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Abstract
In some scenarios (‘anti-coordination games’), individuals are better off choosing different actions
than their neighbors while in other scenarios (‘coordination games’), it is beneficial for individuals
to choose the same strategy as their neighbors. Despite having different incentives and resulting
population dynamics, it is largely unknown which collective outcome, anti-coordination or
coordination, is easier to achieve. To address this issue, we focus on the distributed graph coloring
problem on bipartite graphs. We show that with only two strategies, anti-coordination games
(two-colorings) and coordination games (uniform colorings) are dual problems that are equally
difficult to solve. To prove this, we construct an isomorphism between the Markov chains arising
from the corresponding anti-coordination and coordination games under certain specific
individual stochastic decision-making rules. Our results provide novel insights into solving
collective action problems on networks.

1. Introduction

An n-coloring of a graph is a labeling of the vertices of the graph with n different colors such that for each
pair of vertices connected by an edge, the vertices have different labels. Finding n-colorings is a classic graph
theoretic problem. However, in recent years, graph colorings have also been adopted into the field of
collective dynamics to study networked coordination games [1, 2].

For the purposes of this paper, collective action games fall into two broad categories: games where
individuals coordinate to pick the same strategies (referred to as coordination games) [3, 4, 14], and
games where individuals coordinate to pick different strategies (referred to as anti-coordination games)
[5–7, 12, 13]. Coordination games can often be resolved if the players are allowed to communicate, but
asymmetries in anti-coordination games can make cooperation difficult and highly dependent on network
structure [6]. In general, these lead to vastly different population dynamics, but in this paper we will see
that under certain circumstances, these two classes of games can be thought of as the dual problem of one
another.

There is a rich history of playing games and modeling interactions on graphs as a way to examine the
effects of our social structure [1, 6, 12–18]. For example, studying the incentives and frameworks that
impact player behavior has been a particularly useful area for those interested in fostering certain kinds of
behavior like cooperation by allowing punishment or partner choice, among others [27–30]. Also, many
social coordination problems can be phrased as graph coloring problems, like time tabling and radio
frequency assignments [8, 9]. However, unlike in the purely graph theoretic context, these social problems
come with the additional complication that individuals may not have complete knowledge of the
population structure. A graph coloring problem in which each vertex has to choose its edge using only local
information (the colors of its neighbors) introduces new complications to the classic problems, and
stochastic behavior is often needed to successfully find an n-coloring of the graph [10, 11]. Distributive
graph coloring problems can be considered as one kind of anti-coordination game, where individuals are
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Figure 1. A simple case to demonstrate the bijection of update rules with two color choices. Making an anti-coordination
decision in (a) will have the same outcome as making a coordination decision in (b), since all the colors of the neighbors have
changed to the other color. If an individual would have chosen blue in (a) to match with as few neighbors as possible, that would
correspond to choosing blue in (b), where the goal is to match with as many neighbors as possible.

playing games with their neighbors and trying to choose different strategies, or colors. Solving the graph
coloring is equivalent to finding the social optimum.

This framework can also be used to study opinion dynamics in structured populations. Like our
coordination game, the voter model is a classic example of individuals in a networked population playing a
coordination game using myopic update rules in an attempt to reach consensus with those around them
using only limited local information [31–33]. At the same time, the anti-coordination game can appear in
the context of contrarians or ‘hipsters’ who make choices specifically to distinguish with those around
them [34, 35].

In this work, we consider the simple case of a connected, bipartite graph which always admits exactly
two two-colorings. For an omniscient observer that can view the entire graph and dictate colors to vertices,
finding one of these two-colorings is a trivial matter. However, things become more difficult when there is
no central decision-maker, and instead each vertex represents an individual who must choose her own color
with no information except the colors of her neighbors [11]. This new game, which uses local information
instead of global information, has an interesting consequence: finding a two-coloring of the graph, which
models an anti-coordination game, is equivalent to getting all individuals in the graph to choose the same
color, which is a coordination game.

Thus, in the context of bipartite graphs, anti-coordination games and coordination games are dual
problems, and a whole new class of coordination games where everyone wants to opt for the same strategy
can also be modeled as a graph coloring problem. We show this by defining two Markov chains [19, 20] on
the space of colored graphs, one where individuals are playing the anti-coordination game and one where
individuals are playing the coordination game, and showing that they are isomorphic.

2. Theoretical results

2.1. A natural bijection for update rules for two-colorings and uniform colorings
In this paper, the individuals located at each vertex will operate using a simple set of update rules. These
rules can incorporate random behavior, but the update decisions depend only on the color of an
individual’s neighbors. Consider the relationship between update rules for anti-coordination and
coordination games. We will see that any update rule for an individual playing an anti-coordination game
can be adapted to an update rule for playing a coordination game and vice versa. At its most basic, an
anti-coordination rule aims to minimize the number of neighbors with the same color, and the goal of a
coordination rule is to maximize the number of neighbors with the same color. Therefore, we can turn an
anti-coordination update rule into a coordination update rule just by picking the opposite color every time.

Suppose we have an individual vertex with a neighbors playing color A and b neighbors playing color B,
like in figure 1(a). When we define an anti-coordination rule where the central individual will select color A
with probability p(a, b) and color B with probability 1 − p(a, b), we can make the corresponding
coordination rule as follows: choose A with probability 1 − p(a, b) and B with probability p(a, b).

Consider an update rule (anti-coordination or coordination) that has a function p(a, b) that gives the
probability of choosing color A. If we switch the colors of all neighbors, the probability of choosing A is
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now p(b, a) because now b neighbors are playing A and a neighbors are playing B. There is a natural
restriction to impose on the possible update rules. If we switch the color of every neighbor, moving from
figures 1(a) and (b), the probabilities of the central vertex choosing color A, p(a, b), and color B, 1 − p(a, b),
should switch as well. This restriction gives us the following complementary condition, by setting the
probability of choosing A equal to the probability of choosing B after switching all the neighbors’ colors:

p(a, b) = 1 − p(b, a). (1)

For any anti-coordination update rule, a vertex with aA neighbors and bB neighbors will choose A with
some probability p(a, b). If we switch the colors of all the neighbors, the vertex will choose A with
probability p(b, a) = 1 − p(a, b), but this is equal to the probability of a coordination player choosing A.
Therefore, an anti-coordination algorithm can be converted into its dual algorithm for a coordination game
by temporarily switching the colors of all the neighbors, using the anti-coordination update rule, and
switching the neighbors’ colors back. As an example, an anti-coordination update rule on figure 1(a) will
have the same behavior as a coordination update rule on figure 1(b).

The same process can be used to convert a coordination algorithm to an anti-coordination algorithm.
To put the above individual choice function p(a, b) in context, it is worthwhile to introduce a few

intuitive anti-coordination update rules. The first update rule, called randomness-first, involves making a
random choice with probability r, and otherwise with probability 1 − r makes a color choice that minimizes
color conflicts. This update rule can be expressed as:

p(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − 1

2
r a < b

1

2
a = b

1

2
r b < a

. (2)

Under the second update rule, called memory-0, individuals first attempt to choose any color that
eliminates all color conflicts. If that is not possible, the individual chooses randomly with probability r and
otherwise with probability 1 − r chooses the color minimizing conflicts with neighbors. In our terms, this
algorithm is

p(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 a = 0

1 − 1

2
r 0 < a < b

1

2
a = b

1

2
r 0 < b < a

0 b = 0

. (3)

The third main update rule, called memory-1, is like the memory-0 rule except that the agent only
makes a random choice if no neighbors have changed color in the last round of updates. Since this is not a
memory-less update rule, it does not have a corresponding p(a, b) function, and the following proof would
need to be slightly modified, particularly by significantly enlarging the state space of the Markov chains to
include the last N colorings of the graph, to prove the equivalence for update rules with finite memory.
While we do not go over all the details of proving that a finite-memory update rule also satisfies the
isomorphism, we do show results of computer simulations to demonstrate that the duality of coordination
and anti-coordination holds in section 3.

This is only a small selection of all possible update rules. Any function that satisfies equation (1) and
returns values between 0 and 1 could be an update rule, although many would be very ineffective. The three
update rules described above are all intuitively reasonable and simple to express, which made them excellent
candidates for study in prior work on network graph coloring problems [11]. However, there are other
natural update rules that we do not explicitly describe here. For example, an individual may wish to choose
each color proportional to the number of neighbors playing that color.

In what follows, we demonstrate that an anti-coordination update rule is exactly as effective at finding a
two-coloring as the corresponding coordination update rule is at finding a uniform color for the whole
bipartite network.
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Figure 2. A demonstration of the possible transitions in both Markov chains. The next vertex to update is marked by a gold ring.
Transitioning from (a) to (b) is minimizing matching with neighbors’ colors, and is more likely to appear in an anti-coordination
Markov chain, while transitioning from (a) to (c) is matching with as many neighbors as possible, and more likely in the
coordination Markov chain.

2.2. Two Markov chains
For a connected, bipartite graph G of size N, let col(G) be the set of all possible labelings of the graph G.
Note that here we refer to all ways of labeling the vertices of G with either color A or color B, not just
two-colorings in which no neighbors share the same color.

The system will update as follows: the graph is initialized by randomly assigning each vertex a color. An
update order is created that describes the order in which the labelled vertices will update their color. The
update order is represented as a list of the numbers 1 through N, which is just a permutation of N elements.
The set of all permutations of N elements, called the symmetric group on N elements, is denoted SN. The
vertices continually update their colors in this order, one at a time, until the desired coloring (either a
two-coloring or uniform coloring) is found.

Now we can define our Markov chains. Let {Xi} be a Markov chain using an anti-coordination update
rule, and let {Yi} be the Markov chain using the associated coordination update rule, as described above.
The state space Ω of both chains is the set of ordered triples (G∗,σ, m) where G∗ ∈ col(G), σ ∈ Sn, and
m ∈ {1, 2, . . . , n}. Unsurprisingly, G∗ represents the colors of the vertices of the graph at some time i. σ is
the order in which the vertices update, and m is the current position in the update step.

The state space is quite large, but for each state, there are exactly two states to which the Markov chains
can move with non-zero probability, shown in figure 2.

To begin, we initialize both Markov chains (anti-coordination and coordination) by sampling from the
uniform distribution Π over Ω, so each starting coloring is equally likely.

Without loss of generality, let Xj = Yj = (G∗,σ, m). Here, σ(m) is the vertex that is about to update. Let
G∗

A be the colored graph that is the same as G∗ except possibly σ(m) which has color A, and G∗
B the same but

for color B. In each step of the Markov chains, σ(m) selects one of two colors and the position in the update
cycle increases by one, resetting to 1 if necessary. The update order σ remains unchanged. Thus, if σ(m) has
a color A neighbors and b color B neighbors,

P(Xj+1 = (G∗
A,σ, m mod(n) + 1)) = p(a, b) (4)

P(Xj+1 = (G∗
B,σ, m mod(n) + 1)) = 1 − p(a, b) = p(b, a) (5)

P(Yj+1 = (G∗
A,σ, m mod(n) + 1)) = 1 − p(a, b = p(b, a)) (6)

P(Yj+1 = (G∗
B,σ, m mod(n) + 1)) = p(a, b). (7)
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2.3. A Markov chain isomorphism
For bipartite graphs, we claim that these Markov chains {Xi} and {Yi} are isomorphic. First, because G is a
connected, bipartite graph, the vertices can be divided into two groups. In a two-coloring, all the vertices in
the same group will be the same color, and all vertices in different groups will be different colors. Let S be
the set of vertices of one of these groups. Because we are working with two-colorings of bipartite graphs, we
can define a function φ : col(G) → col(G) by switching the color of every vertex in S, and define ψS : Ω→ Ω
as the extension of φ in the natural way. We claim that this is a Markov chain isomorphism between Xi and
Yi. This requires proving two conditions hold. First, ψS must be bijective. Second, ψS must commute with
the transition matrices of Xi and Yi, i.e. the probability of Xi moving from x to y is the same as Yi moving
from ψS(x) to ψS(y). More formally, for all x, y ∈ Ω,

P(Xi+1 = y|Xi = x) = P(Yi+1 = ψS(y)|Yi = ψS(x)). (8)

If equation (8) holds, the two Markov chains are equivalent in that after relabelling the states in Ω

(according to ψS), the Markov chains are identical.

2.4. Proof of isomorphism
That ψS is bijective is fairly obvious. For any colored graph G∗, because we are only working with
two-colorings on bipartite graphs, φ(G∗) is well-defined, and only φ(G∗) maps to G∗, so it is both
one-to-one and onto, and therefore ψ is as well.

Now we will prove equation (8). Since we are considering Markov chains moving from x to y (or ψS(x)
to ψS(y)), let x = (G∗,σ, m). Let a and b be the number of color A and color B neighbors of σ(m) in G∗,
respectively.

We begin with the conditional statement Xi = x = (G∗,σ, m). Equations (4) and (5) give the only two
possibles states of Xi+1 and their transition probabilities:

P
(
Xi+1 = (G∗

A,σ, m mod(n) + 1)
)
= p(a, b) (9)

P
(
Xi+1 = (G∗

B,σ, m mod(n) + 1)
)
= 1 − p(a, b). (10)

Once again, G∗
A and G∗

B are the same as G∗ except σ(m) which has color A or B, respectively.
Now we consider Yi+1 given that Yi = ψ(x) = ψ((G∗,σ, m)) = (φ(G∗),σ, m). σ(m) is the next vertex to

update, and either it is in the subset S or it is not. These two cases must be handled separately.

2.5. Case 1: σ(m) ∈ S
If σ(m) ∈ S, none of σ(m)’s neighbors are in S, so σ(m) still has a color A neighbors and b color B
neighbors. Because we are now in the coordination Markov chain {Yi}, σ(m) chooses its color according to
equations (6) and (7).

With probability p(a, b), σ(m) chooses color B. Because σ(m) ∈ S, φ(G∗) becomes φ(G∗
A) when σ(m)

chooses B. Thus, Yi+1 = (φ(G∗
A),σ, m mod(n) + 1) = ψ(G∗

A,σ, m mod(n) + 1).
With probability 1 − p(a, b), σ(m) chooses color A, and Yi+1 = (φ(G∗

B),σ, m mod(n) + 1) =
ψ(G∗

B,σ, m mod(n) + 1).
Thus, when σ ∈ S, equation (8) holds (figure 3).

2.6. Case 2: σ(m) /∈ S
If σ(m) /∈ S, then all of its neighbors are. So in φ(G∗), σ(m) has b color A neighbors and a color B
neighbors.

With probability 1 − p(b, a) = p(a, b), σ(m) chooses color A, and Yi+1 = (φ(G∗
A),σ, m mod(n) + 1).

With probability p(b, a) = 1 − p(a, b), σ(m) chooses B, and Yi+1 = (φ(G∗
A),σ, m mod(n) + 1).

So equation (8) holds when σ(m) /∈ S (figure 4). Therefore, ψ is a Markov chain isomorphism.

2.7. Equivalence of the two-coloring and uniform coloring problems
Now we are prepared to state and defend the main claim of this work: when using local information, the
anti-coordination and coordination problems are equivalent. Any result regarding the efficacy of an update
rule p(a, b) for an anti-coordination game can also be applied to a coordination game, and vice versa.

Since the initial distribution Π is the uniform distribution and ψ is bijective, ψ(Π) = Π and both
Markov chains begin from the same distribution. Furthermore, because ψ switches the color of the set S, for
any state Xi that is a valid two-coloring, ψ(Xi) = Yi is a uniform coloring. For all times i, applying
equation (8) i times tells us that moving the anti-coordination chain from a state X0 to state Xi happens

5
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Figure 3. An example on a small bipartite graph showing that ψS commutes with the transition matrices, when σ(m) ∈ S. Color
A is blue and color B is red. The top row shows the transition in the anti-coordination Markov chain, and the bottom is the
transition in the coordination Markov chain. In both chains, this particular transition occurs with probability p(1, 2).

Figure 4. An example showing that ψS commutes with the transition matrices when σ(m) /∈ S. Color A is blue and color B is
red. The top is the anti-coordination Markov chain, and the bottom is the coordination Markov chain. This time, the transition
occurs with probability p(2, 1).

with the same probability as moving the coordination chain from Y0 = ψ(X0) to Yi = ψ(Xi). Because Π is
the uniform distribution, for all x ∈ Ω and for all times i:

P(Xi = x|X0 ∼ Π) = P(Yi = ψ(x)|Y0 ∼ ψ(Π) = Π). (11)

Critically, this says that the probability of solving the anti-coordination problem in i steps is the same as
solving the coordination problem in i steps, for all i. Additionally, the process is linked at each step, so the
expected number of player color changes will be the same, for example.

This result also holds for any update rules with finite memory. Any stochastic process whose transition
probabilities only depend on a finite number of previous states can be reexpressed as a Markov chain by
defining the new state space to be lists of elements from the previous state space, and this works here with
any update rule that considers the last n update steps.

3. Simulation results

This result has been confirmed with a variety of simulation results. First, we take a broad approach: we
create a large number of different networks, and populating each with individuals playing a particular
anti-coordination update rule. Then we repeatedly attempt to find a two-coloring of the network, collecting
data on probability of finding a two-coloring, the number of update cycles needed, and the number of
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Figure 5. Plots showing the time evolution of the number of color conflicts using three reasonable update rules. (a) Is
randomness-first, (b) is memory-0, and (c) is memory-1. Crucially, the anti-coordination and coordination variants of the same
update rule have the same behavior in all three plots. Curves are the average of 1000 simulations for each update rule. For
randomness-first, the random behavior probability was 0.5. For memory-0 and memory-1, the random probability was 0.1.

players updated. Then, using the same network with individuals playing the associated coordination update
rule, we repeatedly search for a uniform coloring, collecting data on the same metrics. After repeating this
on all the networks, we have a large data collection that, if anti-coordination and coordination games are
equivalent, should be two samples of the same probability distribution.

And we see that this is the case using the two-sample Kolmogorov–Smirnov test on data collected from
1000 different networks. For all three metrics (probability of solving the network, update cycles, and
updated players), the K–S statistic is below 0.015 with a p-value greater than 0.999. This strongly suggests
that the samples are drawn from the same distribution and the two problems are equivalent.

We can also consider a closer examination of the moment-to-moment behavior of each system by
counting the number of color conflicts in the network at every time step, averaged over multiple runs. A
color conflict is an edge who ends have the same color (in the case of an anti-coordination game) or
different colors (in the case of a coordination game). Previous work [11] dealt mainly with three update
rules: randomness-first, memory-0, and memory-1. In figure 5, we see the result of many simulations on
the same graph, with these three different update rules. The x axis is log scaled, to clearly show the behavior
in the short and long term.

Although the proof given above does not strictly apply to the memory-1 update rule, it can be modified
to work for any update rule that gives its agents finite memory by enlarging the state space to ordered tuples
of network colorings. In figure 5(c), we see that finding uniform colorings and two-colorings are equally
difficult on random bipartite graphs.

These simulations confirm that the behavior when searching for a two-coloring is the same as when
searching for a uniform coloring, regardless of the specific update rule.

4. Discussion & conclusion

Studying the collective behavior of individuals in a large group has long been an important research area of
statistical physics and relevant fields. The question of ‘collective action’, the tendency for individuals in a
group to forgo short-term selfish behavior in favor of long-term group benefit, has been extensively
discussed and examined. Of particular interest is classifying the environmental factors that foster
cooperation within group, particularly in the case of a public goods game and the Prisoner’s dilemma [23].
There are a plethora of studies that use networks to model a social structure on the group, and the exact
topology of networks can have a profound impact on the cooperation inside a group [21, 24–26].
Additionally, empirical research uses human trials to examine how humans behave rationally (or
irrationally) when actually playing public goods games with others [22].

Our results add to the study of collective action by approximating public goods games in that
individuals sometimes need to make selfless actions (choosing colors that increase color conflicts) with the
long-term goal of increasing success for the entire group (finding a two-coloring or uniform coloring) [11].
Our present work shows that these two fundamentally different games behave in the same way on random
bipartite networks.

Our finding is counter intuitive, but it is important to remember that it applies in a relatively narrow
range of scenarios. A bipartite structure is unlikely in most social networks, which means anti-coordination
and coordination are equivalent problems only in the small selection of populations that happen to be
bipartite with an initial coloring sampled uniformly from all possible colorings. However, these bipartite
networks do occur widely in real systems with two different types of individuals like media producers and
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consumers [36, 37] or in a sexual contact network (that only considers heterosexual connections) [38].
More generally, there are also no parallels for n-colorings for n > 2.
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