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Abstract
We develop a theory of the magnetoplasmon resonance (MPR) in two-dimensional
superconductors in the fluctuating regime, where the temperature is slightly above the critical
temperature of the superconducting transition. In this regime, unpaired electrons and fluctuating
Cooper pairs coexist in the system and interact with each other via long-range Coulomb forces,
forming a Bose–Fermi mixture. The sample is considered to be under the influence of an external
time-dependent electromagnetic field with a frequency in sub-terahertz range and a permanent
magnetic field. It is shown that the MPR of the system is strongly modified in the presence of
superconducting fluctuations in the vicinity of the superconducting transition. In particular, the
fluctuating Cooper pairs dramatically change the broadening of the MPR, which is reflected in the
optical response of the system.

1. Introduction

The pioneering work of Bardeen, Cooper and Schrieffer devoted to the theoretical explanation of the
superconductivity phenomena [1] led to a sequential study of collective modes in superconductors [2–10].
It turned out that the plasmon modes are not at all affected by the transition of the material to the
superconducting (SC) state since the nearly dispersionless plasmon frequency in any three-dimensional
material is much larger than the SC gap. However, if the superconductor is in the peculiar fluctuating regime
[11–15] at temperatures above than but close to the critical temperature of SC transition Tc, there start to
emerge fluctuating Cooper pairs, but the value of the SC gap still remains zero. It seems essential to
conclude, that in this situation there is no considerable influence of any SC properties on the plasma
oscillations of normal electrons in the sample. Indeed, the correction to the Drude conductivity caused by
the SC fluctuations, known as paraconductivity, is as a rule small [16] albeit observable [17]. However,
owing to the presence of SC fluctuations, a lot of intriguing physics occurs in superconductors above Tc

[18–20], and this is of great interest specially in low-dimensional [21, 22] and high Tc [23, 24]
superconductors.

Experimentally, the study of plasmons is usually based on the measurement of the electromagnetic (EM)
power absorption by the sample, which is proportional to the electric current in the system. It is true that
the transport of normal electrons gives the dominant contribution to the EM power absorption, and the
impact of the paraconductivity terms is small. However, the fluctuations might essentially influence both
the position and width of the plasmon resonance of normal electrons [21]. It stems from strong interaction
between normal electrons and the fluctuating Cooper pairs in the sample via the long-range Coulomb
forces, which are activated while exciting the plasmons with an EM field.

The position of the plasmon resonance is also sensitive to the presence of an external magnetic field. It
gives an opportunity to control the magnetoplasmon (MP) resonance (MPR) in the experiment. In this
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Figure 1. System schematic. A two-dimensional electron gas covered by a metallic grating. The system is exposed to an EM field
of light E polarized across the grating and a uniform magnetic field B.

paper, we develop a theory of MPR in two-dimensional (2D) superconductors in the fluctuating regime (at
temperatures 0 < T − Tc � Tc). The system we study represents a single layer of a 2D material at the
temperature slightly above the Tc, exposed to an electromagnetic field and an external magnetic field. Thus,
the system represents a mixture of a Fermi gas of normal electrons and a Bose gas of fluctuating Cooper
pairs interacting via the Coulomb forces.

Other examples of hybrid Bose–Fermi systems comprise electron gas—superconductor [25–27], exciton
gas—2D electron gas (2DEG) [28–31], and exciton–polaritons in a microcavity—2DEG systems [32].
From that perspective, a superconductor in the fluctuating regime can be looked at as a hybrid Bose–Fermi
system, where two gases described by different quantum statistics coexist in one (same) 2D layer, forming a
Bose–Fermi mixture.

The MPR has already been studied in some hybrid systems, in particular, a system consisting of a
degenerate electron gas interacting with a dipolar exciton gas in the Bose–Einstein condensate (BEC) state
has been considered [33]. There, the theoretical description of excitonic BEC in the framework of the
Bogoliubov model demonstrates the existence of sound-like collective modes of the BEC. The phase velocity
of these modes dramatically depends on the condensate density and can strongly interact with plasmon
modes of electronic subsystem. This interaction modifies the MPR of the whole system resulting in the
replacement of the standard Lorenz shape of MPR by an asymmetric profile which reminds of Fano
resonance [34]. Qualitatively, this behavior can be explained by a simple harmonic oscillator model. Indeed,
the two oscillatory modes (plasmon oscillation of the electron density and sound-like modes of excitonic
BEC) can be looked at as harmonic oscillators coupled with each other by a spring (the Coulomb force) and
exposed to an external driving (EM field). One thus have all the necessary ingredients to observe the MP
Fano resonance phenomenon [34].

Returning to fluctuating superconductors (where the bosonic subsystem is fluctuating Cooper pairs but
not the BEC particles as in the example before), here the situation is different. The Bose gas of fluctuating
Cooper pairs does not possess its own collective modes. Thus, when an external EM field excites the
plasmon oscillations of normal electron gas subsystem, the Bose subsystem (SC fluctuations) does not
oscillate since the plasmon phase velocity exceeds both the Fermi velocity and the phase velocity of
fluctuating Cooper pairs. Therefore, the gas of SC fluctuations plays the role of viscous media for plasmon
oscillations of normal electrons. It results in the appearance of frictional force acting on the plasmon
harmonic oscillator. As a result, in the vicinity of the critical temperature Tc, the shape of the plasmon
resonance experiences strong modification.

2. Theory

We consider a system that resembles a standard setup for the experimental investigation of the MPR
phenomenon (figure 1). It consists of a 2D conducting layer covered with a metallic grating (some other
possible geometries to observe the effects in question will be discussed herein below). The grating period a
determines the wave vector k = 2π/a of the effective EM field. Furthermore, the system is additionally
exposed to a permanent magnetic field. Magnetoplasmons have been widely studied in 2D electron systems
using different methods [35–38], paving the way for variety of applications [39, 40]. To study the MPs in
the presence of SC fluctuations, we will use the approach based on the analysis of the dielectric function.
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For the 2D layer placed on top of the substrate at z > 0, the Poisson equation for the scalar potential
φ(z) due to the internal induced electric field reads(

∂

∂z
κ(z)

∂

∂z
− k2

)
φ(z) = −4π(�e + �AL)δ(z), (1)

where κ is the dielectric constant, �e and �AL are the charge densities of normal electrons and fluctuating
Cooper pairs in reciprocal space, respectively. We note that while solving the Poisson equation, we neglect
the retardation effects. Using the solution of equation (1) and the continuity equation, we arrive at the
dielectric function given by

ε(k,ω) = 1 + i
4πk

(κ+ 1)ω

[
σD

xx(k,ω) + σAL
xx (k,ω)

]
, (2)

where σD
xx(k,ω) is the longitudinal part of the Drude magnetoconductivity tensor and σAL

xx (k,ω) is the
longitudinal part of paraconductivity or the Aslamazov–Larkin (AL) conductivity in a uniform magnetic
field B. The function (2) accounts for both the spatial and temporal dispersions of the system. In general,
the standard procedure to derive the dielectric function accounts for the temporal and spatial variation of
normal electron (and Cooper pairs) density, which are the result of the response to external excitations [41,
42]. The optical spectra can be found from the real part of the effective longitudinal conductivity of the
system, which in turn can be found from the continuity equation. However, in this work we particularly
focus on the absorption spectrum, which can be inferred from the imaginary part of the plasmon
dispersion. Thus, determination and analysis of this quantity will be the main aim of this work.

The equation which defines the dispersion of collective modes in the system reads [43–45]

ε(k,ω) = 0. (3)

Since phase velocity of the plasmon mode is much larger than the Fermi velocity of electrons and it also
exceeds the center-of-mass velocity of Cooper pairs, it allows us to neglect the spatial dispersions of both
the conductivities, thus assuming k = 0 in their expressions. Then, the Drude conductivity of normal
electrons takes its conventional form,

σD
xx(ω) = σD

0
i(i + ωτ)

(i + ωτ)2 − (ωcτ)2
, (4)

where σD
0 = e2nτ/m is the static Drude conductivity of normal electrons with e the electron charge, n the

electron density, τ the scattering time, and m the effective electron mass; ωc = eB/m is the cyclotron
frequency. The experimental observation of the plasmon resonance holds under the condition ωτ � 1, thus
preventing the impurity-induced plasmon damping. Under this condition, the superconductor is in the
clean limit, where the nonlocality effects play an essential role [46]. The general expression for
paracoductivity at finite frequency, magnetic field, and non-locality corrections reads [46]

σAL
xx (ω,ωc) = σAL

0 (ω,ωc)

[
1 − iωτ + 2ω2

c τ
2

(1 − iωτ)2 + ω2
c τ

2

]2

, (5)

where σAL
0 (ω,ωc) is the paraconductivity in ‘local approximation’, and the remaining part (the terms in

square brackets) accounts for the non-local corrections.
To find the MP dispersion in the presence of SC fluctuations, we should consider the dispersion

equation (3) together with the conductivities, given by equations (4) and (5) (the renormalization of the
MP dispersion in general case will be analyzed numerically below). Let us estimate here analytically the MP
damping due to SC fluctuations in the limit of weak electron-impurity scattering, ωpτ � 1. After some
algebra, the dispersion equation (4) takes the form

ω2 = ω2
p +

1 − 2iωτ

τ 2
+ i

ω2
k

ωτ

[
1 + ηc(ω)

(1 − iωτ + 2ω2
c τ

2)2

(1 − iωτ)2 + ω2
c τ

2

]
, (6)

where

ηc(ω) =
σAL

0 (ω,ωc)

σD
0

(7)

determines the strength of interaction between the normal electrons and SC fluctuations.
In the absence of SC fluctuations, ηc(ω) = 0, and equation (6) can be solved by successive

approximations in the limit ωτ � 1, with the result ω = ωp − iΓ, where

ωp =
√
ω2

k + ω2
c , Γ = 1/2τ. (8)

3



New J. Phys. 23 (2021) 093009 K Sonowal et al

Figure 2. MPR dispersions without the account of the SC fluctuations: normalized frequency Ω = ω/ωk as a function of the
normalized cyclotron frequency Ωc = ωc/ωk . Gray dashed and red dotted lines show the asymptotic behavior ωp =

√
ω2

k + ω2
c

and ωp = ωc, respectively.

Here we introduced a bare 2D plasmon frequency

ωk =

√
4πe2nk

(κ+ 1)m
, (9)

corresponding to the setup in figure 1. This holds if ωpτ � 1, which is a typical condition for experimental
observation of the MPR. Expression (8) shows that at vanishing magnetic fields, the MP dispersion
coincides with bare 2D plasmon frequency ωk, whereas with increasing magnetic field, ωp approaches the
cyclotron frequency ωc, as it is shown in figure 2.

In the presence of SC fluctuations, the dispersion is extremely sensitive to the frequency dependence of
the paraconductivity σAL

0 (ω,ωc). At large frequencies, ω � Tc, it rapidly decreases and the SC fluctuations
produce no essential influence on the properties of plasmons. This reminds the three-dimensional case,
where the SC transition does not affect the plasmon oscillations of electrons. An essential influence of SC
fluctuations occurs at low frequencies when ω � Tc. In this regime, the theoretical treatment can be easily
performed if the paraconductivity is taken in the static limit, σAL

0 (ω = 0,ωc),

σAL
0 (ωc) = σAL

s F
(

μ

ωc

)
,F(x) = 8x2

[
ψ

(
1

2
+ x

)
− ψ(x) − 1

2x

]
, (10)

where σAL
s = e2/(16ε) is the static AL conductivity of fluctuating Cooper pairs. In what follows, we will

(naturally) assume the smallness of AL correction as compared with the static Drude conductivity,
σAL

s /σD
0 � 1. In equation (10), μ= αTcε, where ε= (T − Tc)/Tc is the reduced temperature, and the

Ginzbug–Landau parameter α is fixed by the relation 4mαTcξ
2 = 1. The coherence length ξ in 2D samples

reads

ξ2 =
v2

Fτ
2

2

[
ψ

(
1

2

)
− ψ

(
1

2
+

�

4πTτ

)
+

�ψ′ ( 1
2

)
4πTτ

]
, (11)

where ψ(x) is the digamma function and vF is the Fermi velocity.
Expression (6) is still exact. In the limit ωτ � 1, it can also be solved by successive approximations. In

the lowest order, we substitute ω = ωp in the right-hand side of this expression, and from equation (6) we
again find ω = ωp − iΓ, where the MP damping reads

Γ(ωk,ωc) =
1

τ
− ω2

k

2ω2
pτ

[
1 − ηc

4ω4
c τ

2 − ω2
p

ω2
k

]
. (12)

This analytical expression accounts for both the electron-impurity scattering and the influence of SC
fluctuations to the MP damping (in the limit ωpτ � 1). In the absence of magnetic field (ωc = 0) we find

Γ =
1 − σAL

s /σD
0

2τ
. (13)

Comparing it with the dispersion of the 2D plasmon (ω = ωk − i/2τ), we conclude that the presence of SC
fluctuations results in the narrowing of the resonance since σAL

s /σD
0 > 0, and thus 1 − σAL

s /σD
0 < 1 in

4
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equation (13). In the case of large magnetic fields ωc � ωk, we find

Γ =
1 + 2(ωcτ)2ηc

τ
, (14)

which corresponds to the broadening of the resonance in contrast with the zero-field limit. This is an
interesting effect: SC fluctuations can result in both narrowing and broadening of the MPR, depending on
the magnitude of the magnetic field.

It should be noted, that the function F in equation (10) is limited, 0 < F
(
μ/ωc

)
< 1. Thus, the value

of ηc is determined mainly by the prefactor σAL
s /σD

0 . Despite the fact that the AL theory is applicable at
σAL

s /σD
0 � 1, this smallness can be compensated by the ‘plasmonic factor’ ωcτ � 1, which linearly grows

with B. Thus, strong magnetic fields may amplify the SC fluctuations contribution into the MP damping.
Note also, that the absorption spectrum has a standard Lorentzian form with the width given by
equation (12).

3. Discussion

We have demonstrated that the SC fluctuations affect the plasmon resonance and produce an additional
plasmon damping mechanism at low plasmon frequencies when the condition �ω < Tc holds. Let us now
discuss the possibility of experimental observation of this effect. The critical (maximal) effective frequency
corresponding to Tc = 10 K is ω ∼ 1.4 × 1012 s−1. The plasmon frequencies typical for the modern
semiconductor structures lie in the range 1010 –1011 s−1, which falls in the range above (satisfies the
condition on the critical frequency). The problem is that such 2D plasmon modes correspond to low
electron densities, ∼1011 cm−2, at which the SC transition does not occur (since higher electron densities
are usually required).

Indeed, the SC transition occurs at the electron densities 5 × 1013 –1014 cm−2, as it has recently been
shown, for example, in MoS2 monolayer structures [47, 48]. In the case of an ungated plasmon geometry,
shown in figure 1, such electron densities correspond to plasmon frequencies exceeding the critical value.

One possible way to resolve this contradiction is the using of gated plasmons, when the metallic gates
screen the Coulomb interaction between electrons lowering the plasmon frequency. A gated plasmon
dispersion can be found from the ungated one (9), with the substitution (κ+ 1)/2 → [κ1 + κ2 coth(kD)]/2
[49], such that

ω̃k =

√
4πe2nk

m[κ1 + κ2 coth(kD)]
, (15)

where D is the thickness of the dielectric layer, κ1 and κ2 are the dielectric constants for the substrate and
the dielectric layer between the 2D electron gas and the metallic gate, correspondingly. The screening is
effective in the case of thin dielectric layers, when kD � 1, and thus

ω̃k ≈

√
4πe2nk(kD)

mκ2
. (16)

For MoS2, taking n = 1014 cm−2, m ≈ 0.5m0, kD = 10−3, k ≈ 103 cm−1 and using a dielectric layer with a
relatively large dielectric constant, κ2 = 14, we can estimate ω̃k ≈ 2.13 × 1011 s−1 and �ω̃k/Tc ≈ 0.15.

Another possibility to observe the phenomena in question is to use the proximity plasmons [50–52],
which exist in 2D systems covered by the gates having more sophisticated (or complex) geometries, for
instance, a strip or a disc shape. The dispersion of a proximity plasmon also behaves as ωp ∼

√
n times the

geometrical factor dependent on the width of the strip or the disc radius and the distance between the 2D
electron gas and the gate. Then, it also becomes possible to satisfy the inequality ω < Tc by the sample
design.

Finally, the third possibility is in using specific plasmon modes with the relativistic nature [53, 54],
which may exist in the regime ωτ � 1, contrast to the standard regime ωτ � 1 considered here. The
theory worked out in this manuscript is not directly applicable in this case since we disregard the relativistic
retardation effects. However, the basic principles should remain the same.

To study the MP dispersion numerically, we took the electron densities n1 = 5 × 1013 cm−2 and
n2 = 1014 cm−2, assuming the plasmon frequency is fixed by the particular geometry of the gate, and thus
we took ωk = 5 × 1011 s−1.

Figure 3 shows the imaginary part of MP dispersion at different values of normal electron densities and
reduced temperature, calculated numerically using equation (3). From the numerical analysis, we conclude
that the effect of the presence of SC fluctuations can be neglected in the real part of the MP dispersion.
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Figure 3. MPR damping ImΩ = Im(ω/ωk) as a function of the normalized cyclotron frequency Ωc = ωc/ωk. (a) The
dependence of the MPR damping on the electron density: n = 5 × 1013 cm−2 (green) and 1014 cm−2 (red) at T = 10.1 K. (b)
The dependence of the MPR damping on temperature: T = 10.02 K (red) and 10.9 K (green) at n = 5 × 1013 cm−2. The dashed
lines in both the panels represent the dampings of the plasmons without SC fluctuations for comparison. The scattering time is
τ = 5 × 10−10 s.

Thus, we will only address the changes in the imaginary part of the MP dispersion. From figure 3 [both
panels (a) and (b)], we note that the dependence of the damping on electron densities as well as
temperature is strikingly different for low (inset) and high (main plot) magnetic fields. This indicates a
crossover at some critical magnetic field.

From figure 3(a) we conclude that at low magnetic fields, the damping decreases in comparison with the
bare MP damping as the normal electron density is lowered whereas at high magnetic fields it increases. At
low magnetic fields, the deviation from bare MP damping is lower for electron densities near the
superconducting transition.

In figure 3(b) we see that at low magnetic fields the magnitude of damping decreases as the temperature
approaches the critical temperature. The deviation from the bare MP damping is more pronounced at
temperatures very close to the critical temperature indicating the strong influence of SC fluctuations. This
behavior is reversed at higher magnetic fields.

Overall, the behavior of the imaginary part of the renormalised MP dispersion is consistent with the
theoretical predictions given by equation (12). At low magnetic fields, the term ηc has a significant value
due to the contribution of the function F(μ/ωc), and it dominates the nature of damping in this regime. At
higher magnetic fields, the term ηc is negligible since F(μ/ωc) → 0 and hence, the damping in this regime
shows a power–law behavior (∼ω2

c ηc).

4. Conclusions

In conclusion, we studied the dielectric function of a two-dimensional material in the regime of
superconducting fluctuations (in the vicinity of the transition temperature to the superconducting state
from above), exposed to an electromagnetic field of sub-terahertz frequency and a constant magnetic field.
We analyzed the dispersion of collective modes in the system, taking into account the interaction between
the normal electrons and fluctuating Cooper pairs influenced by the magnetic field. It was shown that the
width of the magnetoplasmon resonance experiences broadening and narrowing depending on the
magnitude of the external magnetic field.

This paper sheds light on magnetoplasmon resonance phenomenon in two-dimensional
superconductors, accounting for fluctuations. The developed theoretical approach can be especially useful
in studying superconducting samples of reduced dimensionality, since the paraconductivity correction
becomes more significant in low-dimensional structures [16]; it can also be employed to study multi-layer
structures based on transition metal dichalcogenides or cuprates. For that, one has to modify equation (2)
for the dielectric function and account for the paraconductivity term in the dielectric function for layered
materials [55–57].
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