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Abstract
Hawking’s black hole evaporation process suggests that we may need to choose between quantum
unitarity and other basic physical principles such as no-signaling, entanglement monogamy, and
the equivalence principle. We here show that the Hawking’s quantum model for the black hole
evaporation is consistent with the above fundamental principles. Our analysis does not involve
exotic new physics, but rather uses standard quantum theory, general relativity, and the
Einstein–Hilbert action including matter. We explicitly show that the whole state consisting of
matter and radiation (in a joint superposition of different energy states) is pure at any stage of the
evaporation process, including the particular case of 0 mass. Moreover, after full evaporation the
state for radiation at infinity is pure and in one-to-one correspondence with the initial state
forming the black hole. Thus there is no information loss upon full evaporation according to the
quantum information theory. The original entanglement of the black hole matter (if any) gets
transferred to the outgoing particles via a process similar to entanglement swapping, without
violation of causality (as proved explicitly). On the other hand, if the initial state is a tensor
product state, the entanglement of Hawking particles, present in the intermediate phase, is broken
when the black hole evaporates completely. Therefore, the final state (entangled or tensor product
depending on the nature of initial state) after the full black hole evaporation is pure without loss of
information.

1. Introduction

Hawking’s model for black hole evaporation implies a many-to-one mapping of initial pure states to a more
random mixed state [1, 2]. This has been dubbed a ‘loss of predictability’. In Hawking’s model, pairs of
particles are created from the vacuum near the event horizon: one of these (having negative energy7) falls
into the black hole and the other flies away to future infinity (I+). The particle of negative energy falling
towards the black hole will eventually meet the black hole’s matter and annihilate, causing the black hole
mass to decrease [1–5]. As time passes, increasingly more particles are annihilated and the black hole
eventually evaporates. The particle pairs created at the event horizon are, before the annihilation, in the
following state [5],

7 Inside a Schwarzschild black hole, the time coordinate and the spatial radial coordinate interchange their roles. Therefore, the energy
and momentum change their roles, too, allowing for a well-defined negative energy (actually, spatial momentum) inside the black hole.
This fact is at the heart of the Hawking process for black holes’ evaporation.
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|Ψ〉 =
⊗
ω>0

cω
∑

Nω=0

e−
Nπω
κ |Nω〉out ⊗ |Nω〉int, (1)

where cω ≡
√

1 − e−2πω/κ is a normalization factor, κ is the surface gravity at the event horizon (inversely
proportional to the black-hole mass), Nω is the number of particle pairs of energy ω, while ‘int’ and ‘out’
label the Hilbert spaces for the particles falling inside the black hole and those escaping to the future
infinity, respectively [5]. The state |Ψ〉 of equation (1) is pure with the ‘int’ modes inside the black hole
being correlated with the ‘out’ modes. After the annihilation, the ‘int’ modes and the black hole are in a
vacuum state, and the ‘out’ modes are the non-trivial remnants. Thus according to this model of
evaporation the black hole’s initial state is finally mapped to Trint(|Ψ〉 〈Ψ|) [6]. As this state is mixed and
even independent of the black hole’s initial state the evolution is non-unitary. Whilst non-unitary
evolutions are allowed for subsystems, closed total systems are expected to evolve unitarily [7]. The black
hole and its radiation are taken to be a closed total system. This contradiction is called the black-hole
information paradox.

Multiple interesting approaches have been proposed in connection with resolving the paradox.
Hawking’s semi-classical approximations were questioned [8]. Quantum gravitational corrections to general
relativity were proposed that would leave a ‘remnant’ upon evaporation [9–13]. Modifying quantum theory
through nonlinear effects, non-violent nonlocal effects, and generalized probabilistic theories was
considered [14–18]. Of particular relevance here is that Page noted the possibility of quantum correlations
between the early emitted radiation and the late radiation such that the total radiation state could be pure,
but subsystems of the radiation mixed [19, 20]. There, Don Page derived his famous curve of the
entanglement entropy in his particular model, it starts from zero (pure state) then it starts to maximally
increase, until it reaches the Page time and starts to maximally decrease again until it reaches zero. However,
that scenario was argued to incompatible with the monogamy of entanglement [21, 22]. The ‘out’ modes
and ‘int’ modes would be strongly entangled yet the early radiated particles would also be strongly
entangled with the late radiated particles. New physical principles and phenomena like ‘complementarity’
and entanglement-breaking (and possibly equivalence-principle violating) ‘firewalls’ have also been
considered [23–25]. Models with global unitary dynamics disentangling the radiation from the black hole,
which may come with the -price of non-causal signalling or a firewall, have also been proposed [26–28].

Here we propose an alternative approach. Our main result is a derivation, showing that upon
evaporation, the entanglement and the information is transferred to the outside modes. We assume
essentially Hawking’s model. The annihilation process inside the black hole induces a process similar to
entanglement swapping which we call ‘conditional entanglement transfer’. After entanglement swapping,
particles that never interacted become entangled conditional on a measurement outcome elsewhere.
Entanglement swapping has been studied for discrete [29–37] as well as continuous-variable systems
[38–44]. We show here that, similarly, there is entanglement transfer conditional on the annihilation of the
black hole matter with in-falling Hawking particles. Conditional on the (full) annihilation of the black hole,
the outside radiation is indeed entangled and in a pure state. There is no information loss and the final
radiation state is one-to-one correspondence with the initial black hole state. No basic principles are
violated because we use a standard black hole model and standard quantum theory, and in particular there
is no signalling for the same reason that entanglement swapping is not signalling. Another attractive feature
of the model is that the conditional transfer of entanglement appears naturally when modelling the
annihilation explicitly as opposed to being postulated.

We proceed as follows. We carefully describe the evaporation process. Assuming the interaction between
the ‘int-particles’ and the black hole matter, we show how the entanglement of the black hole matter gets
transferred to the ‘out’ modes upon annihilation. Afterwards, we show that there is no information loss
because the initial state of the black hole matter is in a one-to-one correspondence with the state of the
radiation after full evaporation.

However, the problem of the interaction of int-particles with the black hole matter has been overlooked
in most of the previous works despite being crucial in the complete evaporation of the black hole itself.
Indeed, without a careful analysis of the interaction process we cannot believe nether the full evaporation of
the black hole nor to the common information loss statement. Therefore, we here present an explicit model
of singularity free black hole (in Einstein’s conformal gravity) where the above interactions are fully under
control. Indeed, in conformal gravity the black hole spacetime is geodesically complete and nothing can
reach r = 0 in a finite amount of time (or finite value of the affine parameter for mass-less particles).
Hence, all the interactions take place in the fall towards the centre of the black hole. Unitarity is secured by
the standard model S-matrix, which is unitary at any perturbative order.

In the supplementary material (https://stacks.iop.org/NJP/23/113011/mmedia), we briefly review
entanglement swapping and why it does not allow signalling.
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2. Conditional entanglement transfer in black holes

In this section we look carefully at the evaporation process in all its phases until the complete disappearance
of the black hole.

The Hawking radiation state (1) describes all the radiated particles, but for a better exposure and
analysis of the problem we can focus on one pair being created near the event horizon. Therefore, the state
(1) simplifies to8:

|ψ〉 = N
∑
ω

e−
πω
κ |ω〉out ⊗ |−ω〉int, (2)

up to a normalization factor. We now carefully look at the dynamics inside the black hole. We consider a
black hole of mass M as a result of the gravitational collapse of a large number of entangled particles (we
will also consider unentangled particles later). We take this state to be pure in order to address the black
hole information paradox state9 (we will also consider the case of particles that are not entangled). Initially,
in this paragraph, for the sake of simplicity we consider only one entangled pair inside the BH described at
a time, and later a more general state will be treated. That means we focus on the following matter state
inside the black hole:

|φ〉 =
∑
ω′

f (ω′)|ω′〉A ⊗ |ω′〉B. (3)

Therefore, the initial state is given by the tensor product of (2) and (3), namely10

|i〉 = |ψ〉 ⊗ |φ〉 = N
∑
ω′

∑
ω

f (ω′)e−
πω
κ |ω〉out|−ω〉int|ω′〉A|ω′〉B. (4)

We now assume that there is indeed an annihilation inside the black hole—see sections 5 and 6 for a
justification. We assume this is mediated by a standard model (unitary) scattering S-matrix, resulting in

|ω′ − ω〉int
A ≡ S

(
|−ω〉int ⊗ |ω′〉A

)
, (5)

=
∑

j

cj|ω′ − ω, j〉int
A , (6)

where |ω′ − ω〉int
A is some state with energy ω′ − ω. Our analysis will not depend on the details of that state.

The index j represents the number of (scalar field) particles resulting from the scattering. The amplitudes cj

are determined by the Feynman diagram of each process. Therefore, after the interaction has occurred, the
state is:

|f 〉 = S|i〉 = N
∑
ω′,ω

f (ω′)e−
πω
κ |ω〉out|ω′ − ω〉int

A |ω′〉B. (7)

Now |f 〉 is our new state and the mass of the black hole is reduced to M − ω. Note that there is a sum over
the ω’s, so the black hole is in a superposition of energy eigenstates. In other words, the above state is not an
eigenstate of the energy or any other observable, and we are not considering any probability transition from
|i〉 to |f 〉. The latter state is simply the most general superposition of states after the interaction had taken
place11. In other words we are not making any measurement, but we are just assuming that the interaction
happens. There is only another option, namely the interaction does not take place and the state stays (4).
Moreover, for the sake of generality, the state |ω′ − ω〉int

A in (7) does not mean it is necessarily one particle,
the incident particles can scatter to make any allowed number of outgoing particles, even though in figure 2
we draw the case of a single particle state. Let us now consider a second Hawking pair created near the event
horizon, namely |ψ2〉. Using again (2) for |ψ2〉 and assuming |f 〉 as the initial state, the whole system is
described by the tensor product |i′〉 = |f 〉 ⊗ |ψ2〉 (see figures 2(a) and (b)), namely

|i′〉 = N 2
∑

ω′′,ω′,ω

f (ω′)e
−π

(
ω
κ+

ω′′
κ′′

)
|ω〉out|ω′ − ω〉int

A |ω′〉B|ω′′〉out|−ω′′〉int
. (8)

8 It is straightforward to see that the state (1) follows from this state and vice versa.
9 The connection between the entropy of the matter forming the black hole and the Bekenstein–Hawking entropy of the black hole is
subtle. The Bekenstein–Hawking entropy does not fully depend on the entropy of the matter forming the black hole but only on the
mass of the black hole [45].
10 In general the black hole’s state consists of many particles and any number of Hawking pairs, but here for the sake of simplicity we
only consider one Hawking pair and two entangled matter particles. We will later consider a significantly more general state.
11 The interaction turns out to be unitary according to the standard model of particle physics, namely the sum over all final states gives
the outcome ‘1’. However, we here just pick out one of these states, but all the arguments in these paper apply to any state consistent
with the standard model of particle physics. Moreover, for the sake of simplicity we are here considering only massless scalar particles.
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Figure 1. Annihilation—there are two entangled pairs, one internal to the black hole and another created at the horizon, a
Hawking pair (figure 1(a)). The negative energy particle falls into the black hole (figure 1(b)). It interacts with the particle A
(figure 1(c)).

Figure 2. Entanglement transferred outside—following from figures 1(a) and (c) second pair is created near the event horizon
(figure 2(a)). In figure 2(b), the particle with negative energy −ω′′ crosses the horizon and scatters with particle B with energy ω′

in figure 2(c). If we have full annihilation inside the black hole, namely ω′′ = ω′ = ω, then we end up with the situation shown
in figure 2(d) when the ‘out’ particles are entangled and the black hole mass is M − 2ω.

Now say the new created Hawking particle interacts with the particle B, we will get (see figure 2(c))

|f ′〉 = N 2
∑

ω′′,ω′,ω

f (ω′)e
−π

(
ω
κ+

ω′′
κ′′

)
|ω〉out|ω′′〉out|ω′ − ω〉int

A |ω′ − ω′′〉int
B , (9)

where we have introduced the notation |ω〉int |0〉A,B ≡ |ω〉int
A,B (see also the discussion after formula (7)). One

of the possible states is drawn in figure 2(c) and it consists of two particles inside the black hole partially
entangled between each other and with the two Hawking particles outside. Finally, assuming full
annihilation of the two particles inside (or in this toy model: full evaporation of the black hole), it is easy to
see that one gets

|fEvap〉 = N 2
∑
ω

f (ω)e
−πω

(
1
κ+

1
κ′′(ω)

)
|ω〉out|ω〉out|0〉int

A |0〉int
B , (10)

which is clearly an entangled pair outside the black hole (see figure 2(d)). The pure state (3) has evolved in
a similar pure state (10). Notice that we are not performing any measurement: the state (10) is only one of
the possible final states all of which are pure.

If we now trace out the ‘int’ system the state (10) stays the same. In figure 3, the same scenario is
represented in the Penrose diagram for the full black hole formation and evaporation process.

Notice that nothing changes if the second Hawking particle interacts with the particle A (instead of B).
The whole process could eventually take longer but will be qualitatively the same. Moreover, it is possible
that the incident Hawking particle scatters to produce more than one particle inside the black hole. In this
case a multipartite entangled state is created (similar to the one we will study in section 3.5).

3. Interim summary and generalisations

We now summarise the arguments so-far before giving generalisations.

3.1. Interim summary
The black hole evaporation process is caused by a negative energy flux across the event horizon that
balances the positive energy flux at infinity. Outside by near the horizon are produced virtual pairs from the

4
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Figure 3. The Penrose diagram for the formation and evaporation of a Schwarzschild black hole—this figure includes the
transfer of entanglement from the particles inside to the particles outside the event horizon. Note first that vs is the time at which
the collapsing matter reaches the singularity, and vf is the time of full evaporation, in the ingoing Eddington–Finkelstein
coordinates. A Hawking pair is created on the Cauchy surface Σa and evolves to the surface Σc where we see two entangled pairs:
the ‘int’ and ‘out’ Hawking particles on the right and two entangled black hole matter particles. In Σd one of the matter particles
and the ‘int’ particle interact and generate a new particle making a system of three entangled particles. On Σe the remaining
matter particle (of the latter tripartite entangled system) comes very close to a new Hawking particle created on Σb and in Σf

they interact and we have an entangled system of four particles: two inside and two outside the black hole. Finally, assuming full
annihilation inside the black hole we end up with two ‘out’ entangled particles on Σg. This diagram gives an idea to the reader
about how the conditional entanglement transfer in black holes might work. However, there is only a little probability that
infalling particles interact directly with the black hole matter before reaching the singularity (if the black hole is singular.).

vacuum, one of negative energy and one with positive energy. The negative energy particle is in a region
which is classically forbidden but it can tunnel through the event horizon to the region inside the black hole
where the Killing vector, which represents the time translation invariance, is now spacelike. In this region
the particle exists as a real particle with a timelike momentum vector even though its energy relative to an
observer at infinity is negative. The other particle of the pair, having a positive energy, can escape to infinity
where it will constitute part of the thermal radiation.

A quite general pure state that captures the above interpretation consists on N particles (the black hole’s
matter) and n Hawking pairs,

|ψBH〉 ⊗ |φH〉 =
∑
ω

∑
ω1

∑
ω2

. . .
∑
ωn

f (ω)|ω〉A1
|ω〉A2

. . . |ω〉AN
⊗

⊗ e−
πω1
κ |ω1〉out|−ω1〉int ⊗ e−

πω2
κ2 |ω2〉out|−ω2〉int ⊗ · · · ⊗ e−

πωn
κn |ωn〉out|−ωn〉int. (11)

After a long but finite amount of time the total energy of the black hole for an observer at infinity will be
zero regardless of whether the annihilation processes took place inside the black hole. This is not due to any
measurement of the observer, but a consequence of the Hawking’s pair production, which inexorably
gradually carries away mass to the black hole. Indeed, if we wait enough time we will surely reach a
configuration in which the total energy of the black hole for an observer at infinity is zero, and this is not
due to any measurement, but it is a consequence of the unrelenting Hawking’s pair production. Therefore,

5
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it is unavoidable that the int-particles annihilate the matter inside the black hole and the final state will be:

U
(
|ψBH〉 ⊗ |φH〉

)
=

∑
ω

f (ω) e
−πω

(
1
κ+

1
κ2

+···+ 1
κn

)
|ω〉out|ω〉out . . . |ω〉out |0〉int

A1
. . . |0〉int

AN
, (12)

which is a state of entangled particles at infinity. Hence, we can conclude that the initial state is evolved into
a pure final state.

3.2. Product state inside the black hole: single-particle case
For completeness we also study the case in which the particle inside the black hole is not entangled with any
other subsystem (we call this particle ‘A’). Therefore, the state (3) is replaced with

|φ2〉 =
∑
ω′

f (ω′)|ω′〉A. (13)

An analysis similar to the one in (7), gives the following final state | f ′′〉,

|f ′′〉 = N
∑
ω,ω′

f (ω′)e−
πω
κ |ω〉out|ω′ − ω〉int|0〉A = N

∑
ω

f (ω)e−
πω
κ |ω〉out|0〉int|0〉A

+
∑
ω′ 	=ω

f (ω′)e−
πω
κ |ω〉out|ω′ − ω〉int|0〉A ≡ | f ′′〉case (i) + |f ′′〉case (ii). (14)

Assuming full annihilation, we end up with the pure state | f ′′〉case (i) . Indeed, the initial non entangled pure
state has evolved to a non entangled pure state as well. Only in the intermediate stage the created Hawking
pair is entangled.

3.3. Product state inside the black hole: two-particle case
Or we can assume having two particles inside the black hole, but in a product state. That is,

|p〉 = |ω1〉A ⊗ |ω2〉B. (15)

Now, we consider two created Hawking pairs, each pair’s incident particle interacts with one bh particle. We
thus get,

|p2〉 = N 2
∑
ω′,ω′′

e−
πω′
κ′ − πω′′

κ′′ |ω1 − ω′〉A ⊗ |ω2 − ω′′〉B ⊗ |ω′〉out ⊗ |ω′′〉out. (16)

Now as always, upon evaporation, the inside modes should fully annihilate,

|pevap〉 = N 2 e−
πω1
κ′ − πω2

κ′′ |0〉A ⊗ |0〉B ⊗ |ω1〉out ⊗ |ω2〉out. (17)

We get, therefore, a product state outside, in a one to one with the set of states we started with.

3.4. General state inside
For the analysis developed in the previous section we assumed all the particles inside the black hole to have
the same energy, but it is straightforward to generalize to an arbitrary entangled state. Let us consider again
a Hawking pair in the state (2), and a particle pair inside the black hole in the state |χ〉 defined as

|χ〉 =
∑
ω′

f (ω′)|g(ω′)〉A|ω′〉B, (18)

where g(ω′) is a general function of its argument. A pure bipartite entangled state can always be written in
the form 18. The initial state (4) is replaced with |ig〉 = |ψ〉 ⊗ |χ〉 and, if we assume the negative energy
particle to interact with the particle B, the final state is:

∣∣fg

〉
= N

∑
ω′,ω

f (ω′)e−
πω
κ |ω〉out|g(ω′)〉A|ω′ − ω〉int|0〉B (19)

= N
∑
ω

f (ω)e−
πω
κ |ω〉out|g(ω)〉A|0〉

int|0〉B +N
∑
ω′ 	=ω

f (ω′)e−
πω
κ |ω〉out|g(ω′)〉A|ω′ − ω〉int|0〉B. (20)

If we have annihilation, only the first term on the right-hand side of (20) survives (figure 1). However, the
general case (19) is again elucidated in figure 2.

6
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3.5. Multipartite entangled black hole matter
We now consider a general multipartite entangled pure state describing a black hole resulting from a
gravitational collapse. For the sake of simplicity we do not here consider initial mixed states. However, our
analysis applies in that case too. This will also help to understand the previously mentioned case where the
incident Hawking particle scatters inside the black hole to produce more than one particle.

The multipartite matter state is a generalization of the simple bipartite state given in (18), namely

|Ψ〉 =
∑

ω1,...ωk

f (ω1, . . . ,ωk)|ω1〉A0 |g1(ω1, . . . ,ωk)〉A1 |g2(ω1, . . . ,ωk)〉A2 . . . |gk(ω1, . . . ,ωk)〉Ak
, (21)

where f(ω1, . . . ,ωk) is a general phase factor and A0, . . . , Ak are k + 1 particles. Now consider an incident
Hawking particle of energy ω that scatters with the particle A0 to produce a particle of energy ω1 − ω. The
state of the whole system, before the interaction takes place, is the tensor product of (2) and (21), namely
|Ψ′〉 ≡ |Ψ〉 ⊗ |ψ〉,

|Ψ′〉 =
∑

ω1,...,ωk ,ω

f (ω1, . . . ,ωk)e−
πω
κ |ω1〉A0 |g1(ω1, . . . ,ωk)〉A1 |g2(ω1, . . . ,ωk)〉A2 . . . |gk(ω1, . . . ,ωk)〉Ak

⊗ |ω〉int|ω〉out.

(22)

When the ‘int’ particle interacts with the particle A0 the state becomes:

|Ψ′′〉 =
∑

ω1,...,ωk ,ω

f (ω1, . . . ,ωk)e−
πω
κ |ω1A0

− ω〉|g1(ω1, . . . ,ωk)〉A1 |g2(ω1, . . . ,ωk)〉A2 . . . |gk(ω1, . . . ,ωk)〉Ak
⊗ |ω〉out.

(23)

Therefore, the resulting particle of energy ω1A0
− ω is entangled with the black hole matter and the

Hawking ‘out’ particle too. If more Hawking pairs are created, we have more ‘out’ particles entangled with
the black hole matter and the state is:

∣∣Ψ(k)
〉
=

∑
ω1,...,ω(k)

f (ω1, . . . ,ωk)e
−π

(
ω
κ+

ω′
κ′ +

ω′′
κ′′ +···

) ∣∣ω1A0
− ω

〉
|g1(ω1, . . . ,ωk)A1 − ω′〉 . . .

× |gk(ω1, . . . ,ωk)Ak
− ω(k)〉BH ⊗

∣∣ω,ω′, . . . ,ω(k)
〉out

, (24)

where the sum above is on all the frequencies ω1, . . . ,ωk,ω,ω′,ω′′, . . . ,ω(k). Now we have an entangled state
involving all the particles inside and outside. If we assume full evaporation12 of the black hole, the
entanglement is swapped to the outside radiation and the state reads:

∑
ω1,...ωk

f (ω1, . . . ,ωk)e
−π

(
ω1
κ1

+
g1
κg1

+
g2
κg2

+···
)
|0〉BH ⊗ |ω1〉out

A0

× |g1(ω1, . . . ,ωk)〉out
A1
|g2(ω1, . . . ,ωk)〉out

A2
. . .

∣∣gk(ω1, . . . ,ωk)Ak

〉out
, (25)

where we labelled the states also with the index Ai to keep track of the ‘int’ particles that have been
annihilated with the particles A1, . . . , Ak.

The state (25) is clearly an entangled pure state of Hawking’s ‘out’ particles after the black hole has fully
evaporated. Notice that the state (24) is a superposition of all energy’s eigenstates. Therefore, the projection
to the particular final state (25) is only due to the black hole full evaporation and not to an intrinsic
unitarity violation.

The outcome of this section can be summarized as follows. The pure entangled state describing matter
inside the black hole (21) evolves into the pure entangled state at I+ (25). We here only assumed
annihilation inside the black hole between negative and positive energy particles.

4. No loss of information

We consider again the black hole and radiation states in the same settings. We recall the black hole’s initial
state

|φ〉 =
∑
ω′

f (ω′)|ω′〉A ⊗ |ω′〉B, (26)

12 This is equivalent to saying that an observer at infinity makes a measurement of the black hole mass.
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Figure 4. The Penrose diagram for the formation and evaporation of a Schwarzschild black hole including annihilation and
entanglement transfer at the singularity—in this figure we also explicitly show the transfer of entanglement from the particles at
the singularity and the particles outside the event horizon. A Hawking pair is created on the Cauchy surface Σa and evolves to the
surface Σd where the ‘int’ Hawking particle has now reached the singularity at r = 0. Another Hawking pair is created at Σb and
evolves to finally reach the Cauchy surface Σg where the ‘int’ particle is at the singularity. Now the two ‘int’ particles are both at
the singularity where they are forced to interact with (for example) two entangled matter particles as shown in figure 3(c).
Consider the following three particular wavy lines: the black wavy line at r = 0 between Σd and Σg, the blue wavy line between
the green particle at the singularity on Σd and the black particle on Σg, and the red wavy line between the green particle at the
singularity in Σg and the black particle on Σg, these wave lines represent the dynamics of figure 3(c). In the Penrose spacetime
diagram. Finally, assuming full annihilation of the two green particles at the singularity, which happens for ω′′ = ω′ = ω, we end
up with two ‘out’ entangled particles on Σfin.

then, after emission of Hawking particles, we get

|f ′〉 = N 2
∑

ω′′,ω′,ω

f (ω′)e
−π

(
ω
κ+

ω′′
κ′′

)
|ω〉out|ω′′〉out

⊗ |ω′ − ω〉int
A |ω′ − ω′′〉int

B . (27)

Here one can understand this annihilation state as a scattering outcome, it could include all possible
numbers of scattering, for example,

|ω′ − ω〉int
A ≡ S

(
|−ω〉int ⊗ |ω′〉A

)
(28)

= c1|ω′ − ω, 1〉int
A + c2|ω′ − ω, 2〉int

A + · · ·+ cn|ω′ − ω, n〉int
A , (29)

where the second index in each of the kets determines the number of particles outcome of the scattering,
and the coefficients cj determine the amplitude of each number state, determined by the Feynman diagram
of each process. However, all the outgoing scattering particles have the same energy which is conserved after
scattering. We label them thus with their energy, as in (29), coarse graining their number, since, in such a
highly dynamic spacetime, the number of particles is not conserved, changing all the time.
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Figure 5. Plot of the affine parameter λ(r) for null geodesics in the singularity-free Schwarzschild metric (solid line) versus the
Schwarzschild metric (dashed line). We here used: M = 1, L = 1, r0 = 4, and e = 1.

Now in order to study the information loss in this process, we start from the final state:

|fEvap〉 = N 2
∑
ω

f (ω)e
−πω

(
1
κ+

1
κ′′(ω)

)
|ω〉out|ω〉out

⊗ |0〉int
A |0〉int

B , (30)

and the evolution operator that takes the initial black hole matter state to the final fully evaporated state

O = N 2
∑
ω

e
−πω

(
1

κ(ω)+
1

κ′′(ω)

)
|ωout,ωout, 0int, 0int〉 〈0out, 0out,ωint,ωint| , (31)

we would like to see whether we can reconstruct the initial state. Indeed it is quite simple to show that we
can invert the evolution operator O and thus reconstruct the initial state. First of all, one can extract the
relative factors in O from the measurement of ω, namely

N 2 e
−πω

(
1

κ(ω)+
1

κ′′(ω)

)
= 〈0, 0,ω,ω|O |0, 0,ω,ω〉 . (32)

Then one can use the final state (30) to construct the initial one,

|initial〉 =
∑
ω

(
〈0, 0,ω,ω|O |0, 0,ω,ω〉

)−1N 2f (ω)e
−πω

(
1
κ+

1
κ′′(ω)

)
|ω〉out|ω〉out|0〉int

A |0〉int
B

=
∑
ω′

f (ω′)|ω′〉A ⊗ |ω′〉B.

Thus, knowing the final state for radiation, and knowing the evolution operator equation (31), one can
easily reconstruct the initial black hole matter state. Therefore, no information is lost after full evaporation.

5. The singularity issue

There are reasons to believe that our solution of the information loss problem seems to work regardless of
whether the spacetime is singular or singularity-free [10, 11, 46–52, 54, 57]. Therefore, in this section we do
not intend to address the singularity issue, but only provide some logical arguments on its role in the
information loss problem. Indeed, our result seems to be valid for any black hole whose geometry allows
interactions between the black hole’s matter and the infalling Hawking particles. On the other hand, for
black holes where such particles do not interact, there is no reason for the evaporation to happen, as we are
going to explain. In the previous sections we never mention the spacetime singularity issue at r = 0. Indeed,

9
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our analysis is based on the natural and historical commonly made assumption that particles inside the
black hole are annihilated by the Hawking negative energy particles.

Now let us make some comments on the particular case of a singular black hole. As long as the ‘int’
particles interact with the matter inside the black hole that have not reached r = 0 yet, as in figure 4 for
v < vs, where vs is the time at which the singularity is formed, the dynamics (the S-matrix of the standard
model of particle physics) is well defined and the scattering takes place without violating unitarity. On the
other hand, for v > vs the ‘int’ particles probably annihilate with matter particles that have already reached
the singularity (see figure 5). In this paper as well as most others in the literature, it is assumed that the
annihilation takes place regardless of the singularity13. Therefore, we are entitled to believe that if a singular
black hole ever evaporates, then entanglement is transferred to (and/or from) the matter at the singularity.
On the other hand, if there is no annihilation at the singularity we probably14 do not have evaporation and
thus any information loss problem because there are correlations between the matter inside and the
particles outside the black hole, that keep the state of the whole system pure. It is worth being stressed that
the absence of local (or non-local) interactions between Hawking ‘int’ particles and the matter at the
singularity implies that there is no black hole evaporation at all, contrary to what is commonly stated15.
Furthermore, we do not have any information loss problem because the matter would still be there, and the
Hawking particles would still be there too. Indeed, the whole information loss business is based on the
assumption that the black hole completely evaporates (or nearly) and most of the mass evaporates after the
creation of the singularity (the time vs as depicted in figure 3). If we question the interaction of the ‘int’
particles with the singularity then we cannot trust the black hole evaporation after the instant vs. However,
at this stage of the evaporation process the black hole retains most of its mass, which is enormously bigger
than the Planck mass. Why in such semiclassical regime should we not believe in the black hole
evaporation? We here do not want to address this question, but we want only to point out that our
resolution of the information loss problem is based on very reasonable and common assumptions.

Finally, in any singularity-free black hole our proof is a priori expected to apply and there is no
information loss problem because in this case the spacetime is geodesically complete and the needed
interactions for v > vs can happen smoothly. In the next section, we will provide an explicit example of
singularity-free black hole in Einstein’s conformal gravity in which all the interactions for v > vs take place
far from r = 0.

13 As proved in the paper [53], titled ‘The energy-momentum tensor of a black hole, or what curves the Schwarzschild geometry?’,
the source of the Ricci flat solutions (in vacuum) has a well defined meaning in the space of distributions and the energy-momentum
tensor is proportional to the Dirac’s delta, namely T ∝ Mδ(r) (this is also proved in many other textbooks like Landau–Lifshitz, etc).
After the black hole formation, the matter is localized at r = 0 and can be reached in finite time (or finite value of the affine parameter
in the massless case) by the Hawking ‘int’ particles. Therefore, all the ‘int’ particles annihilate for r > 0 in the first stage of the evapora-
tion process or in r = 0 afterwards to finally end up with zero Bondi–Sachs mass. Notice that if there was no source at r = 0 then the
spacetime would be Minkowski and not Schwarzschild.
14 Particles are likely created also inside the event horizon where the metric is actually Kantowski–Sachs. The latter cosmological met-
ric, which is homogeneous but not isotropic, allows for the creation of particles at any time. However, such process can only make our
analysis more complicated without any conceptual gain. Indeed, negative and positive energy particles inside the horizon must annihi-
late each other and the particle with positive energy cannot escape to infinity if we want to preserve causality. However, this technical
complication can turn in our favour. It could be that negative energy particles created inside annihilate the matter, which is collapsing
towards the singularity, while the partners with positive energy travel from left to right along or near the horizon annihilating the neg-
ative energy particles coming from outside. If so, we never need to consider the singularity and most of the annihilation happens near
(inside) the horizon.
15 Assuming that no annihilation takes place at the singularity, we end up with a state consisting of an equal number of positive and
negative energy particles in the black hole interior. Therefore, the mass of the black hole is zero (at least for a distant observer) and the
final state is very similar to the one represented in figure 2(c). Although this possibility seems very unlikely from the physical point of
view, we do not have any information loss problem. Indeed, after the ‘full’ evaporation we have a pure entangled state consisting on
the out-particles in the future and a blob of matter with zero total energy in the past. In general, during the evaporation process we
have positive energy particles that travel towards infinity and negative energy particles that reach and eventually cross the horizon. If
the ‘int’ particles do not cross the horizon they must annihilate with other matter outside and there is no black hole evaporation. It
could be that the black hole geometry is such that the particles seem never to cross the horizon. This is also what one observes sees
from infinity in the Schwarzschild geometry. However, once the total amount of negative energy near the horizon is identical (or nearly
equal) to M, then the total mass of the black hole for the observer at infinity is zero, there is no event horizon anymore, and the negative
energy Hawking particles are forced to annihilate the whole mass inside the black hole. (Notice that the negative energy particles cannot
annihilate the ‘out’ particles anymore because those are too far away.) Similarly, once an amount of particles of total mass equal, but
opposite in sign, to the black hole mass is inside the black hole, the black hole is not black anymore because there is no more event hori-
zon. Therefore, the two clouds of particles with positive energy (black hole’s matter) and with negative energy (‘int’ Hawking particles)
are forced to annihilate. Notice that we cannot have an excess of negative particles with respect to the total amount of black hole mass
because the evaporation process stops after the event horizon disappears.
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6. Solving the singularity issue

In this section we provide an explicit example of regular and geodesically complete black hole spacetime
based on Einstein’s conformal gravity. The latter theory is defined by the following action,

S =

∫
d4x

√
−ĝ

(
φ2R̂ + 6ĝμν∂μφ∂νφ

)
, (33)

where ĝμν is the spacetime metric and φ is a scalar field (the dilaton). The presence of the dilaton field in
the theory enlarges the symmetry from general coordinate invariance to also including conformal Weyl
invariance, namely

ĝ ′μν = Ω2ĝμν , φ′ = Ω−1φ. (34)

The Einstein–Hilbert action for gravity,

SEH =
1

16πG

∫
d4x

√
−ĝ R̂, (35)

is recovered when the Weyl conformal symmetry is broken spontaneously in exact analogy with the Higgs
mechanism in the standard model of particle physics (for more details we refer the reader to [51, 55]). In
the conformal invariant phase we have an entire gauge orbit of equivalent vacua (exact solutions of the
EoM), but if we replace in the action the vacuum consistent with the solution φ = const. = 1/

√
16πG, the

theory (33) turns into (35). Hence, Einstein’s gravity is simply the theory (33) in the spontaneously broken
phase of conformal invariance [51].

Besides the constant vacuum, if a metric ĝμν is an exact solution of the EoM, thus it is also the rescaled
spacetime with a non trivial profile for the dilaton field, namely

ĝ∗μν = S(r)ĝμν φ∗ = S(r)−1/2 φ. (36)

Therefore, we can use the above rescaling to construct other exact and singularity-free solutions of the
theory. In particular, in [51] it was proposed and extensively studied the following black hole (of mass M)
metric,

ds∗2 ≡ ĝ∗μν dxμ dxν = S(r)ĝμν dxμ dxν = S(r)

[(
1 − 2M

r

)
dt2 +

dr2

1 − 2M
r

+ r2 dΩ2

]
, (37)

φ∗ = S(r)−1/2κ−1
4 , (38)

where the following conformal factor Ω2 = S depending only on the radial Schwarzschild coordinate r is

S(r) = 1 +
L4

r4
, (39)

where L is a scale of length dimension that we will later identify to be proportional to the Schwarzschild
radius of the black hole. In [51], it was proved that the Kretschmann invariant K̂ = R̂iem2 and the Ricci
scalar are both regular in r = 0, but most importantly it was shown that the spacetime is geodesically
complete. Indeed, massive, conformally coupled particles, and photons can never reach r = 0. For the sake
of simplicity, in this paper we focus on mass-less particles and we remind the geodesic radial equation as
well as its solution [51], namely

− e2

S(r)2
+ ṙ2 = 0 =⇒ S(r)|ṙ| = e, (40)

where e is the conserved quantity due to the time translation invariance of the metric. The above differential
equation (40) can be easily integrated for a photon trajectory approaching r = 0, namely for ṙ < 0,

λ(r) =
1

e

[
L4

3r3
− L4

3r0
3
+

2L2

r
− 2L2

r0
− r + r0

]
, (41)

where r0 is the initial radial position. Hence, photons cannot reach r = 0 for any finite value of the affine
parameter λ, as it is evident from figure 5. In order to get the same geodesic as in the empty spacetime
when the mass goes to zero, we must select the scale L = αM, where α is a dimensionless constant.
Therefore, (41) turns in:

λ(r) =
1

e

[
(αM)4

3r3
− (αM)4

3r0
3

+
2(αM)2

r
− 2(αM)2

r0
− r + r0

]
. (42)
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Figure 6. We here show the affine parameter λ(r). The plot at the bottom is a zoom of the interacting region shown in the plot at
the top. The initial mass of the black hole is M = 5 and the event horizon is located in 2M = 10 while the initial value for the
affine parameter is set to be zero in r0 = 3M for the collapsing shell, while for the other particles λ(r0) = 3.2M, 5M, 6.3M,
8M, 11M respectively. We here assumed natural units. The solid black line represents a particle with negative energy that can
never hit the collapsing shell. However, other int-particles created later can hit such particle creating a new particle having even
more negative energy, but now able to hit the collapsing matter. Notice that the value of e in (42) is harmless for the crossing of
the trajectories. Indeed, a rescaling of λ cannot change the number of the interactions. Hence, we just took e = 1 in the plots.
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Figure 7. The Penrose diagram for the formation and evaporation of a conformal black hole—this figure depicts the transfer of
entanglement from the particles inside to the particles outside the event horizon in a non-singular conformal black hole. A
Hawking pair is created on the Cauchy surface Σa and evolves to the surface Σc where we see two entangled pairs: the ‘int’ and
‘out’ Hawking particles on the right and two entangled black hole matter particles. In Σd one of the matter particles and the ‘int’
particle interact and generate a new particle (one or more) making a system of three entangled particles. On Σe the remaining
matter particle (of the latter tripartite entangled system) comes very close to a new Hawking particle created on Σb and in Σf

they interact and we have an entangled system of four particles: two inside and two outside the black hole. Finally, assuming full
annihilation inside the black hole we end up with two ‘out’ entangled particles on Σg. In this black hole geometry, particles take
an infinite amount of time to reach the singularity. Thus, the interaction can happen smoothly, with no problems caused by the
singularity.

6.1. Interactions inside the black-hole
In force of the results of the previous section and making use of toy model for the collapse, we are now able
to show that the int-particles cannot avoid to hit the collapsing matter before to reach r = 0. We hereby
assume both the int-particles and the collapsing matter to be in the form of massless particles. In particular,
the collapsing matter is simply described by a null-shell of radiation that follows the geodesic of light, but
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whose equation of state is defined by zero pressure. Therefore, assuming a geodesic motion in the
semiclassical approximation the trajectory in spacetime of any particle is given by (42). Let us assume that
the int-particles are created right after the collapse is started, and for all of them apart the first one the mass
of the black hole is reduced of the correct amount consistently with the photons’ energy. The process is
described in figure 6. The lower dashed trajectory represents the classical geodesic for L = 0 in (41), the first
one in red is the surface the collapsing null shell, the solid black trajectory is the first created particle (for it
the mass of the black hole is still M), the other lines represent the trajectories for the later created
int-particles. Notice, that the first created particle sees mass M and does not hit the collapsing shell, but the
mass of the black hole shrinks anyway because when the particle cross the event horizon the surface gravity
seen from outside is evaluated for a smaller mass. Given the hyperbolic solution (42) trajectories delayed in
time surely meet somewhere, as evident from the plots (6). Therefore, the interaction between int-particles
and matter take place until complete evaporation of the black hole occurs.

Finally, we remind the main results in the paper [50] about the black hole evaporation time computed
making use of the Boltzmann law [5]. The Hawking temperature is a conformal invariant observable, hence,
it turns out to be the same computed by Hawking for the Schwarzschild black hole (figure 7), i.e.
TH = 1/8πM. Also the event horizon area changes slightly, namely

AH = 4πr2
H

[
1 +

(αM)4

r4
H

]
≈ 4πr2

H, (43)

whether we assume α  1 [56]. Therefore, the evaporation time is finite as for the Schwarzschild black
hole. Last but not least, the black hole entropy is also conformal invariant, regardless of the corrections in
α, when expressed in terms of the black hole mass [50], namely S = 4πM2.

7. Comments and conclusions

Let us here summarize our result and make some comments on the usual information loss problem.
Assuming no annihilation inside the black hole, the pure state (1) describes ‘int’ and ‘out’ radiation. Once
we trace out the ‘int’ subsystem, we find the ‘out’ radiation in a mixed state. However, this does not imply
any unitarity violation because the ‘int’ particles still exist in the black hole interior. If we now assume that
some ‘int’ particles annihilate, then we must take into account that the entanglement is transferred to other
particles inside and/or outside the event horizon through the process described in this paper. Commonly,
people do not consider such swap of entanglement and information appears to be lost. On the base of
figure 2, the mistake is to trace out the interior of figure 2(c) to end up with two non-entangled particles in
figure 2(d), and of course the ‘out’ radiation is then in a mixed state. Similarly, at the end of the black hole’s
evaporation process (full annihilation of ‘int’ particles with the black hole matter), one has to trace out the
‘int’ states to end up (using the usual treatment) with ‘out’ particles in a mixed state. In contrast,
throughout our analysis we keep track of the entanglement transfer at every step of the evaporation process
and we finally get a pure entangled state outside (see (25)) which is in a one to one correspondence with
initial states.

Let us summarize step by step the path taken in our paper. The summary consists of the following 5 + 1
items.

(a) We start with the entangled pure state (3), which describes the black hole matter (in this toy model we
consider the black hole made only of two particles with the same energy, but in sections 3.2 and 3.3 we
also considered the general case of many particles with different energies.) For completeness, we here
remind the reader of the state (3):

|φ〉 =
∑
ω′

f (ω′)|ω′〉A ⊗ |ω′〉B. (44)

(b) Whereupon, we have the creation of a Hawking pair from the vacuum (state (2))

|ψ〉 = N
∑
ω

e−
πω
κ |ω〉out ⊗ |−ω〉int (45)

and the whole state is the tensor product of two entangled states (4), namely

|i〉 = |ψ〉 ⊗ |φ〉 = N
∑
ω′

∑
ω

f (ω′)e−
πω
κ |ω〉out|−ω〉int|ω′〉A|ω′〉B. (46)

14



New J. Phys. 23 (2021) 113011 A Akil et al

(c) Now assuming the black hole matter to interact with the ‘int’ Hawking particle, we get the new pure
entangled state (9), which is described in figure 2(c).

|f 〉 = N
∑
ω′,ω

f (ω,ω′)e−
πω
κ |ω〉out|ω′ − ω〉int|0〉A|ω′〉B. (47)

(d) Since another Hawking pair is surely created we have the new state (8), which is described in
figures 2(a) and (b) and represented by the state:

|i′〉 = N 2
∑

ω′′ ,ω′,ω

f (ω,ω′)e
−π

(
ω
κ+

ω′′
κ′′

)
|ω〉out|ω′ − ω〉int

A |ω′〉B|ω′′〉out|−ω′′〉int
. (48)

(e) Assuming again to have interaction, we end up with the state (9) (figure 2(c)), namely

|f ′〉 = N 2
∑

ω′′,ω′,ω

f (ω,ω′,ω′′)e
−π

(
ω
κ+

ω′′
κ′′

)
|ω〉out|ω′′〉out|ω′ − ω〉int

A |ω′ − ω′′〉int
B . (49)

(f) Let us now assume that the black hole fully evaporates, which in our toy-model means: w = w′ and
w′ = w′′ (that is, the infalling negative energy particles have energies that sum to the black hole
energy). Therefore, the state is (10) and it is an entangled state within ‘out’ particles solely (see
figure 2(d)). Here we remind the reader of the state,

|fEvap〉 = N 2
∑
ω

f (ω)e
−πω

(
1
κ+

1
κ′′(ω)

)
|ω〉out|ω〉out|0〉int

A |0〉int
B . (50)

It turns out that after full evaporation all entanglement is transferred to the ‘out’ particles, there is
no black hole anymore, and the particles at future infinity are in a pure entangled state without any
violation of the monogamy theorem, conservation of information, or equivalence principles. The most
straightforward way to check whether there is any loss of information is to look at the final state and
notice that -given the evolution of the system-there is a 1 to 1 correspondence between the initial and
the final state. In fact the final state is almost identical to the initial state except for a relative phase
factor which comes from the Hawking pairs states. We emphasize that the conditional transfer of
entanglement from two particles inside the black hole to particles outside the black hole is a result of
the full black hole evaporation and not an assumption in our proof. In other words, we do not assume
any ‘conditional entanglement transfer’, it is actually the outcome of our computation only assuming
full evaporation, energy conservation, and interaction between Hawking infalling particles and the
black hole matter.

Therefore, as the reader can see, the information is recovered in the entanglement within the black hole
radiation all done in a very standard formalism.

Let us now remark that the observer at infinity does not take any active part in the outcome of our
analysis. The system is always in a pure state independently of the observer. The observer only takes part if
we want to know in what particular state the black hole is, but the state is pure and information is
conserved regardless of the measurement issue. Indeed, each interaction is compatible with the local unitary
S-matrix of the standard model of particle physics.

The mistake commonly done is that people do not take care of the interactions inside the black hole and
that the black hole is in a superposition of energy eigenstates. Therefore, they do not take into account how
entanglement is transferred at any stage of the evaporation process. In this paper we just looked carefully at
every single step only assuming local energy conservation and we ended up with the result (10) or (50).
Furthermore, pure final states are in a one to one correspondence with all the possible initial states. Hence,
there is no information loss, neither violation of monogamy theorem nor of the equivalence principle, and
under a minimal number of very natural and common assumptions.
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