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Abstract
Floquet systems often exhibit dynamical symmetries (DS) that govern the time-dependent
dynamics and result in selection rules. When a DS is broken, selection rule deviations are expected.
Typically, information about the symmetry-breaking perturbation/phase and the time-dependent
dynamics can be extracted from these deviations, hence they are regarded as a background free
gauge of symmetry breaking. However, to date, DS breaking & selection rule deviations are not
described by a general approach, thus there is no universal insight about the interplay between
selection rule deviations, the symmetry breaking perturbation, and the broken DS. Here we
consider DS breaking in Floquet systems from a general standpoint, formulating a general theory
that analytically connects the symmetry-broken and fully symmetric systems. Using an external
laser (of arbitrary frequency and polarization), as a model DS breaking perturbation, we discover
that the broken symmetry systematically imposes selection rules on the symmetry-broken system,
which physically manifest as scaling laws of selection rule deviations. We term these rules ‘selection
rules for breaking selection rules’—a new concept in physics. We numerically validate the
analytical theory in the context of high harmonic generation. Our discovery is a general feature of
nonlinear wave-mixing phenomena, and we expect it to apply to any Floquet system (classical &
quantum) and to any DS breaking mechanism (either by intrinsic or extrinsic elements of the
system).

1. Introduction

Floquet systems, i.e. systems described by a time-periodic Hamiltonian, are widespread in nonlinear optics
and many other fields of physics [1–8]. When they exhibit spatio-temporal symmetries (denoted dynamical
symmetries, DS), selection rules are obtained [9–12]. For instance, in high harmonic generation (HHG),
DS are known to dictate selection rules resulting in forbidden harmonics and polarization restrictions
[9, 10, 12], e.g. a counter-rotating ω–2ω bi-circular field interacting with an isotropic medium results in
forbidden optical emission of 3n harmonics (where n is an integer number) of the fundamental driver
[13–15]. However, if the system’s symmetry is slightly broken by some perturbation, previously forbidden
dynamics (e.g. optical emissions of certain frequencies) become slightly allowed. But how much is ‘slightly’?
How do selection rule deviations (and other observables) scale with the strength of the perturbation as the
system transitions from being symmetric to asymmetric? Furthermore, to what extent is the
broken-symmetry relevant in the symmetry-broken system? And how is the interplay between the broken
symmetry and the symmetry-breaking perturbation related to selection rule deviations? The significance of
a general answer to these questions, namely, a general quantitative formalism that systematically describes
DS breaking, is fundamental, as DS breaking is a reoccurring theme in nonlinear spectroscopy. For example,
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symmetry broken HHG serves as a key phenomenon in ultrafast symmetry breaking spectroscopy of
molecular symmetry [16], orientation [17, 18], chirality [19], electric currents [20], imaging of microscopic
electric field distributions [21], and detection of topological phase transitions [22]. Typically, such
experiments start with the system possessing a DS, forcing the HHG spectrum to adhere to
symmetry-induced selection rules. When the DS is broken, the HHG spectrum displays selection rule
deviations and the sought upon measurement (the degree of symmetry breaking) is inferred from these
deviations via an analytical mapping. For example, even harmonics are forbidden when an ensemble of
randomly-aligned molecules is driven by a linearly-polarized driver [9]. When the molecules are impulsively
oriented by a pump laser pulse, the DS is broken and even harmonics are generated. The ensemble’s degree
of orientation can be extracted from the intensities of even harmonics [18]. Selection-rule deviations are
especially appealing for spectroscopy because they are a background-free gauge of symmetry breaking,
enabling high precision measurement of complex dynamics with fs temporal resolution and a relatively
simple experimental technique. Still, despite their great utility and fundamental importance, the interplay
between selection rule deviations and DS-breaking was not investigated from a general perspective, and was
only considered in several ad-hoc situations [16–24]. Thus, it remains unknown if any general insight about
this interplay can be obtained, and if so, what it is.

Motivated to bridge this gap, we present a general analysis of DS-breaking and selection-rule-deviations
in Floquet systems & nonlinear optics. Notably, we present a new concept: selection rules for breaking
selection rules—these are rules that describe the allowed and forbidden behavior of selection rule
deviations. Using a laser of arbitrary polarization and frequency as a model symmetry breaking
perturbation, we perform a general analytical analysis of the interplay between selection rule deviations, the
broken symmetry, and the perturbation itself. Our analysis utilizes Floquet perturbation theory (FPT [25])
to expand the spectral components of an expectation value of interest to a polynomial in the perturbation
strength, without assuming anything about the unperturbed system, except for its initial DS. Remarkably,
we find that the DS of the unperturbed system (the broken symmetry) imposes selection rules on the
coefficients of the polynomial, which dictate the characteristic behavior of the system as it transitions from
fully symmetric to symmetry-broken. That is, we discover that the broken symmetry imposes selection rules
on the symmetry-broken system. We term the new concept of selection rules imposed by broken
symmetries ‘selection rules for breaking selection rules’, and formally derive and tabulate them for all DSs
in (2 + 1)D Floquet systems. As an example, we apply our approach to nonlinear optics, focusing on HHG
driven by a laser with polarization components that break the symmetry. We present numerical examples
that show that our analytical approach correctly predicts the scaling of the HHG emission with the
amplitude and polarization of a symmetry-breaking perturbation, and that different DSs break differently
by an identical perturbation. We stress that selection rules for breaking selection rules is a general new
concept that should exist in any non-linear wave-mixing phenomenon, be it matter waves, acoustic waves,
etc. Furthermore, the explicit rules we have derived for a symmetry breaking laser, are also useful for the
analysis of DS breaking by other symmetry breaking perturbations, because often, time periodic
perturbations can be reformulated as effective gauge fields [26, 27].

This paper is organized as follows: first, we show how selection rules for breaking selection rules emerge
upon breaking the symmetry with an external perturbation, and tabulate the rules imposed by a
perturbative monochromatic laser field. Then, we present numerical explorations of the HHG emission
scaling in the presence perturbations and show that the results match very well to the analytical predictions
of our theory. Finally, we summarize our results and discuss potential implications.

2. Selection rules for breaking selection rules

We begin by considering how DS breaking by a perturbing laser modifies the expectation values of a general
Floquet system at hand. We focus on the dipole moment expectation value since it naturally relates to the
optical emission of the system and subsequently to the analysis of HHG in the next section. The results for
other expectation values/perturbations may be obtained by analogous derivations.

Consider a (2 + 1)D Floquet system, with the time-periodic Hamiltonian Ĥ0 (t) = Ĥ0(t + T) whose
fundamental frequency is ω = 2π/T. In the following, we calculate the perturbative corrections to the nω
frequency components of the dipole moment expectation value, induced by a perturbation of frequency sω
(both n and s are integers). The Floquet Hamiltonian is defined by Ĥf = Ĥ0 − i∂t . It is eigenfunctions
|φα(0) (t)〉and eigenvalues εα(0) are the Floquet states, and quasi energies, respectively (the subscript (0)
indicates a non-perturbed quantity, and α indicates the Floquet state index). When Ĥ0 (t) exhibits some
DS, the optical emission of any single state |φα(0) (t)〉 is subject to corresponding polarization restrictions
and harmonic generation selection rules. When Ĥ0 (t) is perturbed by a symmetry breaking perturbation
λŴ (t) = λŴ (t + T), the state |φα(0) (t)〉 is modified to |φα (λ, t)〉. Note that the perturbed system is under
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the effect of two driving fields—a symmetry preserving pump field (or a different periodic excitation) and a
symmetry breaking perturbing field. The expectation values from the modified state |φα (λ, t)〉 exhibits
selection rule deviations. For example, if Ĥ0 (t) is perturbed by an electric field of amplitude λ, polarization
p and frequency sω, where ω = 2π/T and s may be any integer (extensions to any rational number s = r/q
are discussed in the SI (https://stacks.iop.org/NJP/23/103039/mmedia, section 4), then within the electric
dipole approximation, the modified Hamiltonian is Ĥ = Ĥ0 + λŴ (t) where:

λŴ (t) = λR
{

p · μ̂eisωt
}

, (1)

and where μ̂ is the electric dipole moment operator such that:

p · μ̂ = pxx + pyy, (2)

where x, y are Cartesian spatial coordinates. The nω (where n is an integer) frequency component of the
dipole moment expectation value μ̂ (λ) is given by

Ẽ (λ, nω) =

∫ T

0

dt

T
〈φα (λ, t)| μ̂einωt |φα (λ, t)〉. (3)

Using FPT, we expand |φα (λ, t)〉to 1st order in λ, and subsequently Ẽ (λ, nω) to a quadratic polynomial
in λ

Ẽ (λ, nω) = Ẽ0 (nω) + λẼ1 (nω) + λ2Ẽ2 (nω) . (4)

The term Ẽ0 (nω) complies with any selection rules imposed by the DSs of the unperturbed system,
which are derived in [12]. The new contributions Ẽ1 (nω) , Ẽ2 (nω) are a result of the perturbation, inducing
selection rule deviations that scale linearly and quadratically with the perturbation strength, respectively.
The explicit forms of Ẽ0 (nω) , Ẽ1 (nω) and Ẽ2 (nω) (defined in equations (3) and (4)) are given by (see SI,
section 1 for full derivation):

Ẽ0 (nω) = Fαα
n (5)

Ẽ1 (nω) =
∑

(β, m) �= (α, 0)
g = ±1

(
pg · Fβα

gs−m

)
Fαβ

n+m +
(

pg · Fαβ
m−gs

)
Fβα

n−m

εα(0) − εβ(0) − mω
(6)

and

Ẽ2 (nω) =
1

4

∑
(β, m) �= (α, 0)
(κ, l) �= (α, 0)

g1, g2 = ±1

(
pg1

· Fακ
l−g1s

)(
pg2

· Fβα
g2s−m

)
Fκβ

n+m−l(
εα(0) − εκ(0) − lω

) (
εα(0) − εβ(0) − mω

) (7)

Here, sω is the frequency of the perturbation (equation (1)), α and β are Floquet state indices, the
quasi-energies εα(0) are defined by Ĥf |φα(0)〉= εα(0)|φα(0)〉, pg ≡ R {p}+ igI {p} and Fβα

n is the nω
frequency component of the time-dependent matrix element 〈φβ(0)|μ̂|φα(0)〉:

〈φβ(0) |μ̂|φα(0)〉 =
∑

n

Fβα
n eiωnt (8)

Equations (5)–(8) provide a quantitative analytical description for the scaling of the selection rule
deviations (and the spectrum in general) up to the wavefunction normalization, and the additional higher
order contributions, which may be introduced by the 2nd order correction to the wavefunction. We shall
now examine how the broken symmetry imposes different selection rules on Ẽ0 (nω) , Ẽ1 (nω) and Ẽ2 (nω).
Ẽ0 (nω) = Fαα

n exhibits selection rules because it is calculated directly from an eigenstate of the symmetric
system [12]. Similarly, the matrix elements Fβα

n also exhibit (other) selection rules because they are
calculated directly from symmetric Floquet states. As the elements Fβα

n are the building blocks of
Ẽ1 (nω) , Ẽ2 (nω), they also exhibit selection rules—selection rules for breaking selection rules. For example,
we derive here these selection rules for a time reversal (T̂) symmetric system, perturbed by a linearly
polarized laser, i.e. p ∈ R

2 is real. Since the unperturbed system is T̂ symmetric, the unperturbed Floquet
states are eigenfunctions of T̂ whose eigenvalues are either +1 or −1. By operating with T̂ on equation (8)
we find that ±Fβα

n = Fβα
n , where a plus (minus) sign is used when |φα(0)〉 and |φβ(0)〉 have the same

(different) T̂ eigenvalue. Therefore, if the α and β Floquet states have the same (different) eigenvalue, Fβα
n is

real (imaginary). Thus, all the contributions to equation (6) are real, i.e. Ẽ1 (nω) is real. In other words,
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Table 1. Selection rules for breaking selection rules by a linearly polarized monochromatic laser. The broken symmetry imposes
universal selection rules on Ẽ0,1,2 (nω), which also depend on the polarization (p) and frequency (sω) of the perturbation. The selection
rules for Ẽ0 (nω) were tabulated in [12] and the selection rules for Ẽ1,2 are derived in the SI, section 2.

Dynamical
symmetry Selection rules & selection rules for breaking selection rules

Time-reversal symmetries

T̂ Ẽ0 (nω) ∈ R2 Ẽ1 (nω) ∈ R2 Ẽ2 (nω) ∈ R2

Q̂ Ẽ0 (nω) ∈ iR2 Ẽ1 (nω) ∈ R2 Ẽ2 (nω) ∈ iR2

Ĝ Ẽ0 (nω) ∈ in+1R2 Ẽ1 (nω) ∈ in+sR2 Ẽ2 (nω) ∈ in+1R2

Dynamical reflection symmetries
D̂y Ẽ0x , iẼ0y ∈ iR Ẽ1x (nω) , iẼ1y (nω) ∈ pxR + ipyR Ẽ2x (nω) , iẼ2y (nω) ∈ ip2

xR + ip2
y R + pxpyR

Ĥy Ẽ0x (nω) , iẼ0y (nω) ∈ in+1R Ẽ1x (nω) , iẼ1y (nω) ∈ in+spxR + in+s+1pyR Ẽ2x (nω) , iẼ2y (nω) ∈ in+1p2
xR + in+1p2

y R + inpxpyR

Ẑy Ẽ0 (nω) ∈
(

0 1
1 0

)n (
1 0
0 0

)
C2 Ẽ1 (nω) ∈

(
0 1
1 0

)n+s (
px 0
0 py

)
C2 Ẽ2 (nω) ∈

(
0 1
1 0

)n (
pxpy 0

0 p2
x + αp2

y

)
C2; α ∈ C

Rotational & elliptical dynamical symmetries

ĈN ,M Ẽ0 (nω) �= 0 for Ẽ1 (nω) �= 0 for Ẽ2 (nω) �= 0 for
êN ,M n = Nm ± M n = Nm ± (1 ± 1) M ± s n = Nm ± (2 ± 1) M ± (1 ± 1) s

Ẽ1 (nω) is linearly polarized and in phase with the perturbation. Similarly, Ẽ2 (nω) is real since each
contribution to the summation (equation (7)) is comprised of a multiplication of either three real entities,
or two imaginary entities and one real entity. Overall, for T̂ symmetry we conclude that both Ẽ1 (nω) and
Ẽ2 (nω) are real, hence they are linearly polarized and in phase with the perturbation (yet not necessarily
polarized along the same axis). We emphasize this important result—corrections to the light
emission/observable that arise from the time-dependent perturbation to the initial system have a restricted
form that arises from the symmetry of the unperturbed system and the properties of the perturbation.
These are selection rules to the breaking of the initial selection rule of the unperturbed system, which are in
close analogy with the selection rules of the symmetric system.

The derivations for all other DSs are based on similar arguments (presented in the SI, section 2) and
their results are summarized in table 1. The different DS operations are explicitly defined in the SI and in
[12]. These selection rules form a general platform for symmetry breaking spectroscopy in Floquet systems.
Table 1 accounts for linearly polarized perturbations, but the same approach could be utilized to account
for any other polarization (for example, see another explicit table for circularly polarized perturbing fields
in the SI, section 3). At this point, it is worth mentioning again that we utilized here non-degenerate
perturbation theory and that these selection rules only describe the scaling of the emission of each separate
Floquet state. When the system is initially in a superposition of several Floquet states, the emission may
scale differently because the interference between the states introduces additional terms in equation (4).
However, these terms can also be accounted for with the same approach. In fact, one may utilize this
property to probe interferences between Floquet states. We also note that the selection rules for symmetries
that involve the time-reversal operation were derived under the assumption that the quasi-energy spectrum
is real valued. Finally, we note that by expanding the Floquet state to 1st order in λ, the presented treatment
does not immediately account the quadratic contribution originating from the 2nd order Floquet state
correction. However, we have verified that this contribution exhibits the same selection rules for breaking
selection rules hence the approach is consistent in describing the scaling of a physical signal.

Before moving on to discuss explicit examples, it is instructive to discuss the physical meaning and
structure of the results in table 1. Since the perturbation polarization vector was real in the derivation of
table 1, real quantities are in equal or opposite phase with respect to the perturbation, and imaginary
quantities have ±π/2 phase shifts relative to the perturbation. A complex quantity has an unrestricted
phase. The x and y polarization components of Ẽi (i = 0, 1, 2) are denoted by Ẽix and Ẽiy respectively. If

both of these components are in phase, the contribution Ẽi is linearly polarized. For example, for Q̂ DS,
Ẽ1 (nω) ∈ R2 is linearly polarized and in equal/opposite phase with the perturbation, whereas
Ẽ0,2 (nω) ∈ iR2 are linearly polarized and have a ±π/2 phase shifts relative to the perturbation. It is
important to emphasize that Ẽ0 and Ẽ0,2, are not necessarily linearly polarized along the same axis. Rules
that depend on px and py restrict the scaling of a particular expectation value with these quantities, and the

phase of each component in the scaling. For example, for D̂y DS, we obtained that Ẽ1x (nω) ∈ pxR + ipyR,
which means that for the x-polarization component of harmonic n, there are two linearly scaling
components—one that depends linearly on px and is in equal/opposite phase with the perturbation, and
one that depends linearly on py, and has a phase of ±π/2 relative to the perturbation. Similarly, we found

that the ŷ polarized linearly scaling component of harmonic n follows iẼ1y (nω) ∈ pxR + ipyR, hence it is a
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Figure 1. Numerical demonstration of selection rules for breaking Ĉ5,3 selection rules in HHG by an X̂-polarized perturbative
electric field of amplitude λ. For λ= 0, the Lissajous curve of the driving field is given in red. Due to the Ĉ5,3 DS, 5m harmonics
are forbidden and 5m ± 3 are circularly polarized. For λ > 0 (purple Lissajous curve) an X̂ polarized laser breaks the DS and
induces (a) linear scaling of 5m harmonics (b) quadratic scaling of 5m ± 2 harmonics. The scaling of the harmonic amplitudes
with perturbation strengths are presented in color, and the individual R2 values are marked with the corresponding color above
each subfigure. Each harmonic amplitude is multiplied by a factor such that all the harmonics fit to the graph.

sum of an equal/opposite phase component that scales linearly with px, and a component that scales linearly

with py with a phase ±π/2 relative to the perturbation. In matrix-form rules, Ẽi =
(

Ẽix, Ẽiy

)T
where T is

the transpose operation. For example, for Ẑy symmetry, Ẽ1x (nω) scales linearly with px if n + s is even, or
linearly with py if n + s is odd. For Ẽ1y (nω), the conditions are reversed. Both Ẽ1x (nω) and Ẽ1y (nω) have

unrestricted phases as denoted by the multiplication C2. Finally, the laws for rotational and elliptical DSs
forbid each of the components Ẽ0,1,2 (nω) to be nonzero unless n is in a specific subset of the integers. An
explicit example of this selection rule for Ĉ5,3 symmetry follows in the next section.

3. High-harmonic-generation

Next, we explore the applicability of our approach to HHG symmetry breaking spectroscopy [16, 17,
19–22]. Within this technique, an intense laser pulse is focused into a gas, liquid, or solid target, resulting in
the generation of high harmonics of the driver laser field [28]. If the driving laser is switched on slowly
enough (which is most often the case in HHG experiments), the state of the system adiabatically evolves
from the ground state to a single resonant (non-Hermitian) Floquet state [29]. Hence, the response of the
HHG spectrum to a perturbative symmetry breaking electric field (equation (1)) is given by equation (4)
and table 1.

As a first example, we consider the HHG spectra emitted from a Ne atom in an unperturbed symmetric
potential well, VNe(�r) (see methods for the explicit expression), irradiated by a counter rotating bi-circular
2ω–3ω field where ω corresponds to a wavelength of 800 nm. The Lissajous curve of this unperturbed field
is given figure 1 (red, below λ = 0). The Floquet Hamiltonian describing this process exhibits a 5th order
rotational DS, denoted Ĉ5,3 = τ̂ 5 · R̂5,3, where τ̂ 5 is T/5 time translation, and R̂5,3 is spatial rotation by
3 × 2π/5 (see SI, section 2, for a more detailed description of the different symmetry operations used).
Thus, only (5m ± 3)ω harmonic photons are emitted [12]. When we perturb the Hamiltonian with a weak
linearly polarized field of amplitude λ, frequency 5ω that is linearly polarized along the x-axis
(px = 1, py = 0, s = 5) the DS is broken, and all harmonic orders are allowed. Figure 1 shows the explicit
expression for the perturbed field as a function of λ, and its Lissajous curve for λ = 0 (red) and λ = 0.2
(purple). Using table 1, we find that Ẽ1 ((5m ± 2)ω) = Ẽ2 (5mω) = 0, where m is an integer. Hence, 5m
harmonics are predicted to scale linearly with λ and 5m ± 2 harmonics are predicted scale quadratically (for
integer m).

Figure 1 presents the scaling of the deviations for peak harmonic amplitudes of harmonics 13–47 vs λ,
calculated by directly solving the time-dependent Schrödinger equation (TDSE) for this model atom (for
numerical details see methods). Lower and higher order harmonics were excluded due to a low signal to
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Figure 2. Numerical demonstration of selection rules for breaking ẐY = τ̂ 2 · σ̂Y selection rules in HHG by a Ŷ-polarized
perturbative electric field of amplitude λ. For λ= 0 the Lissajous curve of the driving field is given in red, and due to the ẐY DS,
X̂ polarized 2m harmonics and Ŷ polarized 2m + 1 harmonic are forbidden. For λ > 0 (purple Lissajous curve), a Ŷ polarized
electric field breaks the DS and induces (a) and (d) linear scaling of X̂(Ŷ) polarized even (odd) harmonics (b) and (c) quadratic
scaling of Ŷ(X̂) polarized even (odd) harmonics.

noise ratio, causing their scaling to be strongly affected by the nonlinear scaling of the background
radiation, which is not accounted for in Floquet theory. The signal to noise ratio of the presented (plateau)
harmonics is relatively constant, but oscillations of this value do occur due to interferences of short and
long electronic trajectories. The oscillations of the signal to noise ratio with harmonic order change the
relative contribution of the background radiation to the scaling of the harmonics. For harmonics with a
particularly low signal to noise ratio, such as harmonic 32 in figure 1(b), the analytically predicted scaling is
altered by the scaling of the background, so that the value of R2 is diminished to 0.9. However, this effect is
relatively weak and the analytical predictions are numerically observed with an average R2 > 0.97 for both
cases.

As a second example, we consider an ω − 2ω cross-linear driving field, which exhibits a reflection DS
denoted Ẑy = τ̂ 2 · σ̂y, where σ̂y is reflection relative to ŷ [12, 30]. The explicit expression and Lissajous
curve for the driving field are given in figure 2. For λ = 0, only x̂-polarized (ŷ-polarized) 2m ± 1 (2m)
harmonics are allowed due to the Ẑy DS (for integer m) [12]. When we perturb the Hamiltonian with a
weak field of frequency 5ω, linearly polarized along ŷ (px = 0, py = 1, s = 5) Ẑy DS is broken,
and all harmonic polarizations are allowed. From table 1 we find that Ẽ2x (2mω) , Ẽ1y (2mω) ,

Ẽ2y ((2m ± 1)ω) , Ẽ1x ((2m ± 1)ω) are all equal to zero (Ẽix, Ẽiy are the x and y components of Ẽi).
Therefore, 2m harmonics are predicted to scale linearly (quadratically) with λ if polarized along x̂ (ŷ), and
2m ± 1 harmonics are predicted to scale linearly (quadratically) with λ if polarized along ŷ (x̂) (for integer
m). Figure 2 presents the amplitudes of the x̂ and ŷ polarization components of harmonics 13–32 vs λ
(other harmonics were excluded as above). Again, the analytical predictions derived by FPT are numerically
observed, with an average R2 > 0.95 for all cases. Notably, the same results are obtained also when a finite
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bandwidth around each harmonic is considered (see SI, section 4), i.e. this is a robust result. We note that
this analysis describes a physical situation that is often encountered in HHG experiments—imperfect
polarization in the driving laser field, where deviations from the desired polarization can be modeled as
small perturbations. Our analysis can therefore be directly utilized to comprehensively explore symmetry
breaking in standard HHG setups (e.g. as described in [31]). That is, it can be used to determine the source
of symmetry breaking—imperfections in experimental conditions, or other, by measuring the scaling of the
signal with a particular degree of freedom.

4. Discussion

To summarize, we have formulated a general theoretical framework that describes DS breaking in Floquet
systems. Within this framework, we analyzed the scaling of the system’s expectation values with a symmetry
breaking perturbation and discovered that the broken symmetry systematically imposes selection rules on
the symmetry broken system. These selection rules dictate the allowed/forbidden components in the scaling
of the emission, as well as phase relations between different components. We termed the derived rules
‘selection rules for breaking selection rules’ and tabulated them according to the symmetry that imposes
them. We observed numerically the validity of the derived scaling laws by examining HHG
symmetry-breaking spectroscopy with different types of perturbations. Thus, the analytical theory’s
predictions are robust, and provide a universal framework for analyzing various, up to now disconnected,
symmetry breaking mechanisms.

The discovered universal rules provide a theoretical foundation for existing HHG symmetry breaking
schemes that should be useful in developing new ultrafast spectroscopic tools. It allows one to quickly
characterize the response of any general system to a degree of freedom by performing a small number of
calibration measurements. For instance, we have already showed here that the theory is useful for analyzing
symmetry-breaking due to imperfect polarization components in the driving laser, but it can similarly (and
easily) be applied to other types of symmetry breaking due to intrinsic properties of the medium (e.g.
spin-orbit coupling [32]), or properties of the light-matter dressed system. In particular, by reformulating
material excitations as effective gauge potentials, we expect that our approach can be extended to describe
phonon-induced phase transitions [27, 33] and DS breaking in the presence of two-dimensional magnons
[34]. Thus, we believe that this work will also have implications in various fields of physics beyond
nonlinear optics and HHG, as well as motivate more investigations on selection rules for breaking selection
rules in other systems.

5. Methods

The HHG spectra for the different cases analyzed in the paper were obtained by numerically solving the
time dependent Schrodinger equation (TDSE) for an atom irradiated by a laser field, in the length gauge.
The TDSE was solved on a two dimensional Cartesian grid. The TDSE, given in atomic units within the
dipole approximation is:

i
∂

∂t
ψ
(

t, x, y
)
=

[
−1

2
∇2 + V (r) + Vab (r) +�r · �E (r, t)

]
|ψ

(
t, x, y

)
〉, (9)

where �E (r, t) is the laser electric field, and V (r) is the atomic potential, modeled as a softened coulomb
potential:

V (r) = − 1√
r2 + a

. (10)

The parameter a is set to a = 0.1195 a.u., to match the ionization potential of Ne, that is
Ip = 0.7924 hartree [35]. Vab (r) is a complex absorbing potential, that was included in the equation to
avoid nonphysical reflections of the wavefunction from the grid boundaries:

Vab (r) =

{−i5 × 10−4(r − r0)3, r � r0

0, otherwise
(11)

where r0 = 36 bohr for 2D calculations and for 1D calculations r0 = 75 bohr. The TDSE (equation (9)) was
solved by a 3rd order split step method [36, 37], starting from the ground state of the model Ne atom. The
ground state was found by representing field-free Hamiltonian in matrix form on the Cartesian spatial grid,
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and diagonalizing it. The temporal envelope of the electric field was an amplitude trapezoid with a five-cycle
long flat top section and five-cycle long rise and fall sections. 2D calculations were carried out on a square
Cartesian spatial grid, spanning from xmin, ymin = −60 bohr to xmax = ymax = 60 bohr, with a grid spacing
of dx = dy = 0.0586 bohr and a timestep of dt = 0.011. The dipole acceleration was calculated by
Ehrnfest’s theorem:

a (t) = −〈ψ (�r, t)| ∇V (r) + E (t) |ψ (r, t)〉. (12)

From which, the harmonic spectra were obtained by a Fourier transform

Ẽ (nω) = F · T {a (t)} . (13)
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