally realizable metric Phys. Lett. A 380

1395
[56] Deffner S and Campbell S 2017 Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control J.

Phys. A: Math. Theor. 50 453001
[57] Campaioli F, Pollock F A, Binder F C and Modi K 2018 Tightening quantum speed limits for almost all states Phys. Rev. Lett. 120

060409
[58] Deffner S and Lutz E 2013 Quantum speed limit for non-Markovian dynamics Phys. Rev. Lett. 111 010402
[59] del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Quantum speed limits in open system dynamics Phys. Rev. Lett. 110

050403
[60] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Quantum speed limit for physical processes Phys. Rev. Lett.

110 050402
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