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Abstract
Nonlinear Fourier transform (NFT), based on the nonlinear Schrödinger equation, is
implemented for the description of soliton propagation, and in particular focused on propagation
of high-order solitons. In nonlinear frequency domain, a high-order soliton has multiple
eigenvalues depending on the soliton amplitude and pulse-width. During the propagation along
the standard single mode fiber (SSMF), their eigenvalues remain constant, while the corresponding
discrete spectrum rotates along with the SSMF transmission. Consequently, we can distinguish the
soliton order based on its eigenvalues. Meanwhile, the discrete spectrum rotation period is
consistent with the temporal evolution period of the high-order solitons. The discrete spectrum
contains nearly 99.99% energy of a soliton pulse. After inverse-NFT on discrete spectrum, soliton
pulse can be reconstructed, illustrating that the eigenvalues can be used to characterize soliton
pulse with good accuracy. This work shows that soliton characteristics can be well described in the
nonlinear frequency domain. Moreover, as a significant supplement to the existing means of
characterizing soliton pulses, NFT is expected to be another fundamental optical processing
method besides an oscilloscope (measuring pulse time domain information) and a spectrometer
(measuring pulse frequency domain information).

1. Introduction

The term of soliton was coined in 1965 to reflect the particle-like nature of solitary waves that remained
intact even after mutual collisions [1]. Since then, soliton has been discovered and studied in many
branches of physics including optics [2, 3]. Generally, a soliton refers to the localized solution of integral
nonlinear systems [1], for instance, the nonlinear Schrodinger equation (NLSE). As a balanced product of
nonlinearity and dispersion, the fundamental (first-order) soliton can propagate without distortion over the
lossless optical fiber. Due to the natural information coding for binary communication, ultrashort pulse
duration and distortion-free transmission, the fundamental soliton is regarded as a perfect candidate for
high-speed fiber optical transmission [4]. Over the past decade, ultrafast fiber lasers have risen as an
attractive platform for investigating the physics underpinning generation of various solitons. In contrast to
a light pulse propagation over a fiber—where the system is conservative with the assumption of lossless
propagation, a fiber laser is a paradigm of dissipative systems, where gain and loss affect the pulse
generation, while simultaneously it is a periodic boundary system. To identify a pulse, complete
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measurements include the use of an oscilloscope to measure pulse information in time domain and a
spectrometer to obtain the pulse property in the frequency domain. Obtaining meaningful insight into the
nonlinear dynamics of solitons has prompted development of several advanced characterization
methodologies, providing new ultrafast measurement tools to reveal transient phenomena arising in
nonlinear laser dynamics. For instance, the dispersive Fourier transform (DFT) method has been
successfully applied for investigating soliton explosions [5], bound solitons [6, 7], transition dynamics from
Q-switching to mode locking [8] and buildup dynamics of harmonic mode locking [9]. Furthermore, the
methodology of space-time duality has been successfully exploited to realize time lenses for direct
observation of rogue waves [10] and unknown soliton dynamics [11]. In addition, the continuum
generation has been shown great potential in obtaining soliton number for a given optical pulse [12].
Although the DFT and time lens methods have successfully realized soliton characterization in the Fourier
frequency domain and time domain, respectively, a new method that can identify more soliton pulse
characterizations covering broader aspects is always welcomed.

The nonlinear Fourier transform (NFT), also known as the inverse scattering transform in the
mathematical literature [13], is a powerful method that has been invented and extensively used for the
description of solutions to the so-called integrable nonlinear partial differential equations, for example the
NLSE, that governs at leading order the propagation of the optical and hydrodynamic waves. Originally, the
IST method was a result of extensive efforts in theoretical physics and applied mathematics in 1960s and
later, closely associated with the notion of solitons in integrable models [14, 15]. As a powerful
mathematical tool, IST has shown great potential in identifying coherent wave packets in the ocean [16–18]
and optical fibers [19–21]. With the approach of NFT, signal can be decomposed into a continuous
spectrum (non-soliton components) and a discrete spectrum (soliton components) to obtain the
corresponding nonlinear spectrum [22, 23]. By converting the nonlinear transmission impairments arising
in the standard single mode fiber (SSMF) to a phase shift in nonlinear spectrum, NFT has shown great
potential in nonlinear transmission impairments compensation [24–26]. Meanwhile, as a method to obtain
analytic solutions to the nonlinear Schrödinger equation (NLSE), the NFT can be used to analyze signals in
optical fibers, such as rogue waves [27] and Kerr optical frequency combs [28]. Generally, NFT is associated
with the integrable conservative Hamiltonian models. However, recent research has shown that NFT has the
capability to characterize the soliton pulses from dissipative systems, especially soliton pulses generated
from fiber lasers [29–33]. In our previous work, we have proposed a method of soliton distillation to
distinguish solitons from the resonant continuous wave (CW) background according to their different
eigenvalue distributions based on the NFT [32]. Furthermore, by using the approach of soliton distillation,
we recover the pure solitons dynamic of pulses from fiber laser, including the state of single pulse, the state
of single pulse in period doubling, and the states of double pulses and triple pulses [33]. With the help of
NFT, the signal can be described by the combination of discrete spectrum and continuous spectrum.
Eigenvalues are distributed in the discrete spectrum only. We have demonstrated that the pure fundamental
soliton distributed energy in the discrete spectrum only if the appropriate normalization factor is taken
during the NFT [32, 33]. Based on our previous success, we believe that the NFT method is able to
comprehensively characterize solitons especially high-order soliton propagation over the SSMF.

In the following sections, we focus on eigenvalue analysis of high-order solitons. With the approach of
NFT, the nonlinear spectrum of high-order solitons can be investigated. When propagating along SSMF,
phase rotation of the nonlinear spectrum caused by fiber nonlinearity can be observed. Furthermore,
soliton pulse can be reconstructed with only the discrete spectrum, confirming the eigenvalues can
characterize soliton pulse with good accuracy. In comparison with the DFT and time lens methods, such
NFT methodology provides a new viewpoint on the physics of soliton pulses, which is a significant
supplement to the existing means of characterizing soliton pulses.

2. Operation principle

When propagating over the SSMF, the time and space dependence of the slowly varying envelope of the
signal is determined by the NLSE [34],

i
∂E(t, z)

∂z
+ i

α(z)

2
E(t, z) − β2

2

∂2E(t, z)

∂t2
+ γ|E(t, z)|2E(t, z) = 0, (1)

where E(t, z) is the slowly varying envelope of the optical signal, z is the space coordinate along the direction
of propagation, γ is the nonlinear parameter, β2 is the second-order dispersion parameter, and α(z) is the
attenuation coefficient. For its practical interest, here we neglect higher order dispersion and consider only
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the anomalous dispersion (β2 < 0). In the particular case where the loss can be either neglected or
mitigated through the use of distributed amplification, the NLSE is usually written into the normalized
form as:

i
∂q(τ , l)

∂l
+

1

2

∂2q(τ , l)

∂τ 2
+ |q(τ , l)|2q(τ , l) = 0, (2)

where τ , l, and q(τ , l) are the normalized time, distance, and amplitude. As the NLSE with zero right-hand
side is integrable, the explicit procedures for NFT and inverse NFT (INFT) are known [22–24]. The
decomposition of the signal into spectral data is achieved by solving the Zakharov–Shabat problem (ZSP)
equations for auxiliary functions v1, v2 [34]

dv1(τ ,λ)

dτ
= q(τ)v2(τ ,λ) − iλv1(τ ,λ),

dv2(τ ,λ)

dτ
= −q∗(τ)v1(τ ,λ) + iλv2(τ ,λ),

(3)

where λ is the spectral parameter, which plays a role of a nonlinear analog of frequency. The scattering data
a(λ) and b(λ) serve as the basis on which the nonlinear spectrum is defined. Due to the boundary
condition, they can be calculated

a(λ) = lim
τ→∞

v1(τ ,λ)ejλτ ,

b(λ) = lim
τ→∞

v2(τ ,λ)e−jλτ .
(4)

Then, the nonlinear spectrum can be defined as

Qc(λ) = b(λ)/a(λ), λ ∈ R,

Qd(λn) = b(λn)/a′(λn), λ ∈ C+,
(5)

where Qc(λ) and Qd(λn) are continuous spectrum and discrete spectrum, respectively. Eigenvalue λn is the
root of a(λ) and a′(λ) is the derivative of a(λ). After propagating distance z governed by the NLSE, the
variation in the corresponding spectrum values satisfy the following rules:

Qc(λ, z) = Qc(λ, 0) · e−2jλ2z,

Qd(λn, z) = Qd(λn, 0) · e−2jλn
2z.

(6)

In the nonlinear frequency domain, the SSMF channel evolves into a linear channel, whose transfer
function is H(z) = e−2jλ2z. In another word, the amplitude of nonlinear spectrum remains constant, while
its phase varies linearly with the transmission distance. For the NLSE, the field energy can be presented as a
sum of continuous spectrum and discrete spectrum:

∫ ∞

−∞
|q(t, z)|2dt =

1

π

∫ ∞

−∞
log(1 + |Qc(λ)|2)dλ+ 4

N∑
n=1

Im(λn), (7)

where the left side of equation corresponds to the energy calculated in the temporal domain Et(z), while the
right side consists of a contribution of the continuous spectrum energy Ec(z) and the discrete spectrum
Ed(z), so Et(z) = Ec(z) + Ed(z).

As the fundamental solution of NLSE, the nonlinear spectrum of fundamental soliton only contains
discrete spectrum with single eigenvalue and its temporal waveform is [35]

q(t) = −2jλI e−j∠Qd(λn)sech(2λI(t − t0))e−2jλR t , (8)

where λR and λI are the real and imaginary parts of eigenvalue λn, ∠Qd(λn) is the spectrum phase, and t0 is
the time center associated with λI and spectrum amplitude. As shown in equation (8), the eigenvalue λn

specifies the soliton parameters with an amplitude of 2λI and a frequency of 2λR. For a high-order soliton,
its nonlinear spectrum contains more eigenvalues and the nonlinear spectrum evolution also satisfies phase
rotation, as equation (6) shows.

3. Results and discussion

Different from conventional Fourier transform, NFT is sensitive to signal energy. With the signal amplitude
increasing, its nonlinear spectrum does not increase linearly. Consequently, the amplitude of a soliton pulse
can influence its eigenvalue distribution. Here, we consider soliton described as q(t) = A · sech(t), where A
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Figure 1. Evolution of eigenvalues versus amplitude in 3D format.

Figure 2. Dependence of the ratio of the energy Ed (discrete spectrum), to the total energy Et on the amplitude A and the
pulse-width τ of the soliton pulse, expressed as q(t) = A · sech(t/τ ). The numbers on the plot denote the number of discrete
eigenvalues in the corresponding regimes. Black dashed lines defined by the analytical expression Aτ + 1/2 = n separate regimes
with different numbers of discrete eigenvalues.

is the amplitude of the soliton pulse. Figure 1 shows the evolution of eigenvalues versus amplitude in the
three dimensions (3D), where the x axis is real part, y axis is the amplitude, and z axis is the imaginary part.
It is obvious that the number of eigenvalues increases with the growing amplitude, due to the enhanced
soliton power. Meanwhile, for soliton with amplitude A (when A is an integer), its nonlinear spectrum
contains A eigenvalues, which are {0.5i, 1.5i, . . . , (A − 0.5)i}, respectively.

Alternately, the temporal waveform of the soliton pulse with sech-type shape can be simply expressed as
q(t) = A · sech(t/τ ). Besides the amplitude A, the pulse-width τ is also an important parameter, which can
directly affect the distribution of nonlinear spectral energy and eigenvalue distribution. Figure 2 shows the
number of discrete eigenvalues N with respect to two soliton parameters including the amplitude A and the
pulse-width τ . The numbers on the plot denote areas with different numbers of discrete eigenvalues. A
direct numerical solution of the ZSP problem is compared with the analytical solution of Aτ = N − 1/2,
indicating of excellent agreement. The set of eigenvalue λn is defined as λn = i(Aτ + 1/2 − n), where n are
positive integers satisfying condition Aτ + 1/2 − n > 0, providing for Im(λn) > 0. Black dashed lines in
figure 2 defined by the analytical expression Aτ + 1/2 = n separate areas with different numbers of discrete
eigenvalues. The colors in figure 2 display a fraction of the energy Ed, corresponding to the discrete
spectrum, to the total energy Et. We derive the analytical expression for the fraction of energy containing in
the spectrum

Ed

Et
=

A2τ 2 − (ρ− 1/2)2

A2τ 2
, (9)
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Figure 3. (a) Temporal waveform, (b) eigenvalue distribution of a fundamental soliton q(t) = sech(t), and (c) temporal
waveform of the field qs(t) reconstructed by the nonlinear discrete spectrum shown in (b).

Figure 4. (a) 3D plot of fundamental soliton evolution, (b) dynamics of nonlinear spectrum with z in the complex plane,
including both the eigenvalue (λ = 0.5i) and continuous spectrum, (c) dynamics of discrete spectrum, and (d) dynamics of the
field qs(t, z) reconstructed by the nonlinear discrete spectrum shown in (b) at each point in z.

where ρ = frac(Aτ + 1/2) is a fractional part of Aτ + 1/2. One can see that once Aτ > 0, the proportion of
the energy contained in the discrete spectrum to the total energy is always quite high—more than 80%.
Here, continuous spectrum contains extremely lower energy. In consideration of both discrete spectrum
and continuous spectrum, soliton pulse can be reconstructed with the approach of INFT. In particular,
when Aτ is an integer, there are Aτ eigenvalues and the energy ratio can exceed 99.99%. This indicates that
the dynamics is dominated by the soliton structures and NFT could be a much simpler way to describe the
system with Aτ identified (discrete eigenvalues). Consequently, we choose τ = 1 and consider initial
condition of N-soliton as q(t) = N · sech(t), where N is the soliton order.

Firstly, we consider fundamental soliton q(t) = sech(t) and its temporal waveform, eigenvalue
distribution and continuous spectrum are shown in figure 3. In nonlinear spectrum, there is a single
eigenvalue λ = 0.5i, as shown in figure 3(b). The real part and imaginary part of eigenvalue are referred to
the frequency and amplitude of a fundamental soliton, respectively, which satisfies the equation (8). In this
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Figure 5. (a) 3D plot of second-order soliton evolution, (b) dynamics of nonlinear spectrum with z in the complex plane,
including both the eigenvalues (brown and blue pentacles refer to λ1 = 0.5i and λ2 = 1.5i, respectively) and continuous
spectrum, (c) dynamics of discrete spectrum (brown and blue pentacles refer to Qd(λ1) and Qd(λ2), respectively), and
(d) dynamics of the field qs(t, z) reconstructed by the nonlinear discrete spectrum shown in (b) at each point in z.

case, the ratio of the energy Ed, corresponding to the discrete spectrum, to the total energy Et is 99.99%,
which means the energy is almost entirely concentrated in the discrete spectrum. By filtering out the
continuous spectrum and reserving discrete spectrum, the soliton can be reconstructed by INFT, as shown
in figure 3(c).

Then, we examine application of the NFT for analysis of dynamics of solitons generated from
equation (2). A numerical modeling is performed using the standard split-step Fourier method. We
consider the initial condition of fundamental soliton as q(t, z = 0) = sech(t). Figure 4 shows the temporal
waveform and nonlinear spectrum of fundamental soliton. As the localized solution of NLSE, the
fundamental soliton can propagate without the distortion along the SSMF, as shown in figure 4(a). In
nonlinear frequency domain, there exists a single eigenvalue λ = 0.5i and it remains constant during the
SSMF propagation, as shown in figure 4(b). While, the continuous spectrum has an amplitude of ∼10−3.
Figure 4(c) shows the 3D evolution of the discrete spectrum Qd(λ, z) with distance z in the complex plane.
Clearly, we can see that, the phase of discrete spectrum changes with the transmission distance, induced by
fiber nonlinearity. This phase change satisfies equation (6). Notably, the discrete spectrum occupies nearly
99.99% of the energy, while the continuous spectrum has almost zero energy distribution. The single
eigenvalue characterizes the formed fundamental soliton with good accuracy. This is illustrated by the
reconstruction of the soliton 3D evolution from just the eigenvalue and its corresponding discrete spectrum
as shown in figure 4(d) (here we neglect the continuous spectrum).

Furthermore, we consider the initial condition of second-order soliton as q(t, z = 0) = 2 · sech(t).
Figure 5 shows the temporal waveform and nonlinear spectrum of second-order soliton. During
propagation, the temporal waveform oscillates periodically with the transmission distance and the period z0

is π/2. Figure 5(b) shows the 3D evolution of the nonlinear spectrum with z in the complex plane,
including both the eigenvalue and continuous spectrum during the propagation of second-order soliton.
The second-order soliton has two eigenvalues {0.5i, 1.5i} and they are fixed during the SSMF propagation.
While, the continuous spectrum oscillates in the same period as the temporal waveform but with an
amplitude of ∼10−4. Figure 5(c) shows the 3D evolution of the discrete spectrum Qd(λ, z) with distance z in
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Figure 6. (a) 3D plot of third-order soliton evolution, (b) dynamics of nonlinear spectrum with z in the complex plane,
including both the eigenvalues (brown, blue and green pentacles refer to λ1 = 0.5i, λ2 = 1.5i and λ3 = 2.5i, respectively) and
continuous spectrum, (c) dynamics of discrete spectrum (blue, brown and green pentacles refer to Qd(λ1), Qd(λ2) and Qd(λ3),
respectively), and (d) dynamics of the field qs(t, z) reconstructed by the nonlinear discrete spectrum shown in (b) at each point in
z.

the complex plane. Clearly, we can see that, the phase of discrete spectrum changes during pulse
propagation, induced by fiber nonlinearity. Two discrete spectra of two eigenvalues have different transform
speed and this phase transformation satisfies the equation (6). Figure 5(d) shows the reconstruction of the
soliton 3D evolution from just the two eigenvalues and their corresponding discrete spectrum, revealing
these two eigenvalues can characterize the formed second-order soliton with good accuracy.

Generally, the higher is the order of a soliton, the more eigenvalues it has, as shown in figure 1.
Moreover, the temporal waveform of high-order soliton also oscillates periodically during the SSMF
propagation. Setting initial condition q(t, z = 0) = 3 · sech(t), a third-order soliton can also be obtained.
Figure 6 shows the temporal waveform and nonlinear spectrum of third-order soliton. In nonlinear
frequency domain, third-order soliton has three eigenvalues {0.5i, 1.5i, 2.5i} and they keep constant along
the SSMF, as shown in figure 6(b). At the same time, the continuous spectrum oscillates periodically with
nearly an amplitude of 10−3. As equation (6) shows, the rotational velocity of the nonlinear spectrum is
determined by the square of the imaginary part of the eigenvalue. Consequently, three discrete spectra of
third-order soliton, corresponding to three eigenvalues, rotate at different angular velocities, as shown in
figure 6(c). Similarly, we reconstruct soliton by INFT on discrete spectrum only and plot 3D evolution of
reconstructed soliton in figure 6(d).

An intrinsic property of the high-order soliton is that its temporal waveform is periodic during the
SSMF propagation with a soliton period of z0 = π/2. In nonlinear frequency domain, it is fingerprinted by
the periodic phase rotation of discrete spectrum determined by equation (6). Animations provided in
supplementary materials (https://stacks.iop.org/NJP/24/033039/mmedia) show the temporal waveform and
nonlinear spectrum evolution dynamics of a fundamental soliton (movie S1), a second-order soliton
(movie S2) and a third-order soliton (movie S3), respectively. Clearly, we can see the phase of discrete
spectrum rotates with the SSMF propagation. For fundamental soliton, there is a single eigenvalue λ = 0.5i
and its discrete spectrum evolution satisfies Qd(λ, z) = Qd(λ, 0) · e−2jλ2 z. As for second-order soliton, there
are two eigenvalues (λ1 = 0.5i and λ2 = 1.5i). Their discrete spectra (Qd(λ1) and Qd(λ2)) have different
transform speed and the ratio of their phase transformation is 1:9, satisfying the equation (6). Similarly, the
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Figure 7. (a) Discrete spectrum phase evolution of fundamental soliton, phase difference evolution between discrete spectrum
of (b) second-order and (c) third-order soliton. The red dashed line is the temporal oscillation period z = k · π/2.

phase evolution speed ratio of third-order soliton discrete spectra is 1:9:25. Then, figure 7 shows discrete
spectrum phase evolution of a fundamental soliton, a second-order soliton and a third-order soliton,
respectively. Notably, the phase difference between discrete spectrum of high-order soliton (second-order
and third-order) also periodically oscillates. This period of oscillation is π/2, in consistent with temporal
period. It illustrated that the periodic temporal oscillation can also be characterized by phase rotation of
discrete spectrum in nonlinear frequency domain, verifying that NFT is a perfect optical processing method
in soliton study.

Theoretically, NFT should be rigorously bound with the property of the NLSE, which describes the
classical integrable nonlinear systems as it was first shown in the seminal work by Zakharov and Shabat
[34]. Please note that we do not aim to solve underlying equations, but rather to use NFT for signal
processing and to describe signal with less variables, for example here the discrete eigenvalues only,
simplifying the description compared to conventional presentation. For higher-order soliton, there are more
eigenvalues in nonlinear frequency domain. It is distinguishable to use eigenvalue number to identify the
order number of high-order soliton. While propagating along the SSMF, the fiber nonlinearity converts to a
phase rotation of discrete spectrum. As for more complex and fundamental higher-order NLSE solutions on
a condensate, in its core there is still an integrable NLSE. Therefore, NLSE-based techniques can be
inherently useful for analysis of the solutions, such as a higher-order Akhmediev-, Kusnetsov–Ma, and
Peregrine-type solutions [36–40], which will be our work in future. Therefore, NFT provide an alternative
way to describe solitons in general, which compliments temporal and spectral measurement. In practice,
deviations, induced by noise or higher-order effects, will introduce a penalty to the characterization results.
On such occasion, reconstruction of pure soliton pulse with a nonlinear spectrum containing discrete
eigenvalues might technically be challenging. Recently, the choice of windowing [41] and normalization
[30] have been fully discussed, which greatly promoted analysis of the experimental data with NFT. We
anticipate that new effective algorithms will be available for future NFT software toolboxes, in order to
make it a routine technique for analysis of experimental data.

4. Conclusions

We have investigated the nonlinear spectrum of high-order soliton. The high-order soliton has an enhanced
number of eigenvalues depending on the soliton order. During the SSMF propagation, their eigenvalues
remain constant, while the corresponding discrete spectrum rotates along with the SSMF. The periodic
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temporal oscillation of high-order soliton can be characterized by a phase rotation of discrete spectrum in
nonlinear frequency domain. After INFT on discrete spectrum, soliton can be reconstructed and the
reconstructed soliton is almost the same as the high-order soliton, which means that the eigenvalues can
characterize the generated high-order soliton with good accuracy. The characterization methodology based
on NFT is expected to be the third basic optical measuring solution besides an oscilloscope (measuring
pulse time domain information) and a spectrometer (measuring pulse frequency domain information).

Acknowledgments

This work was supported by National Key R & D Program of China (2018YFB1801001), Fundamental
Research Funds for the Central Universities (HUST 2020kfyXJJS007), National Natural Science Foundation
of China (61875061), the Protocol of the 9th Session of China-Croatia Scientific and Technological
Cooperation Committee (Grant No. 9-28), the Protocol of the 38th Session of China-Poland Scientific and
Technological Cooperation Committee (Grant No. 6), National Agency for Academic Exchange in Poland
PPN/BCN/2019/1/00068.

Data availability statement

The data generated and/or analysed during the current study are not publicly available for legal/ethical
reasons but are available from the corresponding author on reasonable request.

ORCID iDs

Yutian Wang https://orcid.org/0000-0002-5087-5644
Mariusz Klimczak https://orcid.org/0000-0002-3110-9792
Luming Zhao https://orcid.org/0000-0002-4150-1157

References

[1] Zabusky N J and Kruskal M D 1965 Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states Phys. Rev.
Lett. 15 240

[2] Hasegawa H and Kodama Y 1995 Soliton in Optical Communications (Oxford: Oxford University Press)
[3] Mollenauer L F and Gordon J P 2006 Solitons in Optical Fibers: Fundamental and Applications (New York: Academic)
[4] Mollenauer L F and Smith K 1998 Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically

compensated by Raman gain Opt. Lett. 13 675–7
[5] Runge A F J, Broderick N G R and Erkintalo M 2015 Observation of soliton explosions in a passively mode-locked fiber laser

Optica 2 36–9
[6] Herink G, Kurtz F, Jalali B, Solli D R and Ropers C 2017 Real-time spectral interferometry probes the internal dynamics of

femtosecond soliton molecules Science 356 50–4
[7] Krupa K, Nithyanandan K and Grelu G 2017 Vector dynamics of incoherent dissipative optical solitons Optica 4 1239–44
[8] Liu X, Popa D and Akhmediev N 2019 Revealing the transition dynamics from Q switching to mode locking in a soliton laser

Phys. Rev. Lett. 123 093901
[9] Liu X and Pang M 2019 Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers Laser Photon. Rev.

13 1800333
[10] Suret P, Koussaifi R E, Tikan A, Evain C, Randoux S, Szwaj C and Bielawski S 2016 Direct observation of rogue waves in optical

turbulence using time microscopy Nat. Commun. 7 13136
[11] Tikan A et al 2017 Universality of the peregrine soliton in the focusing dynamics of the cubic nonlinear Schrödinger equation

Phys. Rev. Lett. 119 033901
[12] Castello-Lubre D et al 2020 Measurement of the soliton number in guiding media through continuum generation Opt. Lett.

45 4432–5
[13] Ablowitz M J et al 1973 The inverse scattering transform-Fourier analysis for nonlinear problems Stud. Appl. Math. 53 249–315
[14] Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia, PA: SIAM)
[15] Faddeev L and Takhtajan L 2007 Hamiltonian Methods in the Theory of Solitons (Berlin: Springer)
[16] Osborne A R 2002 Nonlinear Ocean Wave and the Inverse Scattering Transform Scattering (New York: Academic)
[17] Chabchoub A, Hoffmann N P and Akhmediev N 2011 Rogue wave observation in a water wave tank Phys. Rev. Lett. 106 204502
[18] Suret P et al 2020 Nonlinear spectral synthesis of soliton gas in deep-water surface gravity waves Phys. Rev. Lett. 125 264101
[19] Dudley J M, Dias F, Erkintalo M and Genty G 2014 Instabilities, breathers and rogue waves in optics Nat. Photon. 8 755
[20] Chabchoub A, Kibler B, Dudley J M and Akhmediev N 2014 Hydrodynamics of periodic breathers Phil. Trans. R. Soc. A 372

20140005
[21] Walczak P, Randoux S and Suret P 2015 Optical rogue waves in integrable turbulence Phys. Rev. Lett. 114 143903
[22] Yousefi M I and Kschischang F R 2014 Information transmission using the nonlinear Fourier transform: I. Mathematical tools

IEEE Trans. Inf. Theory 60 4312–28
[23] Yousefi M I and Kschischang F R 2014 Information transmission using the nonlinear Fourier transform: II. Numerical methods

IEEE Trans. Inf. Theory 60 4329–45

9

https://orcid.org/0000-0002-5087-5644
https://orcid.org/0000-0002-5087-5644
https://orcid.org/0000-0002-3110-9792
https://orcid.org/0000-0002-3110-9792
https://orcid.org/0000-0002-4150-1157
https://orcid.org/0000-0002-4150-1157
https://doi.org/10.1103/physrevlett.15.240
https://doi.org/10.1103/physrevlett.15.240
https://doi.org/10.1364/ol.13.000675
https://doi.org/10.1364/ol.13.000675
https://doi.org/10.1364/ol.13.000675
https://doi.org/10.1364/ol.13.000675
https://doi.org/10.1364/optica.2.000036
https://doi.org/10.1364/optica.2.000036
https://doi.org/10.1364/optica.2.000036
https://doi.org/10.1364/optica.2.000036
https://doi.org/10.1126/science.aal5326
https://doi.org/10.1126/science.aal5326
https://doi.org/10.1126/science.aal5326
https://doi.org/10.1126/science.aal5326
https://doi.org/10.1364/optica.4.001239
https://doi.org/10.1364/optica.4.001239
https://doi.org/10.1364/optica.4.001239
https://doi.org/10.1364/optica.4.001239
https://doi.org/10.1103/physrevlett.123.093901
https://doi.org/10.1103/physrevlett.123.093901
https://doi.org/10.1002/lpor.201800333
https://doi.org/10.1002/lpor.201800333
https://doi.org/10.1038/ncomms13136
https://doi.org/10.1038/ncomms13136
https://doi.org/10.1103/physrevlett.119.033901
https://doi.org/10.1103/physrevlett.119.033901
https://doi.org/10.1364/ol.399382
https://doi.org/10.1364/ol.399382
https://doi.org/10.1364/ol.399382
https://doi.org/10.1364/ol.399382
https://doi.org/10.1002/sapm1974534249
https://doi.org/10.1002/sapm1974534249
https://doi.org/10.1002/sapm1974534249
https://doi.org/10.1002/sapm1974534249
https://doi.org/10.1103/physrevlett.106.204502
https://doi.org/10.1103/physrevlett.106.204502
https://doi.org/10.1103/physrevlett.125.264101
https://doi.org/10.1103/physrevlett.125.264101
https://doi.org/10.1038/nphoton.2014.220
https://doi.org/10.1038/nphoton.2014.220
https://doi.org/10.1098/rsta.2014.0005
https://doi.org/10.1098/rsta.2014.0005
https://doi.org/10.1103/physrevlett.114.143903
https://doi.org/10.1103/physrevlett.114.143903
https://doi.org/10.1109/tit.2014.2321143
https://doi.org/10.1109/tit.2014.2321143
https://doi.org/10.1109/tit.2014.2321143
https://doi.org/10.1109/tit.2014.2321143
https://doi.org/10.1109/tit.2014.2321151
https://doi.org/10.1109/tit.2014.2321151
https://doi.org/10.1109/tit.2014.2321151
https://doi.org/10.1109/tit.2014.2321151


New J. Phys. 24 (2022) 033039 Y Wang et al

[24] Yousefi M I and Kschischang F R 2014 Information transmission using the nonlinear Fourier transform: III. Spectrum
modulation IEEE Trans. Inf. Theory 60 4346–69

[25] Turitsyn S K, Prilepsky J E, Le S T, Wahls S, Frumin L L, Kamalian M and Derevyanko S A 2017 Nonlinear Fourier transform for
optical data processing and transmission: advances and perspectives Optica 4 307–22

[26] Le S T, Aref V and Buelow H 2017 Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit Nat.
Photon. 11 570–6

[27] Randoux S, Suret P and El G 2016 Inverse scattering transform analysis of rogue waves using local periodization procedure Sci.
Rep. 6 29238

[28] Wang J, Sheng A-G, Huang X, Li R-Y and He G-Q 2020 Eigenvalue spectrum analysis for temporal signals of Kerr optical
frequency combs based on nonlinear Fourier transform Chin. Phys. B 29 034207

[29] Ryczkowski P, Närhi M, Billet C, Merolla J-M, Genty G and Dudley J M 2018 Real-time full-field characterization of transient
dissipative soliton dynamics in a mode-locked laser Nat. Photon. 12 221–7

[30] Sugavanam S, Kopae M K, Peng J, Prilepsky J E and Turitsyn S K 2019 Analysis of laser radiation using the nonlinear Fourier
transform Nat. Commun. 10 5663

[31] Chekhovskoy I S, Shtyrina O V, Fedoruk M P, Medvedev S B and Turitsyn S K 2019 Nonlinear Fourier transform for analysis of
coherent structures in dissipative systems Phys. Rev. Lett. 122 153901

[32] Wang Y, Fu S, Zhang C, Tang X, Kong J, Lee J H and Zhao L 2021 Soliton distillation of pulses from a fiber laser J. Lightwave
Technol. 39 2542–6

[33] Wang Y et al 2021 Nonlinear Fourier transform enabled eigenvalue spectrum investigation for fiber laser radiation Photon. Res.
9 1531–9

[34] Zakharov V E and Shabat A B 1972 Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves
in nonlinear media Sov. Phys. J. Exp. Theor. Phys. 34 62–9

[35] Gui T, Lu C, Lau A P T and Wai P K A 2017 High-order modulation on a single discrete eigenvalue for optical communications
based on nonlinear Fourier transform Opt. Express 25 20286–97

[36] Li Z D 2015 Kuznetsov–Ma soliton and Akhmediev breather of higher-order nonlinear Schrödinger equation Chin. Phys. B
25 010507
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