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Abstract
We introduce and analyze an open quantum generalization of the q-state Potts-Hopfield neural
network (NN), which is an associative memory model based on multi-level classical spins. The
dynamics of this many-body system is formulated in terms of a Markovian master equation of
Lindblad type, which allows to incorporate both probabilistic classical and coherent quantum
processes on an equal footing. By employing a mean field description we investigate how classical
fluctuations due to temperature and quantum fluctuations effectuated by coherent spin rotations
affect the ability of the network to retrieve stored memory patterns. We construct the
corresponding phase diagram, which in the low temperature regime displays pattern retrieval in
analogy to the classical Potts-Hopfield NN. When increasing quantum fluctuations, however, a
limit cycle phase emerges, which has no classical counterpart. This shows that quantum effects can
qualitatively alter the structure of the stationary state manifold with respect to the classical model,
and potentially allow one to encode and retrieve novel types of patterns.

1. Introduction

Machine learning (ML) is considered the core of artificial intelligence and data science, and it is nowadays
an expanding research area. The interest in giving systems the ability to learn how to accomplish a task,
without being explicitly programmed, ranges from computer science to neurobiology [1, 2], with
applications spreading from science to commerce [3, 4]. One of the most successful architectures for ML is
represented by neural networks (NNs) [5], which are artificial systems that are able to mimic what is known
about the inner workings of the brain in relation to assimilation and comprehension processes. While in
general these models may be too simple for the pursuit of understanding the computational properties of
the brain itself [6], they have nevertheless powerful applications in artificial intelligence. NNs are systems
described in terms of interconnected artificial neurons with learning capabilities. Among the several
instances of NNs, many efforts are focused on attractor NNs, which are well suited to be described via
classical spin systems subject to thermal fluctuations [7]. This formulation enables one to adopt concepts
commonly used in the context of statistical mechanics.

In the last decades, it has been shown that genuine quantum features such as superposition of states and
entanglement provide remarkable advantages for solving many computational problems [8–11], which has
led to significant developments in the field of quantum computation. Within this research area, a number of
current developments focus on exploring possible advantages in the design and realization of near-term
quantum devices by applying concepts from classical NN computing to quantum systems [12]. One
example is given by suitably constructed classical NNs, which are used to approximate many-body quantum
states, such as restricted Boltzmann machines [13–15]. Other recent works deal with more sophisticated
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architectures, such as deep NNs, for efficiently modeling quantum many-body states [16–18], allowing to
implement representations of mixed states, rather than pure states only [19]. Also noteworthy in this regard
are recent advances in relating the NNs description of many-body quantum states to tensor network states,
with the intention to exploit the latter as a tool for ML tasks [20–23].

In addition to the aforementioned paradigms, various efforts aim at harnessing the potential
computational power of quantum generalizations of classical NNs [24, 25]. Here the goal is to first
understand how to model such quantum versions, and subsequently to analyze the emergence of novel
features embodied in their quantum nature [26]. Current instances of quantum formulations of NNs range
from quantum algorithms and quantum circuit settings [27–35], which include, e.g., the so-called
feed-forward quantum NNs, to condensed matter systems [36–41] and biological settings [42, 43]. One
approach for generalizing NNs into the quantum domain—which we will also pursue here—views a
task-performing NN as a dynamical process that takes place within an ensemble of neurons that are
represented by quantum systems [44–46]. This perspective is inspired by Hopfield-type NNs [47], which
are, among attractor NNs, the simplest instances of associative memories, permitting the recognition, or
retrieval, of patterns. Here, the retrieval of information is described by means of a classical non-equilibrium
dynamics, where memories are stored as long-time solutions of a stochastic dynamics [7, 48, 49]. Such a
classical out-of-equilibrium dynamics can be generalized into the quantum domain via the formalism of
open quantum systems [50], which allows to introduce quantum generalizations of Hopfield-type NNs.
This idea can be further generalized, as recently done in reference [51], where quantum NNs are
represented as dynamical maps. They evolve initial quantum states, which play the role of inputs of the
quantum NN, and take them toward stored memories, which correspond to stationary states of the maps.

In this work we introduce a quantum generalized NN, which is derived from the classical q-state
Potts-Hopfield neural network (qPHN). Its basic constituents are multi-level spins which are subject to an
all-to-all interaction, as shown in figure 1(a). We introduce an open quantum dynamics that evolves this
system by means of a Markovian dynamical map, using the Gorini–Kossakowski–Sudarshan–Lindblad
(GKSL) quantum master equation [52]. This allows us to include the following competing effects: (i)
dissipative, non-unitary processes represent the analogy with the classical out-of-equilibrium
pattern-retrieval dynamics; (ii) coherent, unitary processes, which generate quantum fluctuations due to the
creation of superpositions between spin states. In the context of quantum generalization of classical
dynamical maps, the competition between coherent and dissipative dynamics has been explored in different
settings, often providing the access to new classes of non-equilibrium many-body quantum systems and/or
to novel phases of matter [53, 54]. Here, in order to investigate the impact of (ii) on the retrieval
mechanism of the NN, we focus on analyzing the long-time state of the dynamics by means of a mean field
(MF) approach. The derived phase diagram shows that the purely dissipative case, where coherent effects
are absent, is indeed consistent with the classical pattern retrieval phenomenology. In the presence of
quantum fluctuations the NN retains the capability to retrieve patterns. However, we find that due to the
competition between dissipation and coherent processes a new limit cycle (LC) phase emerges. A similar
phenomenon was previously observed within a quantum generalized Hopfield Neural Network (HNN)
[44], and we discuss similarities and differences with respect to the qPHN. Our study corroborates that
quantum generalized Hopfield-type NNs feature novel phases which could potentially be exploited to define
new types of retrieval. Moreover, they provide a setting for the realization of quantum maps with multiple
stationary states, and therefore yield a physical platform for addressing questions concerning a possibly
enhanced storage capacity of quantum NNs, as discussed in reference [51].

2. q-state Potts-Hopfield NN

In this section we review the main features of the classical model that describes a multi-level NN referred to
as q-state Potts-Hopfield NN (qPHN) [55, 56]. The basic constituents of this NN are N multi-level classical
spins, σi, i = 1, . . . , N, referred to as Potts spins. A single Potts spin can assume q possible states which may
be labeled by the roots of unity:

σi = ωki , ω = ei 2π
q , ki = 0, . . . , q − 1, (1)

∀i = 1, . . . , N. Information is stored in the form of special Potts spin configurations, or patterns, denoted
by the vectors �ξμ = (ξμ1 , . . . , ξμN ), with μ = 1, . . . , p. Each component ξμi of a pattern can assume the values

{ωkμi }kμi =0,...,q−1. The interaction between Potts spins is governed by the energy functional

E = −1

2

N∑
i�=j

q∑
α,β=1

Jαβij uσi,σαuσj,σβ , (2)

2
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Figure 1. Quantum effects in the q-Potts-Hopfield NN. Scheme of the quantum generalization of the qPHN model.
(a) All-to-all connected network of N = 4 Potts spins. The ith and jth spins (neurons) are in the state α, β, respectively, and
interact with coefficient Jαβij . Here we set q = 3, so that each neuron can assume the values {1, ei2π/3, e−i2π/3}. A classical
stochastic dynamics leading to an equilibrium state at temperature T = 1/β can be implemented via a purely dissipative
Lindblad master equation. The thermal transitions between the internal states of a Potts spin occur with rate Γi

α,±, which
depends on the configuration of all the other neurons (see main text for details). Quantum effects are included by allowing
coherent transitions (parametrized by the rate λ) between states of the Potts spins. (b) Sketch of the energy landscape of the fully
qPHN. Memory states, i.e. patterns labeled as �ξμ, are global minima of the energy function. In case of a purely dissipative
dynamics, i.e. λ = 0, the stationary state is a thermal one, ρss, with respect to the energy function E [see equation (2)]. When
λ �= 0, non-classical stationary states and also non-stationary long time behavior, such as LC solutions, may emerge. (c) As a
function of the temperature, the qPHN passes from a disordered, paramagnetic phase to an ordered one where patterns are
retrieved. The transition occurs discontinuously at Tc, and it is signaled by the behavior of the overlap between Potts spin
configurations and patterns [see equation (5)]. Within the temperature range Tm � T � TM a phase coexistence of paramagnetic
and retrieval solutions takes place.

where σα, with α = 1, . . . , q, identifies here the possible q-state values of a Pott spin, and it enters the
definition of the variable uσi,σα as uσi,σα ≡ qδ(σi,σα) − 1 = qδ(ki,α− 1) − 1. Notice that the latter takes its
maximum value for the state, say σᾱ, in which the ith Potts spin is. The interaction strengths are
parametrized by the symmetric connectivity matrix

Jαβij =
1

q2N

p∑
μ=1

uξ
μ
i ,σαuξ

μ
j ,σβ

. (3)

A scheme of such an all-to-all network is given in figure 1(a). The functional form of the energy function E,
as expressed by equations (2) and (3), has the advantage to let us explicitly identify the interaction
couplings Jαβij between the Potts spin σi in the state σα and the Potts spin σj in the state σβ . However, by

exploiting the relation
∑q

α=1uσi,σαuσj,σα = uσi,σj , the notation can be lightened. In the limit of large system
size and few patterns the energy reads

E = − 1

2N

p∑
μ=1

(
N∑

i=1

uξ
μ
i ,σi

)2

. (4)

From the latter we can see that whenever all the Potts spins are aligned with respect to one of the patterns,
the variable uξ

μ
i ,σi

assumes its maximum value ∀i, and the energy is minimized. Indeed, with these

definitions, and in the limit p/N � 1, i.e. a small number of patterns with respect to the network size, the
patterns �ξμ are minima of the energy functional (2), as illustrated in figure 1(b). The ratio of the number of
patterns and Potts spins—α = p/N—is referred to as load parameter. When it increases above a critical
threshold αc spurious minima emerge, and the hence minima of the energy function can no longer be
associated with stored patterns. The critical load paramater αc thus yields the storage capacity, i.e. the
maximum number of patterns that can be stored in a network of N Potts spins.

For α < αc, pattern retrieval dynamics of the qPHN can be constructed and analyzed. To this purpose,
it is useful to introduce the overlaps between the Potts spins and the patterns. These play the role of order

3
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parameters, and their introduction drastically reduces the complexity of the problem (instead of the
qN-dimensional probability vector one considers an order parameter with p components). The overlap of
the spin configuration with the μth pattern is given by

mμ =
1

N(q − 1)

N∑
i=1

uξ
μ
i ,σi

. (5)

Positive values of the overlap correspond to the retrieval of patterns, which is maximum when the overlap
assumes its largest value. For instance, mμ = 1 signals the complete retrieval of the μth pattern. On the
contrary, negative values of the overlap do not correspond to the storage of any of the patterns [57, 58]. It is
worth noting that from the definitions (4) and (5), the energy function E can be expressed as
E = − 1

2 N(q − 1)2
∑p

μ=1(mμ)2.
Below the critical value αc, a pattern retrieval mechanism can be constructed via a classical discrete-time

gradient descent dynamics with respect to the energy (2). Under this dynamics the ith Potts spin, in a
generic configuration σi(t) at time t, is updated to a lower energy configuration, σ′

i(t + 1), at time t + 1:

σi(t) → σ′
i (t + 1) ⇔ ΔEi = hσ′i

− hσi < 0. (6)

Here ΔEi is the energy difference associated with the transition σi → σ′
i , which depends on the potential

energy of the ith Potts spin in the state σi:

hσi = −
N∑

j�=i,j=1

∑
α,β

Jαβij uσi,σαuσj,σβ . (7)

It is worth noting that hσi depends on both the states of all the other neurons, j �= i, and the state of the ith
neuron itself.

The pattern retrieval via gradient descent can be interpreted as a dynamics that takes the system of Potts
spins to the equilibrium state with respect to the energy (2) at zero temperature. Noise can be included in
the NN by introducing a finite inverse temperature β = 1/T and a stochastic dynamics that leads the system
to an equilibrium distribution Peq = e−βE/Z(β), with Z(β) denoting the partition function. Let p(�σ, t) be
the probability to find the system in the configuration �σ = (σ1, . . . ,σN )T at time t. The stochastic dynamics
with the stationary equilibrium state Peq = limt→∞ p(�σ, t) is then given by

ṗ(�σ) =
N∑

i=1

∑
σ′i �=σi

wσ′i→σi
p(�σ′

i) − wσi→σ′i
p(�σi). (8)

The transition rate for changing the state of the ith Potts spin is

wσi→σ′i
=

1

Zi
e−βΔEi , (9)

with Zi =
∑q

σi=1

∑
σ′ �=σe

−β(hσ′i
−hσi )/2

[58]. For sufficiently low temperatures, i.e. below a temperature Tc,
thermal fluctuations do not affect the ability of the network to retrieve patterns. Here, positive values of the
overlap are stable stationary solutions, allowing the retrieval of one pattern, when the corresponding
overlap, say mμ, assumes a positive value in the stationary state. This characterizes the retrieval phase of the
network. Negative solutions of the overlap can also appear as stable stationary solutions. However, for the
cases that have been analyzed, they disappear first than the retrieval solutions as the temperature is
increased [58]. For T > Tc thermal fluctuations prevent patterns to be stored as long time solutions, and
the stationary state is characterized by vanishing overlaps, mμ = 0, identifying a paramagnetic phase. At the
critical temperature Tc a first order phase transition between the retrieval and the paramagnetic phase takes
place [59], where the overlap changes discontinuously from mμ > 0 to mμ = 0. Moreover, for temperatures
within the interval T ∈ [Tm, TM], with Tm < Tc < TM, both retrieval solutions and the paramagnetic one
are present, this giving rise to a coexistence region. Here, retrieval (paramagnetic) solutions are stable
(unstable) for T ∈ [Tm, Tc], and unstable (stable) for T ∈ [Tc, TM], as highlighted in figure 1(c). In the case
of a qPHN with q = 3, it is Tm = 2, Tc = 2.14, TM = 2.18 [57], with negative overlap solutions
disappearing at T = Tm [58], and becoming unstable at T = 0 for p > 1 [57].

To conclude this section, let us focus on the particularly simple case of a qPHN storing one pattern, i.e.
p = 1. Here, one can apply the gauge transformation σi → ξ1

i σi, which aligns all the components of the
pattern. This situation corresponds to the standard Potts model [60] described by the Hamiltonian
H = −

∑N
i,j=1Ji,juσi,σj . The latter further reduces to the all-to-all Ising model for the choice q = 2. For a

4
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generic number p of memories, the two-state Potts-Hopfield NN, q = 2, corresponds to the HNN [47],
EH = −

∑N
i,j=1Ji,jσiσj, with σi = {±1} and Jij derived from equation (3) by setting q = 2. It is worth

noticing that, despite the fact that the HNN can be derived from the qPHN, and that it features the
associative memory behavior, some differences can be highlighted. Firstly, the energy function of the HNN
is characterized by a Z2-symmetry. As a consequence, given a pattern {ξμ1 , . . . , ξμN}, its opposite one,
{−ξμ1 , . . . ,−ξμN}, is also a stored memory, corresponding to negative value of the overlap. Contrarily, this
symmetry is absent in the qPHN case for q � 3, and indeed negative values of the overlap do not
correspond to storage of patterns. Secondly, when the thermal fluctuations are considered in the HNN, it
undergoes a second order phase transition form a paramagnetic to a retrieval phase when the temperature
is lowered, instead of a first order transition that is characteristic for the qPHN.

In the next sections, we will introduce a quantum generalization of the qPHN. The type of patterns we
will focus on in this work are i.i.d. random variables, described by a probability distribution
P(ξμi = ωkμi ) = 1/q. In the thermodynamic limit, N →∞, and with finite p, so that p/N → 0, patterns with

such a probability distribution are almost orthogonal: they satisfy limN→+∞ �ξμ · �ξν/N = δμ,ν and

limN→+∞
∑

i
�ξμi /N = 0, so that they can be considered distinguishable and unbiased, respectively.

3. Quantum model

In order to include quantum effects in the qPHN, hereafter referred to as ‘quantum qPHN’, we first
promote the classical variables σi to quantum operators Ω̂i. Their eigenstates are |ki〉, with ki = 0, . . . , q − 1,
and the eigenvalue equation is Ω̂i|ki〉 = ωki |ki〉. Transitions between states of a q-Potts spin are effectuated
by the operators T̂±

i , such that T̂±
i |ki〉 = |ki ± 1〉, with T̂+

i |(q − 1)i〉 = |0i〉 and T̂−
i |0i〉 = |(q − 1)i〉. It is

worth noting that the Potts spin operators obey the Zq-algebra

T̂+
i Ω̂i = ωΩ̂iT̂

+
i , (10)

T̂−
i Ω̂i = ω∗Ω̂iT̂

−
i , (11)

(T̂+
i )q = (T̂−

i )q = Ω̂
q
i = 1q. (12)

The first step toward including quantum effects into the qPHN is to formulate the classical stochastic
dynamics of equation (8) in terms of a purely dissipative Markovian evolution, as given by the GKSL
equation

ρ̇ = L(ρ) =
∑

l

L̂lρL̂†
l −

1

2
{L̂†

l L̂l, ρ}. (13)

Here, ρ is the state (density operator) of N quantum q-Potts spins, and L̂l are the jump operators. The latter
are chosen such that they give rise to the same local processes described by the aforementioned classical
dynamics. This means that the diagonal of the density operator ρ evolves under exactly the same dynamics
as the probability distribution of the classical qPHN. The jump operators that achieve this are

L̂i
α,s =

√
γΓ̂i

α,sT̂
i
α,s, Γ̂i

α,s =
1√
Ẑi

e
β
2 ΔÊi

α,s , (14)

for i = 1, . . . , N, α = 1, . . . , q, s = ±1. Here the operator T̂i
α,s implements the transition of the ith Potts

spin from the state |α〉 to the state |α+ s〉, and the operator Γ̂i
α,s represents the operatorial form of the

classical transition rate defined by equation (9). The expression in the exponent reads

ΔÊi
α,s = −1

2

N∑
j�=i

q−1∑
η,η′=1

[
J η,η′

ij Ω̂η′
j ω

(α−1)η(ωsη − 1) + h.c.
]

, (15)

with J ηη′
ij = 1

N

∑p
μ=1(ξ∗,μ

i )η(ξ∗,μ
j )η

′
, and can be regarded as the corresponding change of energy under such

transition. Analogously, the operatorial formulation of the classical partition function reads
Ẑi =

∑
α

∑
se
−βΔÊi

α,s . With these definitions, we can see that the operators Γ̂i
α,s are non-local ones, as they

depend on the Potts-operators Ω̂j ∀j �= i, i.e. the transition of the ith Potts-spin from the state |α〉 to the
state |α+ s〉 is ruled by a rate which depends on the state of all the rest of the network. The expression
defined by equation (15) can be understood as the energy difference related to the operator

Ê = − 1

2N

p∑
μ=1

⎧⎨
⎩
[

N∑
i=1

q−1∑
α=1

(ξ∗,μ
i Ω̂i)

α

]2

+ h.c.

⎫⎬
⎭ , (16)

5
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which can be obtained from the classical Potts-Hopfield energy, defined by equation (2), by substituting
classical Potts-spin variables with their quantum operators, furthermore requiring to satisfy Hermiticity.

Using the master equation formulation of the qPHN dynamics immediately allows the inclusion of
quantum effects through a Hamiltonian. More specifically, we consider the latter being a non-commuting
term with respect to the set of jump operators (14). This leads to the population of off-diagonal terms in
the density operator ρ, when written with respect to the classical basis {⊗N

i=1|ki〉}. For the purpose of the
present work, we choose a simple Hamiltonian [44], which reads

Ĥ = λ

N∑
i=1

T̂i, (17)

with T̂i = T̂i
+ + T̂i

−. Given the non-commutativity of such a term and the rate components Γ̂i
α,s of the

jump operators (17), it acts on the Potts spins as a ‘transverse field’, i.e. it will create superpositions between
classical basis states. This leads to the formation of coherences and concomitant quantum fluctuations.
Combining the adjoint equation (13) with the adjoint von Neumann equation of the Hamiltonian (17)
yields the equation of motion (EoM) of a generic operator Ô:

˙̂O = i[Ĥ, Ô] +
∑

l

L̂†
l ÔL̂l −

1

2
{L̂†

l L̂l, Ô}. (18)

Equipped with the operatorial evolution provided by equation (18), we can analyze how the competition
between the classical qPHN dynamics and the Hamiltonian dynamics modifies the retrieval mechanism of
the network. As such, we consider the functional form of the classical order parameter (5) and promote it to
be a quantum operator, getting

m̂μ =
1

2N(q − 1)

N∑
i=1

q−1∑
α=1

(ξ∗,μ
i Ω̂i)

α + h.c. (19)

We will thus investigate the expectation value of such a quantity, 〈m̂μ〉, that can thus be interpreted as the
overlap between the pattern configurations and the Potts-spin one. To do so, we will consider the stationary
solutions of EoMs of the type of equation (18), at varying of the coherent control parameter λ and the
temperature T, and setting γ = 1 in the definition equation (14) of the jump operators.

4. q = 3 quantum Potts neural network

We now specialize the generic quantum qPHN described in section 3 by fixing q, the number of levels for
each Potts spin state. In this respect, we consider the simplest model of the quantum qPHN that goes
beyond the q = 2 case, which is equivalent to a HNN and has been explored in [44]. Thus, we will set
q = 3, focusing on this case throughout the remainder of this work. In this section, we explain the main
steps for deriving a set of EoMs that allow us to study the retrieval properties of the q = 3 quantum qPHN,
leaving a more detailed description of the derivation in appendix B.

4.1. Collective operators
We aim at obtaining a closed set of EoMs for the N Potts spins, by employing the smallest possible number
of operators. Such a set is given by the Potts spin operators Ω̂i and Ω̂†

i , previously defined in section 3, and
the following additional ones

Ŷ i
α =

1

i
[T̂i

α,+ − (T̂i
α,+)†],

X̂i
α = T̂i

α,− + (T̂i
α,−)†.

(20)

Referring to the EoM (13) for the density operator, written in the classical basis {⊗N
i=1|ki〉}, the dynamics of

the operators Ω̂i, Ω̂
†
i corresponds to the evolution of the populations, whereas the operators X̂i

α and Ŷ i
α

capture the off-diagonal elements, i.e. the coherences. The EoM for the operator Ω̂i reads

˙̂
Ωi = −γ

2
Ω̂i − γ [̂f i

1Ω̂i + f̂ i
2Ω̂

†
i + f̂ i

3] − λ

3∑
α=1

ωα−1(ω − 1)Ŷ i
α, (21)

where f̂ i
α, i = 1, . . . , N and α = 1, 2, 3 are given as combinations of the operators Γ̂i

α,s and defined by
equations (B.3)–(B.5). The EoMs for the operators X̂i

α and Ŷ i
α are more involved, given that such operators

do not commute with the rates Γ̂j
α′ ,s, and crossing terms with j �= i are in principle present in the

6
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corresponding Lindblad equation. However, such additional terms are expected to scale as O(p/N) [44],
and can thus be neglected in the thermodynamic limit (see also appendix B) that we enforce in the
following. This yields

˙̂Xi
α = −γ

2
h−

i (α)X̂i
α − λ(Ŷ i

α−2 − Ŷ i
α),

˙̂Yi
α = −γ

2
h+

i (α)Ŷ i
α + λ[X̂i

α+2 − X̂i
α + 2(P̂α+1 − P̂α)],

(22)

where hs
i(α) =

∑
s′=±(Γi,2

α−s′,s′ + Γi,2
α−s′+s,s′). The operators P̂i

η are projectors on the classical basis

{|(η − 1)i〉} of the ith Potts spin, and are given by equation (B.1) in terms of the operators Ω̂i, Ω̂
†
i .

4.2. Equations of motion
We are interested in investigating the behavior of the network by analyzing the expectation values of the
overlap operator (19). The latter will allow us to identify the presence or the absence of pattern retrieval. In
the considered case, q = 3, this is given by

m̂μ =
1

2N

N∑
i=1

(ξ∗,μ
i Ω̂i + ξμi Ω̂

†
i ). (23)

In the presence of quantum coherences we have to consider four further collective observables, which
dynamically couple to m̂μ. These are constructed from the single spin operators (20):

x̂μ =
1

6N

3∑
α=1

N∑
i=1

ωαξμi X̂i
α + h.c.,

ˆ̄xμ = i

[
1

6N

3∑
α=1

N∑
i=1

ω−αξ∗,μ
i X̂i

α − h.c.

]
,

ŷμ =
1

6N

3∑
α=1

N∑
i=1

ωαξμi Ŷ i
α + h.c.,

ˆ̄yμ = i

[
1

6N

3∑
α=1

N∑
i=1

ω−αξ∗,μ
i Ŷ i

α − h.c.

]
.

(24)

These collective operators are constructed such that their EoMs, together with that of m̂μ, form a closed set,
provided that the following approximations are performed (see appendix B for details): (i) we neglect
correlations among operators, which amounts to a MF approximation. This means that, given a collective
operator Ôμ, we derive the EoMs for the quantity Oμ ≡ 〈Ôμ〉, using 〈ÔμÔν〉 ≈ 〈Ôμ〉〈Ôν〉. Given the
all-to-all coupling of the Potts spin model this approximation is expected to yield exact results in the
thermodynamic limit [40, 44, 61]. (ii) Since the stationary state is built upon the classical stochastic
dynamics, we expect the dynamics toward stationarity to be mostly determined by the properties of the
overlaps mμ, and therefore we replace 〈Ω̂i〉 ≈ ξi

μmμ. (iii) We assume that the system exhibits the property of
self averaging, i.e. that, given a generic function g(ξμi ) of the patterns, for large N we can perform the
substitution

1

N

∑
i

g(ξμi ) →
∑
{ξμ}

P(ξ)g(ξμ) ≡ 〈〈g(ξμ)〉〉,

where P(ξ) identifies the pattern probability distribution, chosen such that P(ξμi = ωkμi ) = 1/q.
Under these approximations, the complete set of EoMs reads

ṁμ = −γ

2
mμ {1 + 2〈〈Re[ξμf2({ξ})]〉〉} − γ〈〈Re[ξ∗,μf3({ξ})]〉〉 − 3λ {[1 − Re(ω)]yμ + Im(ω)ȳμ} ,

ẋμ = −γ

3
xμ − λ[(Re(ω2) − 1)yμ + Im(ω2)ȳμ],

˙̄xμ = −γ

3
x̄μ − λ[(Re(ω2) − 1)ȳμ − Im(ω2)yμ]

ẏμ = −γ

3
yμ + λ[(Re(ω2) − 1)xμ − Im(ω2)x̄μ + mμ],

˙̄yμ = −γ

3
ȳμ + λ

[
(Re(ω2) − 1)x̄μ + Im(ω2)xμ +

mμ

√
3

]
.

(25)
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Figure 2. Phase diagram of the qPHN in the absence of quantum effects. We set q = 3, λ = 0, p = 1, γ = 1. Stationary value of
the overlap mstat as a function of the temperature T. The values of the overlap are derived as long-time solutions of the EoMs, as
explained in the text. Initial conditions have been chosen m(0) > 0.5 for the red, thicker line, and 0 < m(0) < 0.2 for the blue,
thinner line. In both cases a paramagnetic phase, with a vanishing overlap, occurs at high temperature, and a retrieval phase,
characterized by mstat ≈ 1, takes place at low temperatures. The transition between the two phases occurs discontinuously,
consistently with a first order phase transition. Furthermore, it is characterized by hysteresis: the transition from retrieval to
paramagnetic occurs at lower temperatures if the initial condition is near the paramagnetic solution (blue, thinner line), and at
higher temperatures if the initial condition is near the retrieval solution (red, thicker line). This feature is additionally stressed in
the insets, which show the evolution of the overlap for different initial conditions. We set m(0) > 0.5 for the top-right inset, and
0 < m(0) < 0.2 for the bottom-left one. In both the insets, at the temperature T = 3 (black dashed line) the overlap approaches
the paramagnetic solution, and at T = 1 (black solid line) the overlap approaches the retrieval solution. At the temperature
T = 2.14, the stationary solution depends on the initial condition, due to the coexistence of the retrieval and paramagnetic
solutions, namely they are both stable fixed points of the dynamics.

Note that, by getting the EoMs for the collective operators (24) by exploiting equation (22), we first replace
the damping term hs

i(α) by its average over the pattern disorder distribution, hs
i(α) → 〈〈hs(α)〉〉 = 2

3 (see
appendix B for more details).

Before going ahead with the analysis of the quantum qPHN as described by equation (25), it is worth
commenting upon their structure. First of all, all the 5p differential equation (25) display a damping term,
which will enable the system to reach a stationary state that we will characterize in the next section.
Moreover, we can see that the EoMs of the overlaps and the ones of the coherences are coupled via terms
which depend on the coherent control parameter λ. Such a feature already suggests that the addition of the
quantum Hamiltonian (17) to the classical qPHN may play a non-trivial role with respect to the retrieval
properties of the network, as we are going to further highlight in the remaining part of this work.

5. Results

In this section we investigate the long-time behavior of a quantum qPHN which evolves under
equation (25), hereafter setting γ = 1. We first focus on the case of one stored pattern, p = 1. As pointed
out in section 2, a gauge transformation allows one to describe such single memory qPHN by means of the
standard Potts model. For this reason, we eventually focus on the case p = 2 (two memories), which
displays a more interesting phenomenology.

5.1. Purely dissipative case
Let us first consider the case λ = 0, i.e. the absence of coherent effects, in order to establish a baseline and
to investigate the role of temperature. The results, displayed in figure 2, show the value of the overlap at
sufficiently long times. By the latter expression we mean that our results are obtained from numerically
integrating the EoMs (25), up to times such that the overlap converges to the same value, named mstat. We
refer to this type of solution as long-time one, and it reasonably captures the behavior of the system
sufficiently close to stationarity. In figure 2 the stationary solution is reached starting form an initial
configuration that can partially overlap with the pattern, i.e. we select m(0) � 0. Here we see that at low
temperatures mstat ≈ 1, signaling the retrieval of the pattern, whereas at high temperatures the overlap
vanishes, mstat ≈ 0, characterizing a paramagnetic phase. The transition between the two phases occurs
discontinuously, consistently with a first order phase transition, as already highlighted in figure 1(c).
Furthermore, due to the existence of a coexistence region—typical for first order transitions—in the
interval T ∈ [Tm, TM], the crossing is characterized by hysteresis, which manifests when starting from
different initial conditions. Indeed, the red, thicker line in figure 2 has been obtained as long-time solutions
of the EoMs (25) by choosing the initial condition near the stored pattern, m(0) ≈ 1. In contrast, for the
blue, thinner line we set m(0) ≈ 0.

8
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Figure 3. Phase diagram of the qPHN in the presence of thermal and quantum fluctuations. We set γ = 1, q = 3, and p = 1.
(a) Retrieval and paramagnetic phase. At high temperature (light blue region) there is one stationary solution of equation (25)
with vanishing order parameters, corresponding to a paramagnetic phase. At low temperature (gray region) the stationarity
solutions are characterized by finite overlap values, both positive, m > 0, and negative, m < 0. This phase is referred to as
retrieval phase. The dark blue region within dashed black lines divides paramagnetic phase and retrieval one, and it corresponds
to a coexistence region. Here, both paramagnetic solution, m = 0, and positive retrieval one, m > 0, are present. (b) and (c)
Stationary value of the overlap when the dynamics is initialized in the BA of the positive solution, and of the negative one,
respectively. In the former case, the transition from the paramagnetic phase to the retrieval one is discontinuous, whereas in the
latter case, such a transition is a continuous one.

The dependence on the choice of the initial conditions within the coexistence region is further
highlighted in the insets. At relatively low and high temperatures, with respect to the critical one that
emerges in the classical qPHN, (Tc in section 2), the results are consistent in both cases. To show an
instance, we set T = 1 and T = 3 in the insets, highlighting retrieval of the pattern and non-retrieval,
respectively. When setting the temperature to a value inside the coexistence region, e.g. T = 2.14, the system
shows retrieval of the pattern if the initial condition is close to the solution corresponding to the stored
pattern (top right inset). Conversely, it displays non-retrieval if the initial condition is chosen so that the
overlap between the network configuration and the pattern is almost vanishing (bottom left inset).

5.2. Quantum effects
In the following we consider the long-time behavior in the presence of quantum effects, i.e. λ �= 0. The
EoMs (25) are numerically integrated at sufficiently long times, as explained at the beginning of section 5.1.
They thus provide us what we refer to as stationary solutions. In this case quantum fluctuations compete
with thermal fluctuations, which gives rise to a rich phase diagram as shown in figure 3 for the case p = 1.
The coherent control parameter λ is here varied in the region [0, 1], which we refer to as ‘low’ λ regime. We
will eventually consider the ‘high’ λ case, (λ > 1), that gives rise to some additional physical effects.
Referring to figure 3(a), at high temperature (light-blue region), we find one stationary solution of the
EoMs. This is a paramagnetic solution, characterized by mp = yp = ȳp = xp = x̄p = 0. At low temperature
(gray region), stationary solutions with finite overlap, m �= 0, appear. We refer to this regime as retrieval
phase. The two distinct phases are separated by a coexistence region (dark blue strip) of paramagnetic
solution and positive retrieval solutions, m > 0.

Also in the presence of quantum effects, the retrieval phase admits both positive and negative solutions,
mstat > 0, and mstat < 0, respectively. This is highlighted in figures 3(b) and (c), where the transition from
the paramagnetic to the retrieval phase is shown for varying T and λ. As commented in section 2, negative
solutions correspond to network configurations that are uncorrelated with respect to the pattern, at
variance with the positive ones. These distinct fixed points are characterized by different basins of attraction
(BAs). The latter determines which stationary solution will be reached, once the system is initialized within
its BA. Thus, the value taken by the overlap toward stationarity, either signaling pattern retrieval (mstat > 0)
or not (mstat < 0), depends on the chosen initial conditions. It is worth noticing that the transition between
the paramagnetic solution and the retrieval one occurs discontinuously [see panel (b)], whereas it occurs
continuously when negative solutions are reached [see panel (c)]. Such a phenomenology holds also in the
purely dissipative case λ = 0, where negative solutions vanish at T = 2. Thus, consistently with our
construction, the quantum qPHN reproduces the classical phenomenology in absence of the Hamiltonian
term (17). Finally, referring to the retrieval phase in panel (b), as the control parameter λ is increased, the
actual capacity of the network to store the pattern is diminished, as the overlap reduces from m ≈ 0.8–1 to
0.4.

From the phase diagram shown in figure 3, we see that the addition of the quantum coherent term to
the classical dynamics still enables the network to retrieve patterns, but it diminishes its capability to fully
recover patterns. Beyond that, quantum effects can, however, also lead to a qualitative change of the
network’s dynamics: for a certain range of parameters the overlap and the coherence variables display
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Figure 4. One memory LC. We set γ = 1, q = 3, p = 1. Standard deviation σm of the overlap m(t) at long times, with respect to
the fixed point solutions, as defined by equation (26). Initial conditions are chosen such that m(0) ≈ 0. The dashed lines identify
the separation among paramagnetic phase, coexistence region and retrieval phase. In the blue region σm is finite, and such a
portion of the phase diagram corresponds to a LC phase. The inset shows the evolution of the overlap m(t) at long times,
highlighting an oscillatory behavior. We set λ = 4.0, T = 0.86.

Figure 5. Two memory LC phase. We set γ = 1, q = 3, p = 2. (a) Standard deviation σm of the overlap mμ(t) at long times, with
respect to the stationary solution. The dashed lines identify the separation among paramagnetic phase, coexistence region and
retrieval phase. In the blue region σm is finite, corresponding to a LC phase. (b) The right-hand panel shows the time evolution
of the overlap m1(t) and the coherence variable y1(t) at long times. In the left-hand panel the corresponding parametric plot and
flux diagram are displayed, highlighting the closed orbit that characterizes the LC solution. Colors for the flux diagram identify
the norm of the corresponding vector field, which increases from purple to yellow. We set T = 0.7 and λ = 3.0. (c) Time
evolution of the overlaps m1(t) and m2(t) as specified in the legend. We set λ = 3.0 and T = 0.99 for the right-hand panel, where
the self-sustained oscillations at long times appear for only one of the two overlap. For the left-hand panel it is λ = 2.5 and
T = 0.6, and both the overlaps display a LC solution. (d) Frequency of the limit cycles in the bulk region. The right-hand side
panel shows the time evolution of the overlap m1(t) for temperatures T = 0.8 (dashed line) and T = 0.2 (solid line), while we
fixed λ = 2.5. The left-hand side panel displays the frequency as a function of λ.

self-sustained oscillations at long times, as shown in figures 4 and 5. Let us now analyze in more detail these
periodic long-time solutions, which occur in the ‘high’-λ parameter regime and are referred to as LC
solutions. First we analyze the latter in the case p = 1, and eventually we set p = 2. The former case is
highlighted in figure 4. It shows the standard deviation σm of the overlap m(ti) with respect to the time
average of m(t), say m̄, at sufficiently long times. The values m(ti) are obtained at times ti ∈ I, with I an
arbitrary time interval chosen at long times. Thus the quantity displayed reads

σm =

√
1

NI

∑
i∈I

[m(ti) − m̄]2, (26)

being NI the number of points ti ∈ I. We set NI = 2000, and I = [9 × 103, 104]. The light-blue region where
σm is finite corresponds to the LC phase. In the inset, we display the corresponding oscillating behavior of
the overlap. As a matter of fact, the amplitude of the oscillations varies on a considerably small scale,
σm � 10−4.
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As further detailed in appendix B, we also explore the LC phase via a linear stability analysis. To this end,
we linearize equation (25) with respect to their stationary solutions, and study the eigenvalues of the
corresponding Jacobian matrix. In this analysis we fix λ to values well inside the region displaying a LC
phase, and decrease the temperature T starting from T-values corresponding to the paramagnetic phase.
With changing T and while approaching the LC phase, a complex conjugate pair of eigenvalues crosses the
complex plane imaginary axes. In non-linear systems such a phenomenology is referred to as Hopf
bifurcation [62]. It identifies a switching in the stability of the system, often giving rise to periodic solutions.
For instance, Hopf bifurcations and LCs occur in the known Lotka–Volterra dynamical system [63], which
is frequently used to model the dynamics of predator–prey interactions in biological systems [64]. In
two-dimensional dynamical systems, periodic long-time solutions characterizing LCs are displayed in phase
space as isolated orbits [62]. In higher dimensional dynamical systems, as it is our case, one can still
highlight isolated orbits by considering two out of the total number of dynamical variables involved, as we
are going to show for the case of two stored patterns p = 2.

Figure 5(b), left-hand side panel, illustrates an instance of the isolated orbit that characterizes the LCs in
our two-memories model. Here we show the parametric plot of the overlap m1(t) and its corresponding
coherence variable y1(t). Trajectories surrounding the isolated orbit constitute the flux diagram of the vector
field (ẏ1, ṁ1), with the value of its norm color-coded and increasing from purple to yellow. We also set the
parameter value inside the LC phase, e.g. T = 0.8 and λ = 4.5. Different choices of parameters lead to a
similar phenomenology.

The parameter region where the LC phase takes place is displayed in figure 5(a). It shows the standard
deviation σm defined by equation (26), averaged with respect to the two overlaps. At this point, it is worth
considering the comparison with the LC phase of the single memory case shown in figure 4. We can see that
the LC phase for the case p = 2 is (i) extended into the low temperature region, and (ii) characterized by a
larger amplitude of the oscillations occurring at long times. The latter feature can be further observed, e.g.,
from comparing the right-hand side of figure 5(b), which displays the time evolution of m1(t) and y1(t),
and the inset of figure 4. Let us then try to provide a qualitative explanation of the features (i) and (ii). To
this end, we contrast our results with those obtained for the quantum HNN analyzed in reference [44].
There, similarly to our model, as a result of the competition between dissipation and coherent dynamics, a
LC phase emerges. However, it turns out to be independent of the number of stored patterns. In other
words, in this case there is no distinction between the case p = 1 and p = 2, at variance with our quantum
qPHN model. A potential relevant difference between the HNN and the qPHN is the symmetry of the
model. As already mentioned in section 2, the former is characterized by a Z2 symmetry. Direct
manifestation of the latter is that once the pattern {ξμ1 , . . . , ξμN} is stored as a memory, so is the opposite
one, {−ξμ1 , . . . ,−ξμN}. Contrarily, the q � 2 qPHN does not display the same symmetry, and the notion of
‘opposite’ pattern is meaningless. Such a property might be the origin of the dissimilarity between the two
models: when fixing p = 1 and selecting the proper parameter regime, in the HNN the pattern and its
opposite one can give rise to the LC phase. Instead, the p = 1 qPHN cannot give rise to the same type of LC
solutions, and it is only when considering at least p = 2, that our model features two overlaps variables that
can give rise to a LC phase.

The behavior of the overlaps for a p = 2 qPHN, and within the LC phase, is shown in figure 5(c). As
visible in the right-hand side panel, close to the paramagnetic phase, there exists a narrow region where
only one of the two patterns features a LC solution. Notably, the amplitude of the corresponding oscillations
decreases with respect to the ones displayed in the left-hand side panel figure. Such a behavior takes place
within the coexistence region of paramagnetic and retrieval fixed point solutions (the region within the
dashed black lines). It is worth stressing that this region coincides also with the LC phase of the p = 1 case
(see figure 4). Moreover, also in this case the periodic solution is characterized by a relatively small
amplitude of oscillations. These features hint that the coexistence of fixed point solutions may play a role in
determining the properties of LC solutions occurring in such a parameter regime. In the bulk of the LC
phase, as shown in the left-hand side panel of figure 5(c), the two overlaps present out-of-phase,
self-sustained oscillations in the long-time limit. Some of the main characteristics of these oscillations are
illustrated in figure 5(d). The right-hand side panel shows the role of the temperature in the oscillations of
the overlaps. We observe that a difference in temperature gives rise to a relative phase shift. In addition, we
can see that upon decreasing the temperature, the amplitude of the LC oscillations increases. Their
frequency depends instead on the parameter λ and is linearly increasing with growing λ, as shown in the
left-hand side panel of figure 5(d). To conclude the analysis, we have seen that in the bulk region of the LC
phase, as a consequence of the out-of-phase oscillations between the two overlaps, the storage of either one
of the two patterns is in principle possible. Indeed, even if the amount of retrieval can be relatively small,
for instance it is 0.4 < m < 0.5 at T = 0.2, the periodic switching between positive values of the two
overlaps implies that it should in principle be possible to alternatively retrieve either one the two patterns,

11



New J. Phys. 24 (2022) 033012 E Fiorelli et al

by suitable timing of the readout. This phenomenology allows us to identify the bulk of the LC phase as a
new type of ‘quantum’ retrieval phase, emerging as a feature of the quantum formulation of the model.

6. Conclusions and outlook

In this work, we have established a method for generalizing associative memory NNs via open quantum
systems dynamics, which goes beyond the previously studied case of the HNN [44]. Starting point of our
approach is the classical qPHN, whose non-equilibrium dynamics has been formulated in terms of a
Markovian master equation of Lindblad form. This formulation allows to incorporate quantum fluctuations
through a Hamiltonian term whose strength is given by a control parameter. By exploiting MF techniques,
we construct the phase diagram for a many-body systems made of N q-Potts spins. This shows that memory
retrieval can be achieved for certain temperatures and values of this control parameter. Furthermore, the
competition between quantum coherent dynamics and thermal fluctuations has shown to give rise to a new
non-equilibrium quantum phase. The latter features LC solutions, which display persistent oscillations at
long times. We analyze the LC phase for a single memory model and a two memories one, finding a
different phenomenology in the two cases. The parameter regime where the LC phase occurs shrinks in the
single memory case with respect to the two memories one. In the latter, both the overlaps sustain persistent,
out-of-phase oscillations at long times which display a larger amplitude with respect to the one of the single
memory case.

The analysis and characterization of the phase diagram done in this work represent initial steps in order
to eventually explore more sophisticated questions. These concern, for example, the issue of identifying the
storage capacity αc, i.e. how many patterns can be stored in a network with N constituents. This aspect has
been widely investigated in the classical realm. For instance, it is known that it is αc = 0.14 for a classical
HNN [49]. For the case of a classical qPHN, the storage capacity depends on the number q of levels of Potts
spins, being αc = 0.41 if q = 3 [55, 56, 59]. The main question here concerns the understanding whether
quantum formulations allow for a larger storage capacity than the classical models. Noticing that the work
done for this manuscript exploits techniques that allow us to explore the α = 0 phase diagram, additional
tools are needed to address the question of storage capacity. One potential way to tackle such a problem has
been pointed out in the recent theoretical work of reference [51]. Here, the authors consider a generic set of
attractive quantum maps, evolving input quantum states toward stationary ones, labeled as retrieval states.
The size of such a stationary manifold gives access to the storage capacity, which is found to exponentially
outperform the classical counterpart. Our work, in which we show pattern-retrieval mechanism in the case
α = 0 only, encourages to tackle the question of storage capacity for the concrete and novel class of qPHNs
introduced here.

A second important outlook, complementary to our theoretical result, consists in investigating how
physically realizable instances of such quantum NNs can be engineered in state-of-the-art quantum
hardware. In this respect, a series of salient papers analyze the feasibility of quantum optical-based
associative memories [65–67], showing how the all-to-all interaction typical of Hopfield-type NNs can
emerge in multimodal cavity QED setups. The latter can indeed realize tunable-range and sign-changing
photon-mediated atomic interactions. Notably, reference [68] pointed out a practical protocol to implement
associative memories, obtaining the specific form of these interactions for confocal cavities. The
comprehension of the physics arising by such an effective interaction, although challenging [69], is
fundamental for endowing theoretical proposals of open quantum associative memories with their
experimental realizations. Therefore, a thorough understanding of how accessing non-local models such as
the one presented in this manuscript, via likewise non-local effective atomic interactions such us the ones
emerging in reference [68], is a promising question to be addressed.

Finally, the presence of the novel types of retrieval phases identified in our work, which stem from the
quantum description of the NNs, opens interesting new directions in relation to more
quantum-information oriented questions: a first interesting question is how to formulate non-classical
patterns, i.e. specific input quantum states, in order to store and access them. Here, the investigation of the
speed of retrieval [45] with respect to the classical counterpart represents an important aspect.
Furthermore, it would be worth exploring the link of quantum formulations of associative memories as
realized by our quantum NNs, with the active research field of quantum error correction. Indeed, one could
investigate the capabilities of quantum generalization of Hopfield-type NNs in protecting and correcting
faulty quantum states.
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Appendix A. Equation of motion for the purely dissipative case

In this section we derive the EoMs for the purely dissipative case (λ = 0) of the qPHN, showing that one
can recover the HNN model for q = 2.

As a first step, we evaluate the EoMs of the Potts spin operator Ω̂α
i , i = 0, . . . , N. To this end, we exploit

equations (10)–(12) for getting the following relations for the operators T̂i
η,±,

T̂i
η,±Ω̂

α
i = ω±αΩ̂α

i T̂i
η,±, (A.1)

T̂i
η,±T̂i

η,∓ = P̂i
η , (A.2)

q∑
η=1

T̂i
η,±T̂i

η,∓ = 1q, (A.3)

where P̂η = |η − 1〉〈η − 1|. The equations of motion read

˙̂
Ωα

i = Ω̂α
i

{
−γ[(1 − ω−α)Ŵi,+ + (1 − ωα)Ŵi,−]

}
, (A.4)

where we have defined

γŴi,s ≡
q∑

α=1

L̂i,†
α,sL̂

i
α,s = γ

q∑
α=1

Γi,2
α,s(T̂i

α,s)
†T̂i

α,s = γ

q∑
α=1

Γi,2
α,sP̂

i
α+s = γ

q∑
α=1

Γi,2
α+s,sP̂

i
α. (A.5)

It is straightforward to express the Potts spin operators Ω̂α
i in terms of the projection operators as

Ω̂α
i =

∑q
η=1ω

α(η−1)P̂α
η . This relation can in general be inverted, yielding

P̂i
η =

q∑
a=1

gηaΩ̂
a
i , (A.6)

with some coefficients gηα that can be derived for each choice of q. The Potts spin operators evolve
according to the equation

˙̂
Ωα

i = −γ

q∑
a=1

f i
α,aΩ̂

a
i ,

f i
α,a =

q∑
η=1

gηaω
(η−1)α[(1 − ω−α)Γi,2

η−1,+ + (1 − ωα)Γi,2
η+1,− )].

(A.7)

A.1. The case q = 2—Hopfield neural network
Taking q = 2, the operator Ω̂α

i becomes the spin 1/2 Pauli operator σ̂z
i . Specializing equation (A.4) to this

case yields
˙̂σz

i = −2γσ̂z
i (Ŵi,+ + Ŵi,−), (A.8)
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which can be further simplified as

Ŵi,+ + Ŵi,− =

2∑
α=1

(Γi,2
α−1,+ + Γi,2

α+1,−)P̂α =
1

Zi

2∑
α=1

(eβΔÊi
α−1,+ + eβΔÊi

α+1,−)P̂α

=
1

Zi
(Γi,2

2,+ + Γi,2
2,−)P̂1 + (Γi,2

1,+ + Γi,2
1,−)P̂2, (A.9)

where P̂1,2 = (1 ± σ̂z
i )/2, and Γi,2

2,+ = Γi,2
2,− = eβΔÊH/Z, Γi,2

1,+ = Γi,2
1,− = e−βΔÊH/Z, and

Z = 2(e−βΔÊH + eβΔÊH ). Thus, we get the equation for the Hopfield NN [44],

˙̂σz
i = −γσ̂z

i + γ tanh(βΔÊH), (A.10)

with ΔÊH = 1
N

∑
j�=iJijσ̂

z
j .

Appendix B. Equation of motion for the q = 3 quantum Potts neural network

This appendix contains details on how to derive equation (25) of the main text, the quantum generalization
of the q = 3 Potts-Hopfield NN.

We proceed by specifying equation (18) for the operators Ω̂i and Ω̂2
i = Ω̂†

i = Ω̂−1
i . To this end, it is

useful to write the projectors P̂η = |η − 1〉〈η − 1|, η = 1, 2, 3 in terms of Ω̂i, Ω̂
†
i , and the identity operator

13 as follows

P̂i
1 =

1

(ω − 1)2
[−ωΩ̂i + (1 + ω2)Ω̂†

i − ω13],

P̂i
2 =

1

(ω − 1)2
[−Ω̂i + (1 + ω)Ω̂†

i − ω13],

P̂i
3 =

1

(ω − 1)2
[(1 + ω)Ω̂i − Ω̂†

i − ω13].

(B.1)

Let us first derive the EoMs for Potts spin operators Ω̂i, Ω̂
†
i without the Hamiltonian term, i.e. taking λ = 0.

The evolution is governed by
˙̂
Ωi = −γ

[(
1

2
+ f̂ i

1

)
Ω̂i + f̂ i

2Ω̂
†
i + f̂ i

3

]
, (B.2)

where we have defined

f̂ i
1 = i

1

2
√

3
[Γ̂i,2

1,+ + Γ̂i,2
2,+ + Γ̂i,2

3,+ − (Γ̂i,2
1,− + Γ̂i,2

2,− + Γ̂i,2
3,−)], (B.3)

f̂ i
2 =

1

2
[Γ̂i,2

3,+ − Γ̂i,2
3,− − (Γ̂i,2

2,+ − Γ̂i,2
2,−)] +

i

2
√

3
[Γ̂i,2

3,+ − Γ̂i,2
3,− + Γ̂i,2

2,+ − Γ̂i,2
2,− − 2(Γ̂i,2

1,+ − Γ̂i,2
1,−)], (B.4)

f̂ i
3 =

1

2
(Γ̂i,2

3,+ + Γ̂i,2
2,− − Γ̂i,2

1,+ − Γ̂i,2
1,−) +

i

2
√

3
[Γ̂i,2

3,+ − Γ̂i,2
2,− + Γ̂i,2

1,+ − Γ̂i,2
1,− − 2(Γ̂i,2

2,+ − Γ̂i,2
3,−)]. (B.5)

The rates Γ̂i
α,s are given by equation (14) and depend on the energy difference

ΔÊi
α,s =

p∑
μ=1

m̂μ

{
3 cos

[
2π

3
(kμi − α+ 1)

]
±
√

3 sin

[
2π

3
(kμi − α+ 1)

]}

= 3
p∑

μ=1

m̂μ(δkμi ,α−1 − δkμi ±1,α−1), (B.6)

for α = 1, 2, 3.
Let us now include the Hamiltonian term (17), setting λ �= 0. This generates a new term in the EoMs of

the Potts operators which reads

i[Ĥ, Ω̂i] = −λ

3∑
α=1

ωα−1(ω − 1)Ŷ i
α. (B.7)
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Here we have used that Ω̂iT̂i
α,+ =

∑3
α′=1ω

α′−1T̂i
α′,+ and Ω̂iT̂i

α,− =
∑3

α′=1ω
α′−1ω(T̂i

α′,+)†, and we have
defined the operators

Ŷ i
α =

1

i
[T̂i

α,+ − (T̂i
α,+)†]. (B.8)

Thus the full EoM of the Potts operators Ω̂i reads

˙̂
Ωi = −γ

2
Ω̂i − γ [̂f i

1Ω̂i + f̂ i
2Ω̂

† + f̂ i
3] − λ

3∑
α=1

ωα−1(ω − 1)Ŷ i
α. (B.9)

To construct a closed set of EoM, we also need to derive the ones of the operators Ŷ i
α, and the ones of the

operators
X̂i
α = T̂i

α,− + (T̂i
α,−)†. (B.10)

We first derive the EoMs of the operator T̂i
α,s, which are more involved in comparison to the EoMs of the

Potts spin operator Ω̂i. This is due to the fact that the operators T̂i
α,s do not commute with the rates Γ̂j

α′,s′

that appear in the jumps operators (14). This gives rise to a cross-term, with j �= i, in the Lindblad
equation (18), which reads ∑

α′,s′

∑
j�=i

Lj,†
α′ ,s′ T̂

i
α,sL

j
α′,s′ −

1

2
{Lj,†

α′,s′L
j
α′ ,s′ , T̂i

α,s}. (B.11)

For simplifying such an expression, it is sufficient to consider the non-commuting terms Γ̂j
α′,s′ T̂

i
α,s and

exploit the relation (A.1) for moving all the operators T̂i
α,s to the left, obtaining

Γ̂
j
α′,s′(Ω̂1, . . . , Ω̂i, . . . , Ω̂N)T̂i

α,s = T̂i
α,sΓ̂

j
α′,s′(Ω̂1, . . . ,ω−sΩ̂i, . . . , Ω̂N ) = T̂i

α,sΓ̂
j(i),
α′,s′ (B.12)

with Γ̂
j
α′,s′(Ω̂1, . . . , Ω̂i, . . . , Ω̂N ) highlighting the dependence of Γj

α′,s′ on all the N Potts spin operators, and

the compact notation Γ̂
j
α′ ,s′(Ω̂1, . . . ,ω−sΩ̂i, . . . , Ω̂N ) = Γ̂

j(i)
α′,s′ has been introduced in the second line. Now we

can recognize that Γ̂j
α′,s′ and Γ̂

j(i)
α′,s′ depend on two configurations which differ by a single Potts spin (the ith),

from which we expect that Γ̂j
α′,s′ ≈ Γ̂

j(i)
α′ ,s′ up to finite-size corrections which scale as 1/N. As derived in

reference [44], the crossing term (B.12) in the EoMs for operators T̂i
α,s should more precisely scale as

O(p/N). It can be thus neglected for a subextensive number of pattern, p � N, and in the thermodynamic
limit, leading to the EoM

˙̂Ti
α,s = −γ

2
T̂i
α,sh

s
i(α) + iλ[T̂i

α+2s,−s + T̂i
α,−s + P̂i

α+s − P̂i
α]. (B.13)

Here hs
i(α) =

∑
s′=±(Γi,2

α−s′,s′ + Γi,2
α−s′+s,s′), and the operator P̂i

η are defined by equation (B.1) in terms of the
Potts operator.

It follows that
˙̂Xi
α = −γ

2
h−

i (α)X̂i
α − λ(Ŷ i

α−2 − Ŷ i
α),

˙̂Yi
α = −γ

2
h+

i (α)Ŷ i
α + λ[X̂i

α+2 − X̂i
α + 2(P̂α+1 − P̂α)].

(B.14)

It is worth noticing that, although equations (B.9) and (B.14) form a closed set of EoMs, they describe
microscopic quantities, i.e. individual Potts spins. Our interest lies, however, in understanding the behavior
of macroscopic, collective observables, such as the overlap operators. When analyzing such quantities the
number of equations is reduced from O(N) to O(p).

To achieve such a reduction, we begin by writing EoMs for the overlaps

˙̂mμ = −γ

2
m̂μ − γ

2N

N∑
i=1

[(ξ∗,μ
i f i

1 + ξμi f̂ i,†
2 )Ω̂i + h.c.] − γ

N

N∑
i=1

Re[ξ∗,μ
i f̂ i

3]

− λ

2N

N∑
i=1

3∑
α=1

Ŷ i
α[ξ∗,μ

i ωα−1(ω − 1) + ξμi ω
−(α−1)(ω∗ − 1)]. (B.15)
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Figure B1. Approximated and exact dynamics. We set p = 1, q = 3, γ = 1, λ = 0.1. Overlap m(t) as a function of the time t for
(a) T = 2.5, and (b) T = 0.5. Dashed black line corresponds to the exact solution, the solid black line represents the MF,
self-averaged case.

The last term suggests to also consider the collective operators

x̂μ =
1

6N

3∑
α=1

N∑
i=1

ωαξμi X̂i
α + h.c.,

ˆ̄xμ = i

[
1

6N

3∑
α=1

N∑
i=1

ω−αξ∗,μ
i X̂i

α − h.c.

]
,

(B.16)

and two additional ones, ŷμ and ˆ̄yμ, obtained by replacing X̂i
α with Ŷ i

α. This choice will allow us to find a
closed set of EoMs, when providing the system with some additional approximations.

To achieve this, we firstly perform a MF approximation, replacing collective operators with their
averaged quantities, and neglecting correlations among them. For the classical system, MF is exact in the
thermodynamic limit, and we expect such a treatment to be appropriate also in our quantum generalization
[40, 44, 61]. Thus, we derive EoMs for averaged quantities Oμ such that 〈O〉μ ≡ Oμ.

Secondly, we expect the system near stationarity to be mostly determined by the behavior of the overlap.
Indeed, we build up the model so that it exactly reproduces the classical case in the limit λ→ 0, and
quantum effects are gradually taken into account as λ is increased. Moreover, the classical case is well
described by the dynamics of the overlap variables. We thus expect that also the description of the quantum
dynamics near to the stationary solutions can be mainly embodied in the dynamics of the overlaps.
Therefore, we assume that approximately 〈Ω̂i〉 ≈ ξμi mμ holds. This allows us to treat terms of the type∑N

i=1ξ
μ
i Ω̂î f

†
i which appear in the equation (B.15) of the overlap. Furthermore, equation (B.14) give rise to a

set of EoMs which do not immediately form a closed set for the collective operators x̂μ, ŷμ. This is due to
the presence of terms of the type − 1

6N

∑3
α=1ω

α
∑N

i=1h−
i (α)X̂i

αξ
μ
i . Here, we exploit the average of the

damping coefficient hs
i(α) with respect to the pattern disorder distribution. An analysis of the dynamics

obtained under this approximation and the dynamics without such an average is displayed in figure B1,
panel (a) and (b). Here we show the evolution of the overlap for a single pattern, p = 1. The dashed black
line is obtained by solving the exact dynamics for N = 2, and the solid black line represents the
approximated one. We fixed λ = 0.1 and γ = 1. Panel (a) and (b) show the result for T = 2.5 and T = 0.5,
respectively. At large temperatures, the difference between the two results occurs at early stages of the
dynamics only, whereas at small temperatures, the performed approximations yields a constant, although
relatively small shift that holds even at stationarity. However, the qualitative behavior of the network
remains unaltered.
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Figure B2. One memory LC phase. We set γ = 1, q = 3, p = 1. Standard deviation σm of the overlap m(t) at long times, with
respect to the fixed point solutions, as defined by equation (26). Initial conditions are chosen (a) m(0) < 0 and (b) m(0) > 0. In
the blue region σm is finite, and such a portion of the phase diagram corresponds to a LC phase.

The final step toward obtaining the EoMs for the macroscopic observables consists in exploiting the
so-called self-averaging property, typical of disordered systems [70]. This means, that in the large N limit
and for p/N → 0, we use that 1

N

∑
ig(ξμi ) →

∑
{ξμ}P(ξ)g(ξμ) ≡ 〈〈g(ξμ)〉〉.

After the above approximations the EoMs read

ṁμ =− γ

2
mμ {1 + 2〈〈Re[ξμf2({ξ})]〉〉} − γ〈〈Re[ξ∗,μf3({ξ})]〉〉 − 3λ {[1 − Re(ω)]yμ + Im(ω)ȳμ} ,

ẋμ =− γ

3
xμ − λ[(Re(ω2) − 1)yμ + Im(ω2)ȳμ],

˙̄xμ =− γ

3
x̄μ − λ[(Re(ω2) − 1)ȳμ − Im(ω2)yμ]

ẏμ =− γ

3
yμ + λ[(Re(ω2) − 1)xμ − Im(ω2)x̄μ + mμ],

˙̄yμ =− γ

3
ȳμ + λ[(Re(ω2) − 1)x̄μ + Im(ω2)xμ + mμ/

√
3],

(B.17)

which are 5p differential equations for the collective operators. The presence of a damping term,
proportional to γ, enables the system to reach a stationary state. The characterization of the latter with
varying of λ and T is performed in the main text. However, we can already see that the EoMs of the overlaps
and the ones of the coherences are coupled via terms proportional to the coherent control parameter λ.
This suggests that the addition of the quantum Hamiltonian (17) to the classical qPHN may play a
non-trivial role when analyzing the retrieval properties of the network.

B.1. p = 1 limit cycle phase
At stationarity, equation (25) display LC solutions for a certain range of temperatures T and when the
control parameter λ is sufficiently large. As shown in figure 4 in the main text, we analyze the standard
deviation of the overlap variables at long times, with respect to the fixed point solutions of the EoMs.
Additional results are reported in figure B2, where panels (a) and (b) show the standard deviation defined
by equation (26), with initial conditions m(0) < 0 and m(0) > 0, respectively. The shaded region
corresponds to a finite value of the standard deviation σm.

Additionally, we perform a stability analysis of the fixed point paramagnetic solution. Namely, defining
�v = (m, x, x̄, y, ȳ)T, we linearize the equation (25) with respect to the solution �v = �vp + δ�v, with �vp = 0. We

obtain the equations in the form δ�̇v = Jδ�v, where J is the Jacobian matrix. From the eigenvalues of the
Jacobian matrix, say �ζ , we could identify a Hopf bifurcation [62], signaling a LC solution. An instance of
this feature is shown in figure B3, which displays two complex conjugate eigenvalues of the Jacobian matrix,
ζ1 and ζ2. The coherent control parameter is fixed to the value λ = 2.5, and the temperature is varied in the
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Figure B3. Hopf bifurcation. Complex plane representation of eigenvalues ζ1,2 of the linearized equation (25) with respect to the
paramagnetic solution. We fix λ = 2.5 and the temperature is varied in the interval T ∈ [0.5, 1.5]. The change in sign of the
eigenvalues while keeping a finite imaginary part signals a Hopf bifurcation. The paramagnetic solution is stable [unstable] for
Re(ζ1,2) < [>]0. However, as the imaginary axis is crossed by lowering the temperature, a LC solution appears, as discussed in
the main text. Other parameters are p = 1, γ = 1.

interval T ∈ [0.5, 1.5]. We can see that the real part of the eigenvalues changes sign when crossing the
imaginary axis, i.e. with finite imaginary part, highlighting the feature of a Hopf bifurcation [62].
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