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Abstract
While typical theories of atom–light interactions treat the atomic medium as being smooth, it is
well-known that microscopic optical effects driven by atomic granularity, dipole–dipole
interactions, and multiple scattering can lead to important effects. Recently, for example, it was
experimentally observed that these ingredients can lead to a fundamental, density-dependent
dephasing of optical spin waves in a disordered atomic medium. Here, we go beyond the
short-time and dilute limits considered previously, to develop a comprehensive theory of
dephasing dynamics for arbitrary times and atomic densities. In particular, we develop a novel,
non-perturbative theory based on strong disorder renormalization group (RG), in order to
quantitatively predict the dominant role that near-field optical interactions between nearby
neighbors has in driving the dephasing process. This theory also enables one to capture the key
features of the many-atom dephasing dynamics in terms of an effective single-atom model. These
results should shed light on the limits imposed by near-field interactions on quantum optical
phenomena in dense atomic media, and illustrate the promise of strong disorder RG as a method
of dealing with complex microscopic optical phenomena in such systems.

1. Introduction

The interaction of light with atomic ensembles provides the basis for numerous potential applications, such
as quantum memories for light [1, 2], quantum nonlinear optics with strong photon–photon interactions
[3–5], and quantum metrology [6–11]. In order to avoid the complexity associated with the large
microscopic number of degrees of freedom, such as the large atom number and their positions, our
standard theories for such systems typically favor a macroscopic approach. For example, for atom–light
interactions in free space, the Maxwell–Bloch equations (MBE) [12–16] treat the atoms as a smooth
polarizable quantum medium. The MBE have yielded many important insights into the physics that enables
the applications above, as well as elucidating performance limitations [12, 17, 18].

Beyond macroscopic phenomena, many microscopic optical effects driven by granularity, dipole–dipole
interactions and multiple scattering have been predicted, such as modifications of refractive indices and
scattering rates [19–24], subradiance [25, 26], and coherent back-scattering [27–29]. Besides being of
foundational interest, such microscopic effects could also have practical consequences on applications. For
example, recently it was experimentally shown in reference [30] that such effects lead to a fundamental
inhomogeneous broadening of optical transitions in an ensemble. This manifests itself as an additional
dephasing on top of spontaneous emission decay for optical spin waves, with a rate that is exponential at
early times and is directly proportional to atomic density. It was argued that this initial dephasing arises
from the strong near-field interaction of a small fraction of particularly close nearest neighbors,
quantitatively reproducing the experimental results. Separately, though, one might wonder what governs the
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Figure 1. (a) A pair-wise approach to the many-atom optical dynamics. As derived in reference [30], in a dilute atomic medium,
a small fraction of pairs of atoms (red circles) are separated by a distance much smaller than a wavelength, and thus interact
strongly via their near fields. These atoms can be replaced with a non-interacting, dynamically equivalent pair with new effective
resonance frequencies (indicated by different colors), which evolve with the phase e−iω±t . Single isolated atoms instead will not
significantly contribute to time evolution. (b) Representation of the RG scheme [41]. Each step is characterized by identifying the
most strongly interacting pairs and replacing them with two new atoms with different frequencies, which do not interact
anymore through the near field. Unlike in figure 1(a), one can continue this process (including the renormalization of atoms
previously renormalized) until all near-field interactions have been eliminated. The overall system at the end is equivalent to an
inhomogeneously broadened ensemble of spectral distribution P(ω), plotted in figure 5.

apparently non-exponential behavior at later times, or what occurs at very high densities, when many atoms
sit within a wavelength of each other and experience strong near-field interactions. We also note that
near-field interactions have been recognized to play key roles in other collective behavior, ranging from the
modification of superradiance in small systems [31] to late-time subradiance [32] in extended systems.
Beyond exact numerics, however, development of effective theories generally remains a challenge in
many-atom disordered systems.

Here, we provide a comprehensive theoretical picture of the spin-wave dephasing phenomenon by
applying a non-perturbative technique based on strong disorder renormalization group (RG), which is a
powerful method to elucidate the physics in diverse disordered condensed matter systems [33–40] and has
also recently been applied to atom–light interactions [41]. As in the short-time theory of dephasing, one
key idea underlying this approach is that for highly disordered atomic media, strong near-field interactions
between particularly close nearest neighbors allow such pairs to be approximately diagonalized first. The
resulting dynamics is equivalent to replacing the pair with two, new effective atoms with renormalized
frequencies, as illustrated in figure 1(a). The RG theory goes significantly beyond this, however, by realizing
that nearby, strongly interacting pairs (including atoms previously renormalized) can continue to be
identified and diagonalized, i.e. the many-atom system interacting via the near field can be thought of and
diagonalized in terms of an extended hierarchy of strongly interacting pairs (figure 1(b)). The final result is
that the original system is optically equivalent to an inhomogeneously broadened medium with a
well-defined distribution of resonance frequencies P(ω), and with the strong near-field interactions
effectively removed. This approach was recently used to predict that a disordered atomic medium has a
limiting value of maximum refractive index, regardless of its physical density [41]. Here, we show that RG
not only works to capture the stationary optical response of a dense gas, but also to capture the above
mentioned time-dependent dephasing dynamics of spin waves, in a simple and non-perturbative way. The
validity of the RG approach is quantitatively verified by comparison with full, microscopic coupled-dipole
simulations of large (N ∼ 104) atomic ensembles.

The remainder of the paper is structured as follows. In section 2 we briefly review the microscopic
theoretical description of photon-mediated dipole–dipole interactions, which accounts for atomic
positions, near-field interactions, and multiple scattering of light, and which serves as the basis for the
microscopic simulations of spin-wave dynamics. In section 3 we describe the RG approach, which enables
one to predict a universal inhomogeneous broadening function for a disordered medium. From here, we
then formulate a simple, approximate, single-atom model for the spin-wave dephasing dynamics. In
section 4, we present detailed numerical simulations of the spin wave dynamics from dilute to high-density
media, which show both the initial exponential dephasing and non-exponential behavior at later times. We
also compare these results with the RG approach, which exhibits good quantitative agreement in all regimes.
We conclude and provide an outlook in section 5.

2. Microscopic model of atom–light interaction dynamics

We consider a minimal model consisting of N identical two-level atoms at fixed, random positions
{ri}i=1,...,N that are uniformly distributed within a spherical cloud. The ground and excited states |gj〉 and
|ej〉 have an electric dipole transition characterized by resonance frequency ω0 = ck0 and wavelength
λ0 = 2π/k0, and a single-atom excited-state spontaneous emission rate given by Γ0. We also define a
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dimensionless density in terms of the number of atoms per cubic wavelength η = λ3
0N/V , where V = 4

3πR3

is the volume of the ensemble and R its radius.
Within the standard assumptions in quantum optics (dipole, rotating wave and Markov

approximations), the effects of photon-mediated dipole–dipole interactions, multiple scattering, and wave
interference in spontaneous emission are captured by an effective atomic Hamiltonian [31, 42, 43]:

H = −3πΓ0

k0

∑
j�

d∗ · G0(rj − r�,ω0) · d σj
egσ

�
ge. (1)

Physically, the photon-mediated interactions between atoms are described by the free-space Green’s tensor
G0(r,ω0), the fundamental solution of the wave equation [44]. The Green’s tensor characterizes how a
photon emitted by an atom at rj, via the action of the atomic lowering operator σj

ge = |gj〉〈ej|, propagates to
a second atom at ri, travelling a distance rj� = |rj�| = |rj − r�|. Moreover, as d here represents the
orientation of the atomic dipole matrix element, which we fix to be along x̂, we conveniently define θj� as its

angle with respect to rj�. Doing so, the Hamiltonian H =
∑

j� Hj�σ
j
egσ�

ge is characterized by the coefficients

Hj� = −3Γ0

4
eik0rj�

[
3 cos2 θj� − 1

(k0rj�)3
− i

3 cos2 θj� − 1

(k0rj�)2
− cos2 θj� − 1

k0rj�

]
. (2)

The Hamiltonian is symmetric and non-Hermitian as a consequence of G0 enforcing reciprocity and being
a complex quantity, including both coherent and dissipative interactions.

Important to later discussions, the real part of the Green’s function (describing coherent interactions)
contains a ∼1/r3 near-field component, which dominates at small inter-atomic distances (k0r < 1). This
near-field interaction explicitly reads:

Hnear
j� = − 3Γ0

4(k0rj�)3

(
3 cos2 θj� − 1

)
. (3)

The dissipative part instead describes collective spontaneous emission as arising from wave interference of
the emitted light, while in the limit of a single atom, predicts the known spontaneous emission rate of
Γ0 = ω3

0d2
eg/3π�ε0c3, with dge being the amplitude of the dipole matrix element for the atomic transition.

Generally, the presence of dissipation requires a master equation treatment [31, 45–47], but the
non-Hermitian Hamiltonian (1) is sufficient to describe the single-excitation regime of interest in our work,
which generally reduces to solving a set of classical coupled dipole equations of motion [16, 19, 43, 44,
48–52].

We will specifically be interested in applying the Hamiltonian (2) above to investigate the dynamics of a
single-excitation ‘timed Dicke state’ or spin wave, defined as

|k〉 = 1√
N

∑
j

eik·rj |ej〉. (4)

These collective states with well-defined wavevector constitute a natural basis to describe light–matter
excitations. For example, phase-matched spin waves with |k| ≈ k0 = ω0/c are naturally and easily excited by
an incoming resonant short pulse. By reciprocity, it is well known that they also efficiently emit into a
narrow, well-defined direction centered around k [53], with a collectively enhanced rate [16, 49, 50, 52,
54–58], Γcoll

|k|∼k0
/Γ0 = 1 + OD/4, which linearly scales with the average optical depth of the medium. This

narrow emission occurs due to constructive interference of the emitting atoms along the k direction, and
forms the basis of collective enhancement at the heart of efficient atom–light interfaces [12, 59] and the
applications mentioned in the introduction. This behavior can be equally derived by microscopic theories
[58] or by the macroscopic MBE [16, 54, 55].

It should be noted that phase-matched spin wave excitations undergo non-trivial macroscopic
spatio-temporal propagation dynamics [60, 61]. This makes it challenging to quantify the magnitude and
effects of microscopic dephasing, due to the difficulty in defining an ideal time-evolving reference state to
compare to, if dephasing could hypothetically be eliminated. An elegant, robust solution to this problem
was proposed in reference [30], with experimental realization based on a series of time-domain spin-wave
control techniques [58, 62].

The experimental technique relies on sending a series of very short (sub-ns) pulses to deterministically
shift the spin wavevector, before the collective emission has a significant effect. These short pulses act on an
additional transition |g〉 − |a〉, as represented in figure 2(a). To understand the basic mechanism it is
sufficient to consider a single atom, at position r, initially prepared in the state |g〉+ eikp·r|e〉, where
|kp| = k0 is the matched wavevector of a probe field used to initially excite the |g〉 − |e〉 transition. Then, a
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Figure 2. (a) Phase imprinting on a single atom with two counter-propagating pulses. (b) Bloch sphere representation of the
projected |g〉 − |a〉 dynamics for an atom subjected to the phase imprinting technique. The initial ground state |g〉 of the atom is
represented in (b1). (b2) In the rotating frame of the control laser, a π pulse transfers the population into the auxiliary excited
state |a〉. (b3) A second counter propagating pulse then transfers back the population to the ground state |g〉. The total evolution
on the Bloch sphere encloses a non-trivial solid angle, leading to the imprinting of a position dependent geometric phase
±2ikc · r. (c) The phase imprinting technique is applied to an atomic ensemble, n times. Depending on the time order of the
control pulses one can map the initial momentum of the matched spin wave into kp → kp ± 2nkc.

pair of short pulses, conveniently delayed (see references [30, 62]) and with opposite wave vector kc will
drive consecutive (|g〉 → |a〉 and |a〉 → |g〉) π rotations. Meanwhile, the state |e〉 is affected negligibly by the
control pulses due to the chosen large frequency difference between |e〉 and |a〉. Although an atom in the |g〉
state returns to |g〉 following the two control pulses, these pulses have non-trivial local phases e±ikc·r that
depend on the atomic position. This means that on the Bloch sphere, the evolution of the state encloses a
non-trivial solid angle and thus picks up a geometric phase ±2kc · r (with the sign ± depending on the
order of the pulses). The procedure can also be performed multiple times n. Although this phase imprinting
is a single atom effect, when applied to an ensemble, it is equivalent to shifting the initial wavevector of the
spin wave to kp → kp ± 2nkc, as represented in figure 2(c). The process can also be reversed by exchanging
the order of the control pulses. In particular, one can map a phase-mismatched spin wave back to a
matched one. The peak intensity emitted by this matched spin wave, and specifically the dependence on the
amount of time that the system spends in the mismatched state, directly reveals the magnitude of
microscopic dephasing, as detailed in reference [30].

The mismatched spin-wave excitations |k〉, characterized by |k| 	= k0, constitute elegant initial states to
investigate microscopic dephasing dynamics, due to the absence (on average) of macroscopic
spatio-temporal dynamics. For example, these states neither couple to light efficiently nor have any
preferred emission or propagation direction. Due to the lack of any direction in which the emitted field
(averaged over random configurations) interferes, the average initial spontaneous emission rate of this state
reduces to the single-atom value Γcoll

|k|	=k0
= Γ0 [25]. Since this state does not exhibit any background

macroscopic dynamics, |k〉 itself serves as a reference to compare against the actual time-evolved state.
Specifically, we will be interested in the time evolution under the dipole–dipole Hamiltonian (1) as

given by |k(t)〉 = e−iHt|k〉. Since the initial state contains only a single excitation, as argued above, the
dynamics can be efficiently evaluated numerically, with the resulting equations of motion equivalent to
classical coupled dipole equations. From the time-dependent state, we can construct two quantities of
interest,

Pk(t) = 〈k(t)|k(t)〉

Ok(t) = |〈k|k(t)〉|2.
(5)

The first quantity Pk(t) � 1 monotonically decreases and gives the total remaining excited state population
at any time t, with the rest having been irreversibly lost due to (collective) spontaneous emission. The
second quantity, Ok(t), on the other hand, quantifies the overlap with the initial spin wave, and thus
describes the survival of the spin-wave order. Importantly, it was shown to be a measurable quantity in the
experiments of reference [30].

While we will present a more systematic analysis in section 4, we provide a visual example of the physics
encoded in Pk(t) and Ok(t) in figure 3. In particular, we simulate the dynamics of an initial spin wave |k〉,
with |k| = 6k0, in a particular configuration {rj} of a disordered gas of N = 104 atoms with density η = 10,
and in a spherical volume of radius R/λ0 ≈ 6. The evolved state |k(t)〉 under equation (1) is calculated for
several specific times t. In figure 3(a) we consider all the atoms contained within a slice Δy = R/35 of the
center of the cloud, and plot their positions in the x-z plane. The colors represent the accumulated phase of
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Figure 3. (a) Snapshots of the time evolution of a mismatched spin wave. We initially prepare a mismatched spin wave |k〉
(|k| = 6.0k0) in a particular configuration {rj} of a disordered gas at density η = 10, N = 104 atoms and radius R/λ0 ∼ 6. The
state is then let to evolve under the dipole–dipole Hamiltonian (1) and the projection over the initial state is computed,
〈k|k(t)〉 =

∑
j |fj|eiϕj , extracting the time dependent amplitudes and phases in the single atom basis. To create the snapshots

above we consider all the atoms contained in a slice of size Δy = R/35, plot their position along the xz plane, and color them
according to their accumulated phase in time evolution ϕj , as a consequence of the interaction, for different times. The global
effect of this dephasing is represented in (b) where we plot the global overlap Ok = |〈k|k(t)〉|2 (blue curve) and population
Pk = 〈k(t)|k(t)〉 (purple) of the same mismatched spin-wave. Quantifying the deviation of the overlap with respect to the
predicted decay e−Γ0 t (red dotted line) is the main purpose of this work.

Figure 4. Average decay rate Γk = −2 Im〈k|H|k〉 of a spin-wave with momentum k = (0, 0, k) for (a) different densities η of a
spherically uniform atomic cloud of N = 104 atoms. In (b) we evaluate the same quantity but keeping the density fixed to
η = 500 and varying the number of atoms and the radius of the cloud. All the curves are averaged over 200 realizations.

each atom relative to its initial value eik·rj , with a strong dephasing evident at time Γ0t = 1.0. In figure 3(b),
we then plot Pk(t) (purple) and Ok(t) (blue) as calculated for the entire ensemble, along with the
single-atom spontaneous emission e−Γ0t for reference (dashed red). It can be seen that while the initial
decay of the total excited population Pk(t) occurs at a rate ∼ Γ0 (confirming the absence of collective
enhancement) before slowing down, the spin wave survival ratio Ok(t) decays significantly faster than Γ0,
due to the dephasing illustrated in figure 3(a).

To practically study dephasing dynamics of a mismatched excitation, it is important to realize that the
condition for mismatching actually depends on system size. In a sufficiently small system R → 0, intuitively,
phase differences eik·δr between atoms become negligible and all spin waves begin to resemble the symmetric
|k = 0〉 state. Such a state then has superradiant properties reminiscent of the Dicke limit [53, 63]. To check
the degree of phase mismatch, we evaluate the instantaneous average decay rate, Γk = −2 Im〈k|H|k〉, and
check that it is sufficiently close to Γ0. In figure 4, we plot the decay associated to a particular spin-wave |k〉,
for different densities, atom number and radii. These decay rates generically show two peaks at ±k0, which
are associated with modes that efficiently emit because of the phase-matching condition. It can be seen that
these peaks become narrower as the system size is increased (either at fixed density or fixed atom number),
while for spin wavevectors that lie sufficiently far from these peaks the spin waves have a decay rate that
indeed approach Γ0. We observe in figure 4 that our specific choice |k| = 6k0 fulfills our mismatching
requirement Γk ∼ Γ0 for the ranges of system sizes and densities to be explored in this work.
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3. A renormalization group approach

While the microscopic model (equation (1)) can be numerically solved for moderate atom number, its
complexity scales directly with the number of atoms N, and with the number of configurations needed to
obtain disorder-averaged results. Furthermore, the exact numerics does not directly elucidate the
underlying physics. Motivated by that, here we introduce a simple model, based on a strong-disorder RG
approach, which clearly identifies the role that near-field interactions have on the dynamics, and which
allows the effects of such interactions to be captured by a simple effective, single-atom theory.

In a previous work [30], we derived a theory to understand the short-time dephasing rate of a spin wave
for dilute ensembles with densities η � 1. We then found that the dephasing is primarily attributable to a
small fraction of atomic pairs separated by a distance much smaller than the optical wavelength, k0r < 1
(highlighted in figure 1(a)), which strongly interact via their near fields (equation (3)). The ∼1/r3 scaling of
the near field implies (in three dimensions) that the presence of other atoms is just a weak perturbation on
top of the strong pairwise interaction, such that the pair can be separately and approximately diagonalized.
In the single-excitation manifold, diagonalizing the near-field interaction (3) of a pair yields symmetric and
anti-symmetric eigenstates, |±〉 = (|eg〉 ± |ge〉)/

√
2, which experience opposite frequency shifts

ω± = ± 3Γ0
4k3

0r3 (1 − 3 cos2 θ) relative to the bare atomic transition frequency.

The time evolution for the two-body problem can now be studied in terms of its normal modes.
Concretely, in the single atom rotating frame e−iω0t , an initially prepared two-body spin-wave |k〉, will
evolve as 〈k|k(t)〉 = e−iω+t |c+k |2 + e−iω−t |c−k |2, having defined the projections c±k = 〈k|±〉. Although the
magnitude of k might be constrained in an experiment, we can take the conceptual limit where k →∞, or
infinite mismatch. This implies that the phase eik·rj of each excited atom is effectively random (being
infinitely sensitive to the specific atomic position), which implies that the actual spin wave should have on
average equal overlap with the ± eigenstates, i.e. that |c±k |2 → 1/2. The dynamics can therefore be
equivalently modeled by replacing the two original atoms with two new atoms of new resonance frequencies
ω±, that now do not interact anymore through the near field, but evolve with their ‘free’ inhomogeneous
phases e−iω±t (see figure 1(a)).

In reference [30], the short-time dynamics of a many-atom, dilute ensemble were approximated by
identifying a small fraction of close-by atomic pairs that evolved with the phases e−iω±t as argued above,
while the remaining atoms were assumed to undergo no evolution. By taking the position dependence of
the function ω±(r) and combining with the known distribution function of separations r of nearest
neighbors in a random ensemble, an initial decay of the spin wave survival order was predicted and
measured to be exponential, |Ok(δt)|2 = e−Γkδt , with a density-dependent rate Γk/Γ0 = 1 + ξη, where
ξ = 1/6π

√
3 for two-level atoms.

Now, in a dense ensemble (figure 1(b)) or at longer evolution times, the basic picture of replacing
close-by atomic pairs with new effective atoms of renormalized frequencies does not change. However, a key
realization is that after an atom has been renormalized, it can still see another atom close by with which it
can strongly interact (again highlighted by red circles in figure 1(b)). This allows yet another
renormalization step to take place, which now will involve the diagonalization of a pair of atoms with the
effective frequencies previously obtained. Whereas only a small fraction of atoms dictates the initial decay in
a dilute ensemble, here, we must specify a general procedure valid for any density, to repeatedly and
hierarchically identify the single most strongly interacting pair (including the possibility that the pair
contains already renormalized atoms) and replace them with two new effective atoms.

Starting from that overall intuition, we now formulate the general principles and assumptions
underlying our proposed RG scheme, before presenting a more detailed description of its implementation.
We also present the principles of the RG scheme in a manner that goes beyond the particular goal of
interest here, involving the study of dephasing dynamics. Succinctly put, our RG scheme consists of three
principles:

(a) The system dynamics is exactly described by the total Hamiltonian of equation (2). Although we have
provided the matrix elements in the basis given by individually excited atoms |ej〉, formally we are free
to choose any other basis. In our RG scheme, we thus choose to work in the basis defined by the
eigenstates of just the near-field interaction Hnear, as given in equation (3). Note that this is simply a
choice of basis, and in particular, makes no assumptions about the relative contributions of the near-
versus far-fields to the system dynamics.

(b) We assume that the many-atom eigenvalue distribution of Hnear can be approximately obtained by a
series of diagonalizations over atomic pairs, through a procedure specified below. The pairwise
diagonalization, which significantly reduces the complexity, is motivated by the fact that the near field
between a close-by atomic pair can dominate over the near-field interactions between this pair and all
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Figure 5. Universal probability distribution of normalized frequencies ω/η. We apply the RG approach to spherical samples of
N = 2500 atoms at dimensionless densities η = 500, 1000, 1500 to extract the new effective frequencies {ωi}, sampling
approximately ∼ 103 different configurations at each density to build the probability distribution P(ω/η). The purple solid line
instead corresponds to the exact numerical spectrum of the near-field interaction Hamiltonian. This is obtained considering an
ensemble of atoms (same parameters as before) and diagonalizing Hnear (defined in equation (3)) to get the eigenfrequency
statistics.

other atoms combined. While this is an approximation, we can numerically verify that the agreement
between the approximate and exact eigenvalue distribution is nearly perfect (e.g. see figure 5 and the
related discussion).

(c) We now arrive at the third principle, the only one that cannot be fully justified. Strictly speaking, the
eigenstates of Hnear will be somewhat delocalized over a set of atoms, as dictated by our identification of
strongly interacting pairs. However, we assume that in terms of their interaction with light (via the
far-field dipole–dipole interactions and from any possible external fields), these eigenstates respond
effectively as if they were perfectly localized point dipoles. In particular, under this assumption, the
original system becomes optically equivalent to a set of point dipoles that only interacts via the far
fields, and which has a resonance frequency distribution corresponding to the eigenvalue distribution
from (3). While the degree of validity of this approximation is hard to analyze on formal grounds, a
partial justification of why it might work well is given in reference [41].

With these principles in mind and having anticipated that RG can involve the renormalization of atoms
that have already been renormalized in previous steps, here, we consider the more general case of two
inhomogeneous atoms of general resonance frequencies of ωi and ωj, interacting via the near field, as
described by the two-body Hamiltonian in the single excitation sector,

H2b
j� = 〈ωj�〉1 +

(
δωj� Hnear

j�

Hnear
j� −δωj�

)
. (6)

For convenience, we have defined 〈ωj�〉 = (ωj + ω�)/2, δωj� = (ωj − ω�)/2. To quantify the strength of the
interaction, we define the ratio between the off-diagonal and the diagonal elements,
Kj� = Lj�|Hnear

j� |/(|δωj�|+ 1), where the matrix L keeps the information of whether a pair of atoms has
already been renormalized (Lj� = 0) or not (Lj� = 1). This prevents a pair of renormalized atoms from
being renormalized between themselves multiple times (although each atom from the pair can be
renormalized with other atoms). Intuitively, a large value of Kj� (which requires Lj� = 1) means that the
strength of the interaction is able to further split the original frequency difference δωj�. Thus, the most
strongly interacting pair is identified as that with the largest value of Kj� (red circles in figure 1). Once

identified, the full diagonalization of (6) gives two eigenvalues, ω± = 〈ωj�〉 ±
√
δω2

j� +
(

Hnear
j�

)2
. The pair

can be therefore replaced by an approximately equivalent one, made of two atoms with the new resonance
frequencies ω± and that do not interact anymore through the near field (setting Lj� = 0).

Repeated application of this algorithm, which constitutes the RG flow, continues until all near-field
interactions have been removed (Ljl = 0 for all pairs) and the atoms have been assigned the new effective
frequencies {ωi}. In particular, this does allow for pairs with small values of Kj� < 1 to be renormalized, and
we do not impose a cutoff to the RG based on the value of Kj�. This formally implements the principles of
our RG approximation described earlier, where our goal is to describe the system in terms of the
(approximately calculated) eigenstates of the near field. The actual numerical implementation of RG thus
exhibits of a complexity of ∼N2 steps of renormalizing atomic pairs. However, as we will see in the next
paragraph, RG gives rise to a universal distribution P(ω) of new effective resonance frequencies that is
independent of atom number for sufficiently large N. This distribution can thus be used for all future
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calculations at no complexity cost, e.g. in cases where N is too large to make the direct numerical
implementation feasible.

When the RG scheme is applied to multiple realizations of randomly distributed ensembles of atoms, we
can build up the probability distribution P(ω) of the effective frequencies, which we illustrate in figure 5. As
the near-field interaction only depends on distance through the dimensionless parameter (k0r)−3, the
distribution when rescaled by density, P(ω/η), should be a universal function for a sufficiently large number
of atoms and sufficiently large geometry, where boundary effects are negligible. We can directly confirm this
numerically in figure 5, where we plot P(ω/η) obtained from RG for various densities.

The high-frequency tails of P(ω) correspond to the most strongly interacting pairs, which are
renormalized at the beginning of the flow. This perfectly matches the simpler theory presented in [30] for
dilute atoms, based on the probability distribution of nearest neighbors, where it was found that
asymptotically

P(ω)∼±∞ξη
1

2πω2
. (7)

The central part of the distribution P(ω) instead consists of atoms that have been renormalized multiple
times. In this sense, the presented RG scheme and the resulting probability distribution is the correct way to
capture the near field induced inhomogeneous broadening of the medium and the induced dephasing rate
of spin-waves in dense media, as we are going to discuss.

Formally, the RG procedure amounts to approximately diagonalizing the near-field part of the
Hamiltonian (1) (an N × N matrix), by repeatedly identifying and diagonalizing a dominant interacting
pair of atoms (a 2 × 2 block). We can quantify the error by comparing the resulting frequency distribution
P(ω) obtained by RG, with the eigenvalue distribution obtained by exact, numerical diagonalization of the
real, symmetric N × N Hamiltonian Hnear (equation (3)). It can be seen in figure 5 that the two are
essentially indistinguishable, which validates principle (b) of the RG scheme.

As anticipated in principle (c), at the end of the RG flow, the resulting new effective (point-like) atoms
can still interact through the far-field, which in general cannot be ignored or assumed to be a small effect.
From here, one can solve the far-field dynamics in this new basis (which now no longer has near-field
interactions). This was done for example in [41] to study the refractive index, finding excellent agreement
between the optical response that can be calculated exactly from the full Hamiltonian of equation (2) and
the one of an inhomogeneously broadened medium as obtained by the RG treatment.

In our particular problem of interest involving near-field induced dephasing, we essentially eliminate the
effect of far-field interactions, due to the specific choice of a phase-mismatched spin wave as the initial state.
We specifically recall that mismatched excitations are naturally decoupled (in an average sense) from free
space, with no particular direction of emission and a decay rate Γ0 free of collective enhancement. We will
indeed see in the next section that far-field effects are essentially unnoticeable in the dephasing of
mismatched spin waves while RG predicts the dephasing rate with great quantitative accuracy. Since decay
can be treated separately now, RG results can be applied to predict the time evolution of a spin wave in an
effective single-atom picture, focusing on the spin-wave survival ratio Ok(t). In particular, while the
coherence of a single, isolated atom (without the rotating frame) is expected to evolve as
〈σge(t)〉 = 〈σge(0)〉e−i(ω0−iΓ0/2)t , the distribution in resonance frequencies of the new effective medium will
result in an uncertainty of accumulated phase in time

Org(t) =

∣∣∣∣
∫

dω P(ω)eiωt

∣∣∣∣
2

e−Γ0t , (8)

thus introducing microscopically-driven dephasing due to inhomogeneous broadening. We emphasize that
the simplicity of equation (8) arises from the elimination of macroscopic dynamics via our initial
phase-mismatched state.

4. Spin-wave dephasing

We now present the exact numerical simulations and analysis of the time evolution of a mismatched spin
wave for densities ranging from dilute (η � 1) to dense (η � 1), which we will then compare with the
simple RG prediction of equation (8). To be concrete, we take an initial state consisting of a highly
mismatched spin wave (equation (4)) with momentum |k| = 6k0, x̂-polarized and directed along ẑ, in an
ensemble of N = 104 atoms. Then, the time evolution of the total excited-state population Pk(t) and of the
overlap with the initially prepared spin-wave order Ok(t) is calculated for Ns = 500 realizations of the
disordered gas and averaged, as indicated by 〈Pk〉 for example. Numerical results are represented in figure 6,
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Figure 6. Time evolution of an initially prepared ideal mismatched spin-wave (|k| 	= k0), at different values of the dimensionless
density, from small, η = 0.1 to high η = 1000. The blue line is the average time evolution of the overlap Ok (see equation (5))
over different realizations of the disordered gas, while the blue shaded region corresponds to the standard deviation. The red
dotted line shows an exponential decay with a rate Γ0, as predicted by treating the atomic medium as smooth (MBE). The purple
dashed line is the population of the time evolved state divided by the atom number, Pk/N. Finally, the orange line is the overlap
ORG as predicted by RG theory (see section 3). We simulate the time evolution of N = 104 atoms, to guarantee that, at the
maximum density η = 1000, the radius of the uniformly distributed spherical cloud is R/λeg = 1.34 > 1, such that the cloud is
not subwavelength. All the quantities are averaged over Ns ∼ 500 different atomic samples. At density η = 100, the inset shows
the short-time exponential dynamics. The interval over which we fit for an exponential e−(Γ0+γ)t (dashed black curve) is
highlighted in green and corresponds to Γkt < 0.1, while at longer times the overlap deviates from this simple behavior, as
predicted by our RG approach.

where we also plot our prediction for time evolution of the overlap, ORG, made in equation (8) (orange
dash-dotted lines), based on the effective single-atom theory described in the previous section.

We first focus on the short-time dynamics. As introduced in the previous section, the short-time decay
of a spin-wave is predicted to be exponential [30], 〈Ok(δt)〉 ∼ e−Γkδt , within a time interval Γkδt � 1. The
rate Γk = Γ0 + γ is given by the sum of the single-atom emission rate, as predicted by the macroscopic
MBE, and an additional density-dependent dephasing rate, γ = Γ0ξη, with ξ = 1/6π

√
3. As shown in the

inset of η = 100 (figure 6), for example, the microscopic dynamics reveal a short-time decay of the spin
wave order that is distinctly faster than the MBE prediction. The decay becomes even more evident at
higher densities (η = 102, 103). We can confirm the density dependence in the short-time decay rate Γk by
fitting the curve 〈Ok〉 for each density in the short-time window, defined by Γkδt < 0.1, to an exponential
of the form e−(Γ0+γ)t , and plotting the dependence of the fit parameter γ versus density parameter η in
figure 7(a). We also plot the prediction γ = Γ0ξη in red. It is important to observe that within
our defined ‘short time’ interval, already ∼10% of the initial spin-wave order is lost. An excellent agreement
is observed over a large range of densities, both changing size and number of atoms (respectively blue
squares and circles) of a random gas, confirming that this effect does only depend on the dimensionless
density parameter η. This dephasing for moderate η < 10 was also observed experimentally in
reference [30].

At longer times and at higher densities, the decay of spin wave order noticeably deviates from
exponential. Despite its simplicity, our single effective atom model based on RG (equation (8)), displays
excellent agreement beyond the short-time interval. Viewed from the RG perspective, this non-exponential
contribution comes from the frequency components near the center of the inhomogeneous broadening
probability distribution P(ω/η) (figure 5), corresponding to atoms that are renormalized multiple times.

Interestingly, at even longer times, it can be seen that for each density, the average 〈Ok〉 deviates from
our prediction and saturates to a value that barely decreases over the range of times plotted. We
furthermore observe numerically that this value closely coincides with the total excited state population
remaining divided by the atom number, Pk(t)/N (dashed purple curves). The slow decay of population
Pk(t) at long times is an effect that has been studied extensively in recent years, and is known as late-time
subradiance [26, 32, 50, 61, 64–66]. While a microscopic derivation is difficult, a heuristic argument can be
made that the remaining population should be roughly equally distributed throughout the ensemble, given
a smooth initial distribution. Furthermore, given the randomness of the dynamics, this population will be
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Figure 7. (a) Short-time dephasing rate vs dimensionless density η. Blue dots are extracted from an exponential fit at short times
(〈Ok〉 ∼ e−Γkδt), within the time interval Γkδt = 0.1, of the full time evolution of a mismatched spin-wave (|k| = 6k0) at
different densities 0.1 � η � 103. The red line is instead the theoretical prediction for the short-time dephasing rate γ = Γ0ξη,
discussed in the main text. Simulations are performed with a cloud of atoms of fixed size (R/λeg = 1.34) and averaging over
Ns ∼ 500 realizations. (Inset) The same short time dephasing rate is evaluated (square dots), but now to explore the low-density
regime we simulate the spin-wave dynamics in an ensemble with a fixed number of atoms, N = 104 (again averaged Ns ∼ 500
times) and varying the radius of the cloud. (b) Numerical simulations of the time evolution of the averaged overlap 〈Ok〉 (solid
blue lines) for a mismatched spin-wave (|k| = 6.0k0) compared with the RG prediction ORG (orange dash-dotted line), and the
total excited population divided by atom number, 〈Pk〉/N (purple dashed line). The simulations consider a system of fixed
density η = 100, but different atom number N = 102, 103, 104.

statistically evenly distributed among any N extended modes that can be defined for the system, such as our
spin wave mode of interest.

As far as we can numerically check (e.g. up to N = 104 atoms for a density of η = 100 in figure 7(b)), we
see that the RG prediction ORG follows the actual spin wave survival ratio Ok for increasingly long times as
N is increased, due to the decrease in the saturation value Pk/N. This strongly suggests that the single-atom
RG prediction should be interpreted as the correct description of the dephasing dynamics in the
thermodynamic limit, when the late-time population in any one mode ∼1/N becomes negligible.

5. Conclusions

In summary, we have developed an effective single-atom theory that describes well the non-exponential
dephasing dynamics of optical spin waves in disordered atomic media, including at high densities and at
long times. This theory is based upon the technique of strong disorder RG, which treats the potentially
strong near field interactions in such a medium in a non-perturbative way.

We envision that our predictions, particularly in the high density regime, could be immediately explored
using solid-state emitter ensembles such as rare earth doped crystals [67–70], where many atoms per cubic
wavelength are typical. Separately, the remarkable accuracy by which RG is found to reproduce the
dephasing dynamics suggests that it can be a powerful tool to quantitatively investigate and understand
other microscopic optical phenomena in disordered systems.
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