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Abstract
Superconducting parametrons in the single-photon Kerr regime, also called KPOs, have been
attracting increasing attention in terms of their applications to quantum annealing and universal
quantum computation. It is of practical importance to obtain information of superconducting
parametrons operating under an oscillating pump field. Spectroscopy can provide information of a
superconducting parametron under examination, such as energy level structure, and also useful
information for calibration of the pump field. We theoretically study the reflection spectroscopy of
superconducting parametrons, and develop a method to obtain the reflection coefficient. We
present formulae of the reflection coefficient, the nominal external and the internal decay rates,
and examine the obtained spectra. It is shown that the difference of the populations of energy
levels manifests itself as a dip or peak in the amplitude of the reflection coefficient, and one can
directly extract the coupling strength between the energy levels by measuring the nominal decay
rates when the pump field is sufficiently large.

1. Introduction

Classical parametric phase-locked oscillators [1], called parametrons [2], were operated as classical bits in
digital computers in the 1950s and 1960s. Recently, parametrons in the single-photon Kerr regime [3],
where the nonlinearity is larger than the decay rate, have been attracting much attention in terms of their
applications to quantum information processing. Parametrons were applied to the qubit readout [4, 5] in
the circuit QED architecture, a promising platform of quantum information processing [6–13]. Quantum
annealing [14–17] and universal quantum computation [18], which utilize the quantum nature of
parametrons in a superconducting circuit, have been proposed. More recently, bias-preserving gates [19]
and single-qubit operations [20] were studied theoretically and experimentally, and the exponential increase
of the bit-flip time with the cat size was observed [21].

A parametron in the single-photon Kerr regime is operated by an oscillating pump field. Therefore, to
obtain information of the parametron under the pump field and to calibrate the amplitude of the pump
field are practically important. In previous studies, state tomography of parametrons using the power
spectrum density were demonstrated [22]; energy differences between either of the two highest energy levels
and a lower energy level of a parametron were measured by mapping the parametron to a Fock qubit [20];
and microwave responses of parametrons without a pump field were experimentally investigated in a wide
range of the Kerr nonlinearity [23]. However, theories of reflection and transmission spectroscopy of
parametrons have not been developed in spite of the fact that they are important and routinely applied to
resonators to examine the energy level structure and their quality. Spectroscopy will provide useful
information of superconducting parametrons under examination, such as energy level structure.

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Figure 1. Schematic of the system. (a) A parametron (blue circle) is attached to a TL, where an incoming and an outgoing
microwaves propagate. An external oscillating magnetic flux Φ(t) is used to pump the parametron. ω is the resonance frequency
of the parametron when no pump filed is applied. The parametron is located at r = 0. (b) Effective model of (a). In the theory in
section 3, the negative and positive regions are assigned to the incoming and outgoing fields, respectively.

Recently, a fast and accurate gate operation of a parametron utilizing energy levels outside of the qubit
space was proposed [24]. In the method, the couplings between either of the two highest levels and other
lower levels induced by a drive pulse are essential. For implementation of the technique, it is important to
measure the energy differences and the couplings between relevant levels.

In this paper, we develop a method to obtain the reflection coefficient of a pumped superconducting
parametron. We present simple formulae of the reflection coefficient and the nominal decay rates4. It is
shown that one can directly extract the amplitude of the coupling coefficients between energy levels by
measuring the nominal decay rates when the pump field is sufficiently large. Moreover, we show that the
nominal internal decay rate increases with the pump strength and eventually exceeds the nominal external
decay rate even if the original internal decay rate of the parametron without a pump field is negligible. Our
method of spectroscopy does not require pulsed operations of a parametron, and can be implemented with
a standard reflection-measurement setup routinely used for superconducting circuit QED architectures.

2. Model

We develop a theory to obtain the reflection coefficient for parametrons. Our method is similar to that in
reference [25] developed for a driven three-level system. We consider a system composed of a parametron
attached to a transmission line (TL) as depicted in figure 1(a). An incoming and an outgoing microwaves
propagate in the same TL. The parametron is pumped by an external oscillating magnetic flux Φ(t).

Hamiltonian of the system is given by

H
�

= ωa†a − χ

12
(a + a†)4 + 2β(a + a†)2 cos ωpt +

∫ ∞

0
dk

[
vbkb†kbk +

√
vbκex

2π
(a†bk + b†ka)

]

+

∫ ∞

0
dk

[
vckc†kck +

√
vcκint

2π
(a†ck + c†ka)

]
, (1)

where the first three terms are Hamiltonian of the parametron under a pump field [22] (see appendix A for
derivation), and the terms with bk are Hamiltonian of the eigenmodes of the TL and the coupling between
the modes and the parametron. The terms with ck are Hamiltonian of the eigenmodes representing a loss
channel and their coupling to the parametron. The decay to the channel represents the internal decay of the
parametron. The second term in the right-hand side of equation (1) gives rise to an anharmonic term in a
rotating frame as shown later. The third term originates from the pump field Φ(t). Here, β and ωp are the
amplitude and the angular frequency of the pump field, respectively. The annihilation operator of the
parametron and those of the eigenmodes of the TL (loss channel) with the wave number k are denoted by a
and bk (ck), respectively. The decay rate to the TL (loss channel) and the phase velocity in the TL (loss
channel) are denoted by κex (κint) and vb (vc), respectively. Hereafter, we assume vc = vb.

3. Reflection coefficient

In this section, we show the method to calculate the reflection coefficient of a parametron. In our method,
we use the input–output relation. We derive the input–output relation to make this paper self-contained,
although the derivation is based on a standard approach and can be found, e.g. in reference [5]. For a
parametron, energy eigenstates in a rotating frame are important because two of them are utilized as qubit

4 The external and the internal decay rates or the quality factors of resonators are routinely measured by spectroscopic methods. They
are obtained by fitting the spectra to an analytic form. The nominal decay rates of a parametron can be obtained in the same manner as
a resonator, and can provide information of the measured parametron as explained in section 4.

2
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Figure 2. Amplitude of the reflection coefficient in equation (30) in the weak input field limit as a function of ωin and β for
Δ/2π = −7 MHz (a), 0 MHz (b), 7 MHz (c) and 20 MHz (d). The used parameter set is: χ/2π = 30 MHz, κex/2π = 0.4 MHz
and κint/2π = 4 MHz.

states. We develop a method to obtain the reflection coefficient for a parametron using its energy eigenstates
as a basis in section 3.1. This method enables one to obtain the reflection coefficient without integrating
master equation.

The Heisenberg equation of motion of bk is represented as

d

dt
bk(t) = −ivbkbk(t) − i

√
vbκex

2π
a(t). (2)

A formal solution of equation (2) is

bk(t) = bk(0)e−ikvbt − i

√
vbκex

2π

∫ t

0
dτ a(τ)eikvb(τ−t), (3)

where t > 0. We formally extend the lower limit of k to −∞ in order to introduce the real-space
representation of the field operator defined by

b̃r(t) =
1√
2π

∫ ∞

−∞
dk eikrbk(t), (4)

where r runs over −∞ < r < ∞. The negative and positive regions are assigned to the incoming and
outgoing fields, respectively, as depicted in figure 1(b). Thus, the input field operator b̃(in)

r and the output
field operator b̃(out)

r are represented as

b̃(in)
r (t) = b̃−r(t),

b̃(out)
r (t) = b̃r(t). (5)

The introduction of the real-space representation has been validated in reference [26]. Using equations (3)
and (4), we can obtain

b̃r(t) = b̃r−vbt(0) − i

√
κex

vb
θ(r)θ(vbt − r)a(t − r/vb), (6)

where θ is the Heaviside step function. Using equation (5) with r = 0 in equation (6), we obtain the
input–output relation,

b̃(out)
0 (t) = b̃(in)

vbt (0) − i

2

√
κex

vb
a(t), (7)

3
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Figure 3. Energy diagram of H0 for Δ/2π = −7 MHz (a), 0 MHz (b), 7 MHz (c) and 20 MHz (d). Only four levels are
displayed. The other used parameters are the same as figure 2. Wigner function of the stationary state is shown in figure 9 for the
values of β indicated by the triangles in panel (a).

where we used θ(0) = 1/2. The Heisenberg equation of motion of a with equations (4), (5) and (7) leads to

d

dt
a =

(
−iω − κtot

2

)
a + i

χ

3
(a + a†)3 − i4β cos(ωpt)(a + a†)

− i
√
vbκexb̃(in)

vbt (0) − i
√
vbκintc̃

(in)
vbt (0), (8)

where a abbreviates a(t), and we formally extended the lower limit of k to −∞ in equation (1). Here, c̃(in)
vbt is

the counterpart of b̃(in)
vbt , and κtot = κex + κint.

Now, we assume that an input microwave is applied from the TL attached to the parametron. We
consider a continuous mode version of a coherent state:

|Ψi〉 = N exp

[∫ 0

−∞
dr Ein(−r)b̃†r (0)

]
|v〉, (9)

with the overall vacuum state |v〉 and a normalization factor N . Considering that the input wave propagates
in the positive-r direction, Ein(r) represents the input microwave at the initial moment as given by

Ein(r) =

⎧⎨
⎩

E e−iωinr/vb (r > 0)

0 (otherwise),
(10)

where E and ωin are the amplitude and the angular frequency of the incoming microwave, respectively. We
assume that at the initial time the parametron is unexcited, and the input microwave has not arrived at the
parametron yet. Because |Ψi〉 is a coherent state, it is an eigenstate of the initial field operator b̃r(0). We can
obtain

b̃(in)
vbt (0)|Ψi〉 = Ein(vbt)|Ψi〉 = E e−iωint |Ψi〉 (11)

using equations (9) and (10).

4
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Figure 4. Spectra in figure 2 compared with curves representing the energy differences, Δωñm̃ = ωñ − ωm̃, corresponding to the
transition from |m̃〉 to |ñ〉. (The color of |Γ| is chosen to be lighter than figure 2 to make the curves clear.) Only curves for
relevant transitions are shown. The used parameters are the same as figure 2.

We multiply equation (6) by eiωpt/2 with r = +0 and take the expectation value with respect to |Ψi〉 to
obtain

〈B̃(out)
+0 (t)〉 = 〈B̃(in)

vbt (0)〉 − i

√
κex

vb
〈A(t)〉, (12)

where

B̃(out)
+0 (t) = b̃(out)

+0 (t)eiωpt/2,

B̃(in)
vbt (0) = b̃(in)

vbt (0)eiωpt/2, (13)

and
A(t) = eiωpt/2a(t). (14)

Equation (11) leads to
〈B̃(in)

vbt (0)〉 = E ei(ωp/2−ωin)t . (15)

In this paper, we focus on the Fourier component of 〈B̃(out)
+0 (t)〉 with a frequency of −ωin + ωp/2, which

is the same as the frequency of the input field, although our formalism can be used to obtain other
frequency components of the reflected field. We define the reflection coefficient as

Γ = 〈B̃(out)
+0 〉[−ωin + ωp/2]/E, (16)

where 〈B̃(out)
+0 〉[−ωin + ωp/2] is the Fourier component of 〈B̃(out)

+0 (t)〉 with a frequency of −ωin + ωp/2.
Equation (16) can be rewritten using equations (12) and (15) as

Γ = 1 − i

E

√
κex

vb
〈A〉[−ωin + ωp/2], (17)

where 〈A〉[−ωin + ωp/2] is the Fourier component of 〈A(t)〉 with a frequency of −ωin + ωp/2.

5
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Figure 5. Population of each level, ρ(F)
m̃m̃[0], for the stationary state in the weak input field limit for Δ/2π = −7 MHz (a), 0 MHz

(b), 7 MHz (c) and 20 MHz (d). ρ(F)
2̃2̃

[0] is approximately zero in (a)–(c), while ρ(F)
3̃̃3

[0] is approximately zero in (a)–(d). The
other used parameters are the same as figure 2. The stationary state approaches to the maximally mixed state of the highest and
the second highest levels as β increases.

3.1. Representation of reflection coefficient with density matrix elements
We consider equations of motion of the system under consideration to calculate the reflection coefficient.
The time evolution of 〈A〉 is governed by

d

dt
〈A〉 =

(
−iΔ− κtot

2

)
〈A〉+ iχ〈A†A2〉 − 2iβ〈A†〉 − i

√
vbκexE ei(ωp/2−ωin)t , (18)

where we used equations (8) and (11) and omitted rapidly oscillating terms (rotating wave approximation).
The approximation is valid when ωp � β,Δ,χ. Effects of these rapidly oscillating terms on controls of a
parametron were studied in reference [27]. Here, Δ is the detuning defined by

Δ = ω − χ− ωp/2. (19)

The master equation, which leads to the same equations of motion, is represented as

dρ

dt
= − i

�
[Hsys(t), ρ] + L[ρ], (20)

with

Hsys = H0 + �
√
vκex[E e−i(ωin−ωp/2)tA† + E ei(ωin−ωp/2)tA], (21)

H0 = �ΔA†A − �χ

2
A†2A2 + �β(A2 + A†2) (22)

L[ρ] =
κtot

2

(
[Aρ, A†] + [A, ρA†]

)
, (23)

where ρ is the density operator.
In order to derive an analytic formula of the reflection coefficient, we use energy eigenstates |φm〉 of H0

in equation (22) to rewrite 〈A〉 as

〈A〉 = Tr[Aρ] =
∑

m

〈φm|Aρ|φm〉 =
∑
mn

Xmnρnm, (24)

where ρnm = 〈φn|ρ|φm〉, and Xmn = 〈φm|A|φn〉. Using equations (17) and (24), the reflection coefficient can
be represented as

Γ = 1 − i

E

√
κex

vb

∑
mn

Xmnρ
(F)
nm[−ωin + ωp/2], (25)

6
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Figure 6. Amplitude of the coupling coefficient Xm̃ñ for the transitions |0̃〉 → |1̃〉, |1̃〉 → |0̃〉, |1̃〉 → |2̃〉 and |2̃〉 → |1̃〉. Panels
(a)–(d) are for Δ/2π = −7 MHz (a), 0 MHz (b), 7 MHz (c) and 20 MHz (d). The other used parameters are the same as
figure 2.

where ρ(F)
nm[−ωin + ωp/2] is the Fourier component of ρnm at a frequency of −ωin + ωp/2. The term

proportional to ρ(F)
nm[−ωin + ωp/2] in equation (25) is the contribution to the reflection coefficient from the

transition from |φm〉 to |φn〉.
The equation of motion of the density matrix element is written as

ρ̇mn = i(−ωm + ωn)ρmn − iΩ
∑

k

(Xmkρkn − Xknρmk)ei(ωin−ωp/2)t − iΩ
∑

k

(X∗
kmρkn − X∗

nkρmk)e−i(ωin−ωp/2)t

+ κtot

∑
kl

XmkX∗
nlρkl −

κtot

2

∑
k

(Ymkρkn + Yknρmk), (26)

where ωm is an eigenvalue of H0/�; Ymn = 〈φm|A†A|φn〉; and Ω is defined by

Ω =
√
vbκexE. (27)

The Fourier transform of equation (26) with a frequency of −ωin + ωp/2(= −ω̃in) leads to

0 = i(ωin − ωp/2 − ωm + ωn)ρ(F)
mn[−ω̃in] − iΩ

∑
k

(Xmkρ
(F)
kn [−2ω̃in] − Xknρ

(F)
mk[−2ω̃in])

− iΩ
∑

k

(X∗
kmρ

(F)
kn [0] − X∗

nkρ
(F)
mk[0]) + κtot

∑
kl

XmkX∗
nlρ

(F)
kl [−ω̃in]

− κtot

2

∑
k

(Ymkρ
(F)
kn [−ω̃in] + Yknρ

(F)
mk[−ω̃in]). (28)

These equations are used to obtain the density matrix elements in equation (25) as shown in the
following section.

4. Weak input field limit

In principle, the reflection coefficient in equation (17) can be obtained using the density matrix which can
be calculated by integrating the master equation (20). However, it is time consuming to integrate the master
equation for sufficiently long time for a parametron. In this section, we present an alternative method
providing an approximate reflection coefficient in the weak input field regime, where the diagonal elements
of the density matrix ρ(F)

mm[0] are approximately the same as those for the stationary state without input

7
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field. The method does not require to integrate the master equation. The effect of the finite input field can
be also taken into account, which will be discussed in appendix B.

We consider the case that the input field is nearly resonant with the transition from |φm〉 to |φn〉, that is,
ωin − ωp/2 + ωm − ωn 	 0. We assume that the off-diagonal element of the density matrix ρ(F)

kl [−ω̃in] is

not vanishing only for (k, l) = (n, m), and non-resonant elements such as ρ(F)
kl [−2ω̃in] are vanishing. We

also assume that the diagonal elements are the same as the stationary state without input field because the
input field is sufficiently weak. Then, ρ(F)

nm[−ω̃in] can be obtained using equation (28) as

ρ(F)
nm[−ω̃in] =

iΩX∗
mn(ρ(F)

mm[0] − ρ(F)
nn [0])

iΔnm − κex+κint
2 (Ymm + Ynn)

. (29)

where Δnm = ωin − ωp/2 − ωn + ωm. We used Xmm = 0 in equation (29), which is valid because |φm〉 has
even or odd parity, that is, |φm〉 is a superposition of even-photon-number states or odd-photon-number
states. Using equation (29) in equation (25), the reflection coefficient is approximately represented by the
following simple form,

Γ = 1 +
∑
mn

ξmn (30)

with

ξmn =
κex|Xmn|2(ρ(F)

mm[0] − ρ(F)
nn [0])

iΔnm − κex+κint
2 (Ymm + Ynn)

. (31)

Note that the diagonal elements of the density matrix in equation (31) are for the stationary state of the case
without input field. When either of the resonant energy levels is occupied, the amplitude of the reflection
coefficient changes from unity, and thus a dip or peak in the reflection coefficient appears.

Around a dip or peak corresponding to the transition from |φm〉 to |φn〉, Γ is approximated by Γmn

defined by

Γmn = 1 + ξmn = 1 +
κ̃(mn)

ex

iΔnm − (κ̃(mn)
ex + κ̃(mn)

int )
(32)

with

κ̃(mn)
ex = κex|Xmn|2(ρ(F)

mm[0] − ρ(F)
nn [0]),

κ̃(mn)
int = (κex + κint)(Ymm + Ynn) − κex|Xmn|2(ρ(F)

mm[0] − ρ(F)
nn [0]). (33)

On the other hand, the reflection coefficient of a linear resonator is represented as [29]

Γr = 1 +
κ(r)

ex

iΔr − (κ(r)
ex + κ(r)

int)
, (34)

where κ(r)
ex and κ(r)

int are the external and the internal decay rates; Δr = ωin − ω0; and ω0 is the angular
resonance frequency of the resonator. Thus, κ̃(mn)

ex and κ̃(mn)
int can be interpreted as the nominal external and

internal decay rates, respectively.
The internal and the external decay rates of a linear resonator can be obtained via a fitting of the

measured reflection coefficient to the analytic form of equation (34). The nominal decay rates of the
parametrons can be obtained in the same manner with equation (33), and can provide information of the
measured parametron such as |Xmn|2(ρ(F)

mm[0] − ρ(F)
nn [0]) and Ymm + Ynn. Note that κex and κint in

equation (33) can be obtained via measurements of the parametron without pump field.
The measurement of κ̃mn

ex is rather useful in the strong pump regime, where β is sufficiently larger than
χ and Δ. It is known that the stationary state is the maximally mixed state of the two highest levels in the
strong pump regime [14]. For example, in the case of Δ � 0, we have ρ(F)

00 [0] = ρ(F)
11 [0] = 1/2 and

ρ(F)
mm[0] = 0 for m � 2 for sufficiently large β as shown later. Then, equation (33) gives the amplitude of the

coupling coefficient |Xmn| between either of the two highest levels and a lower level as |Xmn| =
√

2κ̃mn
ex /κex,

where m = 0, 1 and n � 2. Therefore, the amplitude of the coupling coefficients can be directly extracted by
the measurement of κ̃mn

ex . Recently, a fast gate operation of a parametron utilizing energy levels outside of
the qubit space was proposed [24]. It is useful to experimentally extract |Xmn| for tailoring a control field in
such protocols to improve the gate fidelity.

The reflection coefficient can be calculated also by a straightforward but time consuming manner of
integrating the master equation (20). In appendix C, we compare the results of the two methods to
numerically verify the approximate method.

8
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Figure 7. ηm̃ñ = −|Xm̃ñ|2(ρ(F)
m̃m̃[0] − ρ(F)

ññ [0]) is shown as a function of β for Δ/2π = −7 MHz (a), 0 MHz (b), 7 MHz (c) and
20 MHz (d). Positive and negative ηm̃ñ correspond to a peak and a dip of |Γ| for transition, |m̃〉 → |ñ〉, respectively. The other
used parameters are the same as figure 2.

5. Numerical results

Figure 2 shows the amplitude of the reflection coefficient in equation (30) as a function of the angular
frequency of the incoming microwave ωin and the amplitude of the pump field β for various values of the
detuning Δ. Here, ρ(F)

mm[0] and ρ(F)
nn [0] in equation (31) were numerically calculated using equation (26).

The used parameter set is: χ/2π = 30 MHz, κex/2π = 0.4 MHz and κint/2π = 4 MHz, and is typical for
superconducting parametrons [22, 23]. When β 	 0, there is only a single dip of |Γ| at ωin − ωp/2 = Δ

corresponding to the transition from Fock state |0〉 to Fock state |1〉 as seen in figure 2. On the other hand,
the spectra show the interesting behaviors as β increases: the dip corresponding to the transition |0〉 → |1〉
disappears while other peaks and dips appear; the frequencies corresponding to some of the peaks and dips
increase with β, while the others decrease; a dip (peak) changes to a peak (dip) in figure 2(d). And, the
pattern of the spectrum depends on the detuning. In the following, these behaviors of |Γ| are explained.

Each dip and peak of |Γ| corresponds to a transition between eigenstates of H0 in equation (22).
Therefore, it is useful to examine the eigenvalues of H0 shown in figure 3. Each eigenstate of H0 denoted by
|m̃〉 coincides with Fock state |m〉 when β = 0. We denote the eigenenergy as ωm̃. Figure 4 shows the same
spectra as figure 2 with the curves representing energy differences, Δωñm̃ = ωñ − ωm̃, corresponding to the
transition, |m̃〉 → |ñ〉. The dips and peaks match to the curves for the energy differences. Thus, the spectra
reflect the energy level structure of H0. Therefore, the spectra can provide information on the energy level
structure of the parametron. As seen in figure 3, the order of levels, |m̃〉, depends on the detuning [28].
Thus, the pattern of the spectrum also changes depending on the detuning. For example, the order of the
distinct dip and peak around ωin = ωp/2 are opposite in figures 4(a) and (c). It reflects the difference in the
order of |0̃〉 and |1̃〉 observed in figures 3(a) and (c).

As seen from equation (31), the finite population difference (|ρ(F)
m̃m̃[0] − ρ(F)

ññ [0]| > 0) and the finite
coupling coefficient (|Xm̃ñ| > 0) are required for the corresponding dip or peak of |Γ| to be visible. This
explains the appearance and the disappearance of the dips and the peaks in figure 2. In the following, we
first look into the population of relevant levels, and then examine relevant coupling coefficients.

Figure 5 shows the population of each level, ρ(F)
m̃m̃[0], for the stationary state. The stationary state for

β = 0 is |0〉 because of the decay. Thus, ρ(F)
0̃0̃

[0] 	 1 and ρ(F)
m̃m̃[0] 	 0 for m 
= 0 for β 	 0. When

β � |Δ|,χ, the highest and the second highest levels become the even or the odd cat states5. The even and
odd cat states are represented as (|α〉+ | − α〉)/

√
2 and (|α〉 − | − α〉)/

√
2, respectively, where

α 	
√

2β/χ. Because of the decay, the stationary state becomes the maximally mixed state of |α〉 and

5 For example, the highest and the second highest levels become the even and the odd cat states, respectively, for Δ < 0.
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Figure 8. Nominal external and nominal internal decay rates in equation (33) for relevant transitions indicated in the panels.
Panels (a)–(d) are for Δ/2π = −7 MHz (a), 0 MHz (b), 7 MHz (c) and 20 MHz (d), respectively. The curves for |0̃〉 → |1̃〉 and
|1̃〉 → |0̃〉 are almost overlapping in the lower panel of (d). The other used parameters are the same as figure 2.

| − α〉 for β � |Δ|,χ [30], which is the same as the maximally mixed state of the highest and the second
highest levels. This is consistent with the obtained results in figure 5, that is, for large β,
ρ(F)

0̃0̃
[0] = ρ(F)

1̃1̃
[0] = 1/2 for Δ/2π = −7, 0, 7 MHz and ρ(F)

1̃1̃
[0] = ρ(F)

2̃2̃
[0] = 1/2 for Δ/2π = 20 MHz. Note

that |1̃〉 and |2̃〉 are the highest and the second highest levels for Δ/2π = 20 MHz, respectively. The dip
corresponding to |0̃〉 → |1̃〉 disappears for Δ/2π = −7, 0, 7 MHz as β increases, because ρ(F)

0̃0̃
[0] − ρ(F)

1̃1̃
[0]

vanishes.
Coupling coefficients are shown for relevant transitions in figure 6. It is seen that |X0̃1̃|, |X1̃0̃| for

Δ/2π = −7, 0, 7 MHz and |X1̃2̃|, |X2̃1̃| for Δ/2π = 20 MHz increase rapidly with respect to β when β is
sufficiently large (β/2π > 10 MHz). This is because that the highest and the second highest levels are
superpositions of |α〉 and | − α〉 when β is sufficiently large, and |Xm̃ñ| between these levels is
approximately α(	

√
2β/χ). The profile of |Xm̃ñ| for Δ/2π = 20 MHz is different from that for

Δ/2π = −7, 0, 7 MHz due to the difference in the order of the levels as represented in figure 3. Note that
|X1̃0̃| corresponding to |1̃〉 → |0̃〉 increases with respect to β. This transition gives rise to a peak of |Γ| for
Δ/2π = −7 and 7 MHz.

It is useful to examine ηm̃ñ = −|Xm̃ñ|2(ρ(F)
m̃m̃[0] − ρ(F)

ññ [0]) in equation (31) to explain the appearance and
disappearance of dips and peaks of |Γ|. Note that Ym̃m̃ and Yññ are always positive, and Δñm̃ is zero at the
resonance in equation (31). If ηm̃ñ is positive, a peak corresponding to the transition |m̃〉 → |ñ〉 shows up. If
negative, a dip appears. Figure 7 shows ηm̃ñ as a function of β for four sets of (m̃, ñ). The results for
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Figure 9. The Wigner function for the stationary state for the values of β indicated by the triangles in figure 3(a) and also
explicitly written above the panels. Panels (a)–(d), (e)–(h), (i)–(l) and (m)–(p) are for Δ/2π = −7 MHz, 0 MHz, 7 MHz and
20 MHz, respectively. The other used parameters are the same as figure 2.

Δ/2π = −7, 0, 7 MHz indicate: (1) the dip for the transition |0̃〉 → |1̃〉 vanishes as β increases; (2) the dip
for |1̃〉 → |2̃〉 and the peak for |1̃〉 → |0̃〉 appear as β increases, although the peak vanishes when β is further
increased; (3) transition |2̃〉 → |1̃〉 is hardly seen. This is because that the coupling coefficient, X2̃1̃, is
approximately zero as shown in figures 6(a)–(c). The results for Δ/2π = 20 MHz indicate: (1) the dip for
|1̃〉 → |2̃〉 and the peak for |2̃〉 → |1̃〉 appear for intermediate value of β; (2) the transition |0̃〉 → |1̃〉 gives
rise to a dip of |Γ| for relatively small β and a peak for β/2π 	 10 MHz, and then vanishes as β is further
increased; (3) the transition |1̃〉 → |0̃〉 gives rise to a peak for relatively small β and a dip for relatively large
β. The change of the sign of ηm̃ñ corresponding to the transitions |1̃〉 ↔ |0̃〉 comes from the crossing of the
populations of |0̃〉 and |1̃〉 observed in figure 5(d). Thus, these results explain the profile of the spectrum in
figure 2.

Figure 8 shows the nominal external and the nominal internal decay rates in equation (33). The nominal
external decay rate, κ̃(̃01̃)

ex , decreases to zero as β increases. Some of other nominal external decay rates
become finite for β 
= 0 although they are approximately zero for β 	 0. On the other hand, nominal
internal decay rate increases rapidly with respect to β. Thus, the dips and peaks tend to broaden as β
increases. Even if the original internal decay rate of the parametron without a pump field is negligible, the
nominal internal decay rate increases with the pump strength and eventually exceeds the nominal external
decay rate (see appendix D).

The Wigner function in figure 9 illustrates the stationary state for the values of β indicated by the
triangles in figure 3(a). The profile of the Wigner function depends on the detuning for relatively small
value of β although it is insensitive to the detuning for β � |Δ|,χ as seen in figures 9(d), (h), (l) and (p).
This is because the stationary state becomes the maximally mixed state of the coherent states, |α〉 and
| − α〉, with α 	

√
2β/χ for β � |Δ|,χ.

6. Summary

We have theoretically studied the reflection spectroscopy of a pumped superconducting parametron. We
have developed a method to obtain the reflection coefficient of a parametron and have derived formulae of
the reflection coefficient, the nominal external and internal decay rates. This method can also take into
account the effect of the input field beyond the limit of weak input field. It has been shown that the peak or
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dip can appear in the amplitude of the reflection coefficient when there is finite difference between the
populations of energy levels resonantly coupled by an input field, and the sign of the difference determines
whether we have a dip or peak. We have shown that the nominal internal decay rate increases with the
pump strength and eventually exceeds the nominal external decay rate even if the original internal decay
rate of the parametron without a pump field is negligible. The obtained spectrum provides information of
the superconducting parametron, such as energy level structure and amplitude of coupling coefficients
between energy levels, and also useful information for calibration of the pump field.
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Appendix A. Hamiltonian of a parametron

We derive an effective Hamiltonian for a parametron to make this paper self-contained although it can be
found in reference [22]. We consider a parametron consisting of a SQUID-array resonator with N SQUIDs
depicted in figure A1. The effective Hamiltonian of the system is given by

H = 4ECn2 − NEJ[Φ(t)] cos
φ

N
, (A.1)

where φ and n are the overall phase across the junction array and its conjugate variable, respectively. EJ is
the Josephson energy of a SQUID. We assume that all the Josephson junctions are identical. The effective
Hamiltonian (A.1) with a single degree of freedom, φ, is valid provided that EJ is much larger than the
charging energy of a single junction [31, 32]. EC is the charging energy of the resonator, including the
contributions of the junction capacitances CJ and the shunt capacitance C, and can be experimentally
extracted or calculated by finite-element capacitance simulation [22]. The Josephson energy is modulated as
EJ(t) = EJ + δEJ cosωpt by the external magnetic flux, Φ(t), threading the SQUIDs.

We take into account up to the fourth order of φ/N in equation (A.1) to obtain an approximate
Hamiltonian

H

�
= ω

(
a†a +

1

2

)
− χ

12
(a + a†)4 +

[
−NδEJ

�
+ 2β(a + a†)2 − 2χβ

3ω
(a + a†)4

]
cos ωpt, (A.2)

where ω = 1
�

√
8ECEJ/N, χ = EC/�N2 and β = ωδEJ/8EJ. Here, β is called amplitude of the pump field in

the main text. n and φ are related to the annihilation operator a as n = −in0(a − a†) and φ = φ0(a + a†)
with n2

0 =
√

EJ/32NEC and φ2
0 =

√
2NEC/EJ . Above, we considered the parameter regime, where

φ0/N = 2
√
χ/ω is sufficiently smaller than unity so that the expansion of cos(φ/N) is valid, and took into

account up to the fourth order of φ/N to see the effect of the Kerr nonlinearity. In equation (A.2), we
neglect the last term assuming that χβ � ω, and drop c-valued terms to obtain the following Hamiltonian

H

�
= ωa†a − χ

12
(a + a†)4 + 2β(a + a†)2 cos ωpt. (A.3)

Appendix B. Effect of input field

In the main text, we considered the weak input field limit. The diagonal elements of the density matrix,
ρ(F)

m̃m̃[0], were calculated assuming that they are not changed by the input field, Ω =
√
vbκexE. However, we

can take into account the effect of finite Ω by solving the Fourier transform of equation (26) to obtain the
elements of the density matrix. In the numerical simulations of this section, we assume ρ(F)

m̃m̃[kω̃in] = 0 for
k 
= 0 and ρ(F)

m̃(ñ 
=m̃)[kω̃in] = 0 for k 
= ±1, and take into account from m = 0 to 5.
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Figure A1. Circuit model of a superconducting quantum parametron consisting of N SQUIDs and shunt capacitor C. φ is the
overall phase across the junction array. Φ(t) is the external magnetic flux threading the SQUIDs. EJ and CJ are the Josephson
energy of a single SQUID and the capacitance of a single Josephson junction, respectively.

Figure B1. Amplitude of the reflection coefficient as a function of ωin and β for Δ/2π = 7 MHz with Ω/2π = 1 MHz (a),
2 MHz (b) and 3 MHz(c). The used parameter set is: χ/2π = 30 MHz, κex/2π = 0.4 MHz and κint/2π = 4 MHz.

Figure B1 shows the amplitude of the reflection coefficient in equation (25) as a function of ωin and β.
The result for Ω/2π = 1 MHz is approximately the same as the results in figure 2 for the weak input field
limit. The peaks (dips) become low (shallow) for larger Ω. This is attributed to that κ̃(m̃ñ)

int − κ̃(m̃ñ)
ex defined in

equation (33) increases as Ω increases because |ρ(F)
m̃m̃[0] − ρ(F)

ññ [0]| becomes small when Ω is large.

Appendix C. Direct numerical simulations with integration of master equation

In section 4, an approximate formula for reflection coefficient was derived. The reflection coefficient can be
calculated also by a straightforward but time consuming manner. We integrate the master equation (20) to
obtain the density matrix and calculate 〈A〉[−ωin + ωp/2]. Equation (17) is used to obtain the reflection
coefficient. We compare the results with those obtained by the method in section 4.

In the master equation, we set the initial state of the parametron to the stationary state. We integrate the
master equation for 0 � t � 440 ns with the constant input field. We used a fourth-order Runge–Kutta
integrator with the time step of less than 0.012 ps.
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Figure C1. Amplitude of the reflection coefficient as a function of ωin for κint/2π = 4 MHz (a), 2 MHz (b) and 1 MHz (c). The
used parameter set is: β/2π = 20 MHz, Δ/2π = 7 MHz, χ/2π = 30 MHz, κex/2π = 0.4 MHz and Ω/2π = 8 kHz. The solid
curves are for equation (30), and the circles are for the results obtained by integrating the master equation.

Figure D1. Amplitude of the reflection coefficient in the weak input field limit as a function of ωin and β for Δ/2π = −7 MHz
(a), 0 MHz (b), 7 MHz (c) and 20 MHz (d). The used parameter set is: χ/2π = 30 MHz, κex/2π = 0.4 MHz and
κint/2π = 0 MHz.

Figure C1 shows the amplitude of the reflection coefficient for the both methods. The dip at
(ωin − ωp)/2π 	 −53 MHz (−94 MHz) corresponds to the transition |1̃〉 → |2̃〉 (|0̃〉 → |3̃〉). It is seen that
the results for the method in section 4 approximates well especially near the resonance (dips). There is a
discrepancy between the two results between the two dips (see figure C1(a)), which we attribute to the fact
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Figure D2. Nominal external and nominal internal decay rates in equation (33) for κint/2π = 0 MHz. Panels (a)–(d) are for
Δ/2π = −7 MHz (a), 0 MHz (b), 7 MHz (c) and 20 MHz (d), respectively. The other used parameters are the same as figure 2.

that we neglect the interference between different transitions in the method in section 4. This discrepancy
becomes small when we decreases κint as the dips are well separated as seen in figures C1(b) and (c).

Appendix D. Results for κint = 0

The nominal internal decay rate increases with respect to the pump amplitude even if the original internal
decay rate of the parametron without a pump field is negligible as shown in this section. To observe this
fact, we consider a fictitious case where κint is zero.

Figure D1 shows the amplitude of the reflection coefficient calculated for the weak input field limit
as a function of ωin and β for κint = 0. The dips and peaks are sharper than those in figure 2
for κint/2π = 4 MHz.

Figure D2 shows the nominal external and the nominal internal decay rates in equation (33). The
nominal external decay rate is approximately the same as that in figure 8 for κint/2π = 4 MHz. We attribute
this to the fact that the diagonal elements of the density matrix are approximately the same in both cases.
On the other hand, nominal internal decay rate is much smaller than that in figure 8 due to vanishing κint.
However, the nominal internal decay rate increases rapidly with respect to β because Ym̃m̃ and Yññ increase
with β. Thus, the broadening of the dips and peaks occur also in the case of zero κint.
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