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Abstract
The use of magnetic materials as building blocks for frequency applications makes it possible to
fabricate micrometer and nanometer high frequency devices. Moreover, devices with multiple high
intensity modes for multiband devices can be designed by using magnetic multilayers. However, as
the number of layers increases the multilayer becomes more complex, making it very difficult to
find optimal configurations due to a big number of possible configurations. Fortunately, over the
past decade a surge in the applicability and accessibility of machine learning algorithms and neural
networks has been observed, which allow to analyse big quantities of data in search of complex
patterns not always evident to humans. In this work, a theoretical model is used to generate
approximately 10 × 106 data points, which in turn are used to train a neural network to calculate
the number of high intensity resonance modes of three ferromagnetically coupled magnetic layers
with an accuracy of over 99.8%. The neural network is then used to identify a configuration of the
multilayer which provides the maximum number of high-intensity modes, and comparisons with
the theoretical model are presented. Finally, the correlations between parameter were calculated
over 600 million of data points, and clear guidelines for obtention of two high intensity resonance
modes were identified. These results provide a simple way to find a configuration of the trilayer
that have a high number of high intensity modes, thus greatly simplifying the design process of
magnetic multi-band frequency devices.

1. Introduction

The use of magnetic materials as building blocks for high frequency applications makes it possible to
fabricate micrometer and nanometer devices such as circulators [1, 2], phase shifters [3, 4], filters [5, 6],
and frequency sources [7–12] by taking advantage of their natural resonance in the order of GHz [13, 14],
making them of interest for applications in areas such as medicine [15–17], microfluidics [18–20], flexible
[21–23] and printable electronics [24], magnonic devices [25], and energy harvesting [26–28].

An important requirement for the magnetic materials used for high frequency applications applications
is a high magnetization, which ensures natural resonance modes with high frequency and intensity [29–32].
Exchange coupled multilayers may also fulfill these requirements. For example, in a ferromagnetically
coupled bilayer (in which the magnetization of the layers tend to align parallel to each other) two resonance
modes with distinguishable frequencies are observed: the low frequency acoustic (both layers are in phase)
and the high frequency optical (both layers are in anti-phase) modes [33, 34]. The acoustic mode has an
enhanced intensity due to the additive contribution of each layer to the frequency signal, and the optical
mode has higher frequency but it is difficult to use in the practice due to its low intensity [35–39]. Using
antiferromagnetic exchange coupling (which tends to align the magnetization of the layers anti-parallel to
each other) enhances greatly the intensity of the high frequency mode, while reducing that of the low
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frequency one [40, 41], providing a higher working frequency for applications, sacrificing access to the
lower frequency mode. This illustrates that currently it is difficult to obtain multiple high intensity
resonance modes using magnetic bilayers due to the intrinsic behavior of the magnetization of these
structures. Another option is the use of more than two magnetic thin films, which would allow for more
flexibility on their design at the cost of more complexity.

Indeed, in a previous work [42] a multilayer structure which provides multiple high frequency and high
intensity resonance modes has been proposed, which could potentially be used in multiband high frequency
magnetic devices. This structure is only one of the many configurations that could potentially provide
multiple high intensity resonance modes. However, as the number of layers increases, the behavior of the
multilayer becomes more complex and the number of combinations of physical parameters increases
exponentially, making it extremely difficult to find optimal configurations. Fortunately, over the past decade
a surge in the applicability and accessibility of machine learning (ML) algorithms has been observed, which
allow to analyse big quantities of data in search of complex patterns not always evident to humans. These
algorithms have been used for analysis of big quantities of data in industrial and scientific applications such
as physics [43, 44], agriculture [45], medicine [46], and chemistry [47], allowing to analyse available data to
find hidden patterns and/or predict new data when a human would have difficulty in doing so. In magnetic
applications, ML has been used to analyse nucleation fields in permanent magnets [48], to study minima
and magnetization switching in thin films and nanoparticles [49, 50], to estimate physical parameters from
magnetic domain images [51], and to obtain effective spin Hamiltonians in magnetic systems [52]. By using
ML algorithms to calculate the intensities of ferromagnetic resonance (FMR) modes, it is possible to
optimize the magnetic parameters of multilayer structures that lead to a high number of high intensity
resonance modes.

Neural networks are a particular kind of ML algorithms that are composed of several mathematical
entities called neurons which are interconnected between them. This arrangement has allowed to analyse
and predict data with more accuracy than standard ML algorithms, although with a higher computational
cost for training. They have been used in a wide array of topics in medicine [53–55], biology [56–58],
physics [59–61], art [62, 63], and many other areas of knowledge. In magnetism, some examples of
applications include ultrafast quantum magnetism [64], frustrated magnetism [65], and calculation of
hysteresis loops [66].

In this work, a neural network is trained to calculate the number of high intensity resonance modes of
three ferromagnetically coupled magnetic layers as function of their physical parameters, and use the
resulting model to identify multilayer configurations that have two high intensity resonant modes. In
section 2 a description of the studied multilayer and the theoretical model used to generate the training data
are given. In section 3 a brief description of the neural network and the training process are provided.
Additionally, the process used for finding an appropriate configuration is explained. In section 4 the results
obtained with the neural network under different conditions are presented, and a comparison with
analytical results are shown to study its accuracy. Finally, in section 5 the correlations between the
parameters have been studied for configurations with two high intensity modes, and clear tendencies have
been identified.

2. System and analytical model

A scheme of the studied multilayer system is shown in figure 1. The multilayer is composed of three
separate magnetic materials, which will provide three FMR modes. The gray slabs represent non-magnetic
separators introduced to control the interlayer exchange coupling between magnetic films. Figure 1 also
shows the reference frames used in the calculations. The reference frame defined by the layers (labeled by
upper case X, Y, Z) where the XY plane represents the plane of the layer, and the magnetization reference
frame (labeled by lower case xi, yi, zi) where the zi axis is along the equilibrium direction of the
magnetization of the layer i and the yi axis lies on the XY plane forming an angle ϕi with the Y axis. The xi

axis is perpendicular to both the yi and zi axes following a standard right hand rule. Note that depending on
the equilibrium direction of the magnetization, each layer i has a set of coordinates xi, yi, zi. Moreover, the
angles θ and ϕ represent the polar and azimuthal angles in the XYZ reference frame, respectively.

For each layer i, the magnetization is given by �Mi (�r; t) = M(0)
i �ezi + mxi (�r; t)�exi + myi (�r; t)�eyi , where

M(0)
i is a static uniform component of the magnetization and mxi and myi are dynamical components.

Assuming that the later two are very small (linear regime), the approximation M(0)
i ≈ Mi − 1

2Mi

[(mxi)
2 + (myi)

2] is performed, where Mi is the saturation of the layer i. This approximation is then
introduced in the Hamiltonian H of each contribution [e.g. H = μ0

∫
V
�H · �Mi (�r; t) d�r for the Zeeman

contribution, where �H is the external applied field]. Afterwards, the dynamical components are written in
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Figure 1. Scheme of the multilayer. Grey slabs represent non-magnetic separators introduced to control the interlayer exchange
coupling between magnetic films. Two rectangular reference frames are defined. Uppercase X, Y, Z use the plane of the layer as
reference, and lowercase x, y, z use direction of the magnetization (z‖�M, y on the XY plane).

the k-space through the Fourier transform as [67–69] mαi (�r; t) = 1√
L2d

∑
�ki

mαi

(
�ki

)
exp

[
i
(
�ki ·�r − ωt

)]
,

and the Hamiltonian takes the form

H = μ0

∑
→
k ‖

n∑
i=1

n∑
j=i

∑
α,β=x,y

Hαiβj

2Mi

(
m

→
k
αi

)∗
m

→
k
βj

, (1)

after taking only the second order contributions of mxi and myi . Here, m
�k
αi
≡ mαi

(
�ki

)
, and the fields Hαiβj

are dynamical fields with expressions that depend on the specific contribution and on the equilibrium
direction of the magnetization.

The time evolution of the magnetization is given by the Heisenberg equation of motion

i�ṁ
�k
αi
=

[
m

�k
αi

,H
]

, where α = x, y. Inserting (1) into this equation of motion, the following expressions are

obtained

i�ṁ
�k
xi
= −iμi

i+1∑
ζ=i−1

μ0

(
Hyixζ m

�k
xζ
+ Hyiyζ m

�k
yζ

)

i�ṁ
�k
yi
= iμi

i+1∑
ζ=i−1

μ0

(
Hxixζ m

�k
xζ
+ Hxiyζ m

�k
yζ

)
, (2)

where the properties of commutation that read [A, BC] = [A, B]C + B[A, C], [A, B] = −[B, A] have been
used, along the commutation rules [mxi(

�k), myi(−�k)] = iμiMi
sδ�k‖ ,�k‖

and [myi(
�k), mxi (−�k)] = −iμiMi

sδ�k‖ ,�k‖
.

Here, μi is the magnetization of the unit cell of the layer i. By writing (2) for all i in matricial form, we
obtain ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ṁ
�k
x0

ṁ
�k
y0
...

ṁ
�k
xn−1

ṁ
�k
yn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= −γDm

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m
�k
x0

m
�k
y0
...

m
�k
xn−1

m
�k
yn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where γ = −μi/� = 1.76 × 1011 T s−1 is the gyromagnetic ratio, and Dm is the dynamical matrix given by
[37]

Dm = μ0γ

⎡
⎢⎢⎢⎢⎢⎣

−Hy1x1 −Hy1y1 −Hy1x2 −Hy1y2 . . .
Hx1x1 −Hx1y1 Hx1x2 −Hx1y2 . . .

−Hy2x1 −Hy2y1 −Hy2x2 −Hy2y2 . . .

Hx2x1 −Hx2x1 Hx2x2 −Hx2y2 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ . (4)

Moreover, (3) can also be written as �̇m = −γDm�m, where �m and �̇m are vectors containing the dynamical
components of the magnetizations of all layers and their time derivative, respectively. Using the components
in the k-space, the time derivative can be written as �̇m = −iω�m, which allows to rewrite (3) as
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(Dm + iωI) �m = 0, with I being the identity matrix. The resonance frequencies of the system are obtained
after solving this equation, and thus are given by the negative eigenvalues of the matrix Dm. For each
individual layer i, the dynamical fields Hαiβi account for the contributions from the external magnetic field
�H and the demagnetizing field. They are given by [67–69]

HI
xixi

= H + Mi HI
yiyi

= H, (5)

where the magnetization of all layers and �H are assumed to be along the X axis. Expressions that relax these
constraints can be found in [37, 42].

Additionally, the interlayer exchange coupling contributions to the dynamical fields are given by

HJ
xixi

= HJ
yiyi

=
∑

j

Jij
eff

μ0Miti

HJ
xixj

= HJ
yiyj

= − Jij
eff

μ0Mjti

HJ
xiyj

= HJ
yixj

= 0. (6)

The summation over j refers to the neighboring layers i + 1 and i − 1, and ti is the thickness of the layer
i. Jij

eff is the effective exchange coupling constant between layers i and j, and is positive for ferromagnetic
coupling and negative for antiferromagnetic exchange. The fields composing the matrix (4) are then given
by Hαiβj = HI

αiβj
+ HJ

αiβj
. Finally, for thin films with uniform magnetization and lateral dimensions much

larger than their thickness the dipolar coupling contribution to the FMR is negligible [42, 70, 71].
The magnetic susceptibility χαβ provides information on the intensity of oscillation of the different

resonance modes, and in the linear regime is defined as mα = χαβhβ . It provides the response of the α
component of the dynamical magnetization to a small dynamical field hβ applied in the β direction. It is
obtained from the components of the susceptibility tensor

χ ≡

⎡
⎢⎢⎢⎢⎢⎣

χ1,1
xx χ1,1

xy χ1,2
xx χ1,2

xy . . .

χ1,1
yx χ1,1

yy χ1,2
yx χ1,2

yy . . .

χ2,1
xx χ2,1

xy χ2,2
xx χ2,2

xy . . .

χ2,1
yx χ2,1

yy χ2,2
yx χ2,2

yy . . .

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ , (7)

where χ
i,j
αβ is the response of the α component of the dynamical magnetization of the layer i to a small

dynamical field applied in the β direction to the layer j. The total susceptibility is obtained by summing over
the different combinations of α,β, i and j, and accounting for the orientation of the magnetization of each
individual layer. Assuming all the magnetic moments lie on the XZ plane, it is calculated using

χyy =
∑

i

∑
η

ti

tT
χyiyη , (8)

where tT is the sum of the thicknesses of all the magnetic materials.
The susceptibility tensor (7) can be obtained by using χ = D−1

g MT, where

MT ≡

⎡
⎢⎢⎢⎢⎢⎣

0 −M1 0 0 . . .

M1 0 0 0 . . .

0 0 0 −M2 . . .

0 0 M2 0 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ , (9)

and Dg = iω
γ

W + Dm. ω is the angular frequency of the microwave field, and the matrix W is given by

W =

⎡
⎢⎢⎢⎢⎢⎣

1 g1 0 0 . . .

−g1 1 0 0 . . .

0 0 1 g2 . . .

0 0 −g2 1 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ , (10)

with gi being the Gilbert damping parameter of the layer i.
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3. Training data and neural network

Using (8), the susceptibility for several combinations of physical parameters of the multilayer is calculated.
A fixed ferromagnetic exchange coupling Jij

eff = 0.15 mJ m−2 is used, and an in-plane external magnetic field
μ0H = 0.1 T is applied along the X axis. Thus the multilayer is always saturated along the field. The
thickness is varied between t = 1 nm and t = 5 nm, and the saturation is varied between Mi = 500 kA m−1

and Mi = 950 kA m−1. From the experimental point of view, control of the saturation can be achieved by
adding non-magnetic materials to standard magnetic alloys, e.g. by using different Cu ratios in NiFeCu thin
films [36]. For each combination of parameters, the number of high intensity resonant peaks were
calculated. In each case, the resonant mode with highest intensity was identified, and then all resonant
modes with at least 20% intensity (when compared to the highest intensity) were taken into account.

When generating the training data, the number of calculated data point scales with (ntnM)3, where nt

and nM are the number of values taken for the thickness and saturation of each layer, respectively. This
means that with nt = 10 and nM = 10, a total of 106 points would be calculated. Using these rules, six data
sets were generated: two with equally spaced values (nt = 10, nM = 10 and nt = 13, nM = 13), and four
with randomly distributed parameters (all with 106 points). The six data sets were then combined into a
single data set with almost 10 × 106 data points to be used as training data for the neural network.

A multi-layer perceptron (MLP) neural network classifier from Python’s scikit-learn library [72] was
used. Standard classifier algorithms are based on a linear combination of nonlinear basis functions φi (D)
that take the form

O (D, W) = f

(
m∑

i=i

wiφi (D)

)
, (11)

where f(x) and φ(x) are nonlinear functions. D is the input data, W are the weights wi assigned to the
functions φi(D), and m is the number of basis functions used. For neural networks, the basis functions
φi(D) themselves also take the form given by (11) [73], and each level of depth is known as a layer. Knowing
that each function φi(D) represents a neuron, an interconnected system is obtained where the results
provided by a given neuron depends on the results obtained by previous neurons in the network. In MLP,
each layer behaves similar to a single perceptron classifier [73] that uses a logistic sigmoid or a softmax
function for f(x) and φ(x) instead of a step-function. The training process then involves finding the
appropriate weights W of each neuron that allow to minimize the total error of the prediction. In this
particular case, a two level MLP (one main layer and one hidden layer) with 100 neurons each is used
(m = 100). The activation functions f(x) and φ(x) are given by the rectified linear unit function
f(x) = max(0, x), and the learning process is performed using the Adam algorithm proposed by Kingma
and Ba [74].

Training and testing was performed using a stratified 80%–20% split of the normalized data set. A
standard minimum–maximum normalization was used, and the normalization rules were saved in an
independent file to be used when predicting new data. Moreover, the data sets are highly unbalanced (99%
of the data produces only a single high intensity peak), which has to be accounted for before training the
neural network. This was done by combining standard under-sampling of the majority class (randomly
deleting data with single peaks) alongside synthetic minority over-sampling technique [75] for simulating
new data of the minority class (data with two or more peaks). To generate the new data, the k-nearest
neighbors to a data point of the minority class are identified, and then k new points are generated, each in
the direction of a nearest neighbor.

After the preprocessing, the MLP was trained and the resulting confusion matrix is shown in table 1. An
accuracy of more than 99.8% is obtained for both the majority (1 peak) and the minority (2 peaks) classes.
However, due to the imbalance of the data, even a very low percentage of misclassified majority class will
lead to an important percentage of false positives of the minority class. In this case this percentage reaches
≈ 16.4%. Note that all the data sets, the trained model, the normalization rules, the python codes used for
training the neural network, and a python code for predicting the number of peaks of a single combination
of parameters are available as supplementary material (https://stacks.iop.org/NJP/23/073021/mmedia).
Moreover, note that with three magnetic layers, three resonance peaks are expected. However, throughout
all the training data there was not a single instance of a third high intensity mode, and thus it was not
accounted for in the training of the MLP.

The final step is to identify a combination of parameters which provides a 2-peaked response function.
As starting point, a data point with 2 peaks was selected from the training data. Although not necessary, this
step greatly simplifies the search as only ≈ 1% of the total space of parameters lead to a response function
with 2 high intensity peaks. However this is not enough, as it is necessary to adjust the multilayer
configuration to be as close as possible to the available materials and to be stable under experimental
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Table 1. Confusion matrix comparing the training data with the results obtained from the trained MLP neural network.

1 peak (predicted) 2 peaks (predicted)

1 peak (theory) 791 555 1383
2 peaks (theory) 6 7056

Table 2. Physical parameters of the multilayer system. Parameters with (∗) have been identified through the ML model for
maximization of the number of high intensity resonant modes.

t∗i (nm) M∗
i (kA m−1) μ0H (T) Jij

eff (mJ m−2)

Layer 1 4.5 510
Layer 2 2 800 0.1 along X 0.15
Layer 3 4.5 900

variations. Thus, individual parameters were varied and the number of peaks were studied using the MLP,
and stable values (far away from transitions) were chosen arriving to the configuration shown in table 2.

4. Results and discussion

In this section, results obtained through the ML model are shown, and comparisons with the results given
by the analytical model (8) are presented. Table 2 shows the physical parameters of the multilayer used for
all the results presented in this section. Note that ti and Mi were identified using the trained ML model, and
an ∗ has been added to their names to clarify this. The interlayer exchange coupling is given between
neighboring layers. All of these parameters can be tuned from the experimental point of view. For example,
Mi can be varied during the fabrication process by adjusting the ratio of non-magnetic vs magnetic
materials in an alloy [36], and Jij

eff can be adjusted through the thickness of the non-magnetic separator
between layers i and j [76–78]. All the results of this section use these parameters unless specified otherwise.

Figure 2 shows the response function of the multilayer, as given by (8). In all cases, two high intensity
resonance modes can be observed. Figure 2(a) shows the effect of the in-plane applied field. Here, it can be
observed that as the field increases, the frequencies of all modes tends to increase. This is expected as the
system always remains in a saturated state due to the ferromagnetic interlayer exchange coupling. Moreover,
although the intensity of the low frequency mode decreases with an increasing field, the intensity of the
high frequency mode remains mostly constant. This is a very interesting result, as typically the intensity of
the resonance modes in magnetic thin films and multilayers tends to decrease as the frequency increases.

Another apparent deviation from expected results is the existence of only two resonance modes, as
normally there should exist one mode for each magnetic layer within the structure [33, 37, 40, 42]. Indeed,
in all cases the theoretical calculations show the existence of three resonance modes. However, the third
mode (with the highest frequency) has a very weak intensity in all the observed parameter space. This is
related to the decrease of intensity typically observed for high frequency modes, combined with the relative
contribution of the layers to each mode. Because this mode has very low intensity for all the studied space
of parameters, it was not accounted for when training the ML model.

These contributions are shown in figure 2(b), where the susceptibility of each individual layer as
function of the frequency is presented (for μ0H = 0.1 T). Here it can be seen that the low frequency mode
has an additive contribution from all layers, meaning that all the layers precess in phase. The second high
intensity mode has additive contributions from layers 2 and 3 (they are in phase), and a subtractive
contribution from layer 1. However the contribution from the layer 2 is stronger than that of the layer 1,
and thus the resulting mode also has high intensity. Note that the negative susceptibility observed in the
layer 1 means that the oscillations of this layer have a phase of π respect to the layers 2 and 3. The third
mode (not shown due to a low intensity of all contributions) has additive contributions from layers 1 and 3,
and subtractive contribution from layer 2. Here not only the contributions of each individual layer are very
weak due to the high frequency, but also the subtractive contribution of the layer 2 is stronger, thus
decreasing even more the total intensity of the mode.

Figure 3 shows the number of high intensity modes as function of ti and Mi for each layer, and compares
the MLP and analytical results. Dark colors represent two high intensity modes, while light colors represent
one mode. Note that figure 3 shows slices of the multi-dimensional phase diagram composed by the
six-dimensional hyperspace with axes M1, M2, M3, t1, t2, t3. It can be observed that in all cases the MLP
(figures 3(a)–(c)) reproduces really well the analytical results (figures 3(d)–(f)), although there are some
differences around the transition between regions. This is more evident in figures 3(b) and (e), which show
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Figure 2. Susceptibility χyy as function of the frequency. (a) Effect of various values of the in-plane applied field and
(b) contribution of individual layers to the resonance modes with μ0H = 0.1 T.

Figure 3. Number of high intensity modes as a function of ti and Mi for the ((a) and (d)) layer 1, ((b) and (e)) layer 2, and ((c)
and (f)) layer 3. Results of (a)–(c) the MLP prediction and (d)–(f) the analytical expression (8). Dashed lines represent the data
shown in figure 4

the phase diagram obtained when the parameters of the layer 2 are varied. Here, the analytical model shows
a rugged transition, which the MLP is not able to reproduce. This uneven transition is due to the way in
which the high intensity modes are defined. As discussed previously, for each individual combination of
parameters there is always at least one high intensity mode, and a second mode will be taken into account if
it has an intensity of at least 20% compared to the mode with maximum intensity. Around the transition
between regions, small changes in ti and/or Mi will lead to small changes in the intensities of all resonant
modes, which will constantly take the low intensity mode in and out the 20% threshold, inducing the
observed ruggedness.

A more direct comparison is shown in figure 4, where the number of high intensity modes as a function
of either ti (figure 4(a)) or Mi (figure 4(b)) is presented. Solid lines represent the MLP predictions, and the
dashed lines with circles represent the results given by (8). The different colors indicate which layer had its
parameters varied, and the individual curves were displaced vertically for clarity. Again, a very good
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Figure 4. Number of high intensity modes as a function of (a) ti or (b) Mi for the each layer. Comparison between the ML
model (solid lines) and the analytical expression (8) (dashed line with circles). Green data points represent the data shown in
table 2.

agreement between the two can be observed in all cases, with some differences present at the transition
between the regions. The ruggedness is observed again, represented by a constant swapping of the analytical
results between 1 and 2.

5. Parameters correlation

After training the MLP neural network and showcasing its high accuracy, it is used to analyse more in depth
the trilayer system and how its magnetic parameters are related to the presence or absence of a second high
intensity resonance mode. With this objective, 638 million of data points were calculated using the same
range of the physical parameters as that used in the training of the neural network
(Mi = 500–950 kA m−1 and ti = 1–5 nm for all i). Between those ranges, Mi was divided in 41 different
values with equal separation (ΔM = 11.25 kA m−1). Similarly, ti was divided in 21 values with equal
separation (Δt = 0.2 nm). Although the number of values that each parameter takes may appear small, the
number of calculated data points increases exponentially due to the six-dimensional space in which the
model is applied. This also means that a good statistic description is possible due to the high amount of
data points. Finally, note that the study presented in this section was only possible by using the trained MLP
neural network because it is two orders of magnitude faster than the standard analytical model (8) (the
600+ million of data points were calculated in 1 day using the neural network, while the 10 million training
data were calculated in 2 days using analytical calculations).

Figure 5 shows the normalized histogram of all parameters for configurations of the trilayer which
present two high intensity resonance modes, providing information of the values of the parameters for
which is most probable to obtain these modes. The first behavior that can be observed is that the layers 1
and 3 have identical behavior in both M and t. This is expected as interchanging the parameters of these two
layers would lead to identical results due to the symmetry of the trilayer. However, note that this does not
means that layer 1 and 3 always take the same values, and the observed histogram is obtained only after
taking into account all calculated data points with two peaks.

Figure 5(a) shows the histogram of Mi, where it can be observed that it is more probable to find high
intensity modes when M1 and M3 are near the extreme values of Mi = 500 and 950 kA m−1. On the other
hand, M2 is distributed more uniformingly, although the probability increases slowly with M2. Figure 5(b)
shows the histogram of ti. In this case, t1 and t3 tend to induce two resonance modes for high values,
reaching a maximum at the extreme value of 5 nm. On the other hand, t2 is again more evenly distributed,
with increasing probability as it decreases towards 1 nm. These tendencies are expected to continue beyond
the limit values presented. Moreover, these tendencies are also expected to remain for other limit values of
the parameters (e.g. for Mi = 1000–2000 kA m−1, the peak values would be observed around
M1 = M3 = 1000 and 2000 kA m−1).

To better understand how the data shown in figure 5 is distributed throughout the different possible
parameter combinations, the correlation coefficient

rxy =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(12)
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Figure 5. Histogram of (a) Mi and (b) ti for trilayers with two high intensity resonant modes, normalized to the total number of
data points with these modes. The dashed black lines, red lines, and blue lines represent, respectively, the layer 1, 2, and 3.

Table 3. Correlation matrix containing the correlation coefficients rxy of all pairs of studied
magnetic parameters, as given by (12). Blue values represent positive correlation, green values
are negative correlation, and grey values represent very weak correlation.

is calculated for every pair of parameters, and the results are shown in table 3. Blue cells indicate a positive
correlation, indicating that both parameters tend to increase or decrease at the same time. This positive
correlation is present for all parameter within a single layer (M1t1, M2t2, and M3t3). Green cells indicate a
negative correlation, which indicates that when one parameter increases, the other decreases, and is present
when comparing parameters of the outside layers 1 and 3. In particular, the correlation M1M3 is almost −1
indicating that the relation between both saturations is very closely given by M1 = −M3 + 1450 kA m−1

(the value 1450 kA m−1 ensures that the lineal dependence is observed between 500 and 950 kA m−1).
However, do note that these values are concentrated around the edges of the observed space of parameters,
as shown in figure 5(a). Finally, gray values indicate there is almost no correlation between the parameters,
and occur for all the combinations of parameters of outside layers with the middle one, e.g. M1t2, M2t1,
M2M3, etc.

For a better visualization of these correlations, two-dimensional histograms relating pairs of parameters
are shown in figure 6. Each subfigure labeled from (a) to (o) represents a pair of parameters, following the
same order presented in table 3, ignoring comparisons of the parameters with themselves (blue cells with
correlation 1). For clarity of the presented information, the color scale of the figures is not shared between
histograms. Nonetheless, black regions always indicate high number of data points with 2 high intensity
modes, while white regions indicate that 2 high intensity modes were not obtained. This is necessary to be
able to observe a detailed behavior for all pairs of parameters, e.g. figure 6(h) representing the correlation
M2t2 would look as a clear uniform color if the color scales were shared, as the data points are distributed
over a fairly wide region instead of concentrated in one or two corners of the two-dimensional space.

Figure 6(b) represents the M1M3 correlation. As discussed previously, these two parameters have a
strong negative correlation concentrated around the edges of the observed space. This is clearly represented
in the histogram, in which two black regions concentrated in opposite corners of the figure are observed.
This indicates that in order to obtain two high intensity modes, M1 would need to take values around
950 kA m−1 when M3 is near 500 kA m−1, and vice versa. Other pairs of parameters with negative
correlation are shown in figures 6(f), (k) and (n) (correlation pairs M3t1, M1t3, and t1t3, respectively). In (f)
and (k), two black regions are observed. One is concentrated around low values of M and high values of t,
and the other one concentrated around high values of M, but spread over high-intermediate values of t.
Here, the negative correlation is given mostly by the presence of the first more intense region, however the
second region is necessary because, as observed in the M1M3 correlation (figure 6(b)), M1 and M3 will
always take opposite values on the observed space which has a consequence that figures 6(f) and (k) cannot
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Figure 6. Two-dimensional histograms relating pairs of parameters of the trilayer system. Each figure (a)–(o) represents a
different pair of parameters, using the same order shown in table 3. Black regions indicate high number of data points with 2
high intensity modes, while white regions indicate that 2 high intensity modes were not obtained. All Mi vary between 500 and
950 kA m−1. All ti vary between 1 and 5 nm.

be both in the high intensity region at the same time. Finally, figure 6(n) shows that both t1 and t3 are
concentrated around 5 nm. In this case the negative correlation is somewhat misleading, as it represents a
negative slope on the dependence between t1 and t3 in values concentrated around the upper-right corner of
the figure.

Figures 6(d), (h) and (m) represent parameter pairs with positive correlation. Figures 6(d) and (m)
correlate Miti of the layers 1 and 3, respectively. It can be observed that these histograms are a mirror of the
ones observed in figures 6(k) and (f). This means that the layer with high Mi needs to have high ti, while the
thickness of the layer with low Mi is more evenly distributed around high-intermediate values. Figure 6(h)
relates the magnetization and thickness of the middle layer, i.e. M2t2. This is the most evenly distributed
histogram of all the figures, as it would be expected from the red curves in figure 5. However there is clear
tendency towards high M and low t values.

The remaining figures in the histogram (figures 6(a), (c), (g), (e), (l), (i), (j) and (o)) represent
histograms with very low correlations, and they all relate a parameter of one of the outer layers (1 or 3) with
a parameter of the middle one (layer 2). In figures relating M1 or M3 with either M2 or t2 ((a), (c), (g), (i)),
the former two are concentrated in either high or low values of M, while the parameters of the layer 2 are
more evenly distributed (again, with a slight preference for high values of M2 and low values of t2). On the
other hand, in figures relating t1 or t3 with either M2 or t2 ((e), (l), (j), (o)), the thicknesses of the outer
layers take high values and the parameters of the layer 2 are evenly distributed.

From this analysis of correlations, the following tendencies that would lead to a second high intensity
resonance mode in the trilayer were identified:

• The saturation of the outer layers need to be as separated as possible. Thus, one layer would have high
saturation MH and the other would have low saturation ML.

• The outer layer with MH needs a high thickness tH. However, care should be taken to ensure that the
magnetization of the layer is uniform over all the thickness of the layer.

• The thickness of the outer layer with ML can take a wider set of values for the thickness, but again
better results are obtained for high thicknesses.

• The parameters of the middle layer can take almost any value, although more stable results would be
obtained with a saturation near MH and a low thickness.

In order to test wether these tendencies hold for different values of the parameters, the limit values of Mi

will be changed and the frequency response of the resulting trilayer will be calculated using the analytical
model (8). The parameters of the new trilayer are M1 = M2 = 2000 kA m−1, M3 = 1000 kA m−1,
t1 = t3 = 5 nm, and t2 = 1 nm. These combination of parameters fulfill with the conditions for obtaining a
second high intensity mode presented just above. Moreover, note that although the values of Mi changed,
the same values of ti were taken. This is because non-uniform magnetization may arise over the thickness of
the layer if it is increased beyond 5 nm, making the analytical model (8) invalid. Figure 7(a) shows the
response function of the new multilayer as function of the frequency, where the presence of two high
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Figure 7. Susceptibility χyy as function of the frequency, using saturation values of M = 1000 and 2000 kA m−1. (a) Effect of
various values of the in-plane applied field and (b) contribution of individual layers to the resonance modes with μ0H = 0.1 T.

intensity resonance modes can be clearly observed for several values of the applied field, with even higher
intensities that those shown in figure 2(a). The contributions of individual layers to the susceptibility with
μ0H = 0.1 T are shown in figure 7(b). Very similar contributions to those shown in figure 2(b) are
observed, that is, the low frequency mode has an additive contribution from all layers (all the layers precess
in phase), and the second high intensity mode has additive contributions from layers 1 and 2 (they are in
phase) and a subtractive contribution from layer 3 (anti-phase precession). In this case, the layer 1 has
additive contribution instead of the layer 3 (which was the case for the results shown in figure 2(b)) because
the former has a higher saturation.

Finally, from the results shown in figures 2(b) and 7(b), and taking into account that the intensity
contributions of each layer are directly related to the Miti product, the following physical interpretation can
be given to the obtained conditions for high intensity modes. The second intensity peak showcases additive
contributions from the middle layer with the outer layer with MH, and subtractive contribution from the
remaining outer layer with ML. Thus, by making M1 = M2 = MH and M3 = ML, we ensure that the
additive contributions are as high as possible, while keeping the subtractive contribution low. Similarly,
t1 = tH ensures a high additive contribution of the layer 1 to the second resonance mode. Following the
same logic, one would expect that t3 = tL would decrease the subtractive contribution. However a low
thickness also means a stronger interlayer exchange coupling field as they are inversely proportional (see
(6)). This means that with t3 = tL, it would be more energetically favorable for the layer 2 to precess in
phase with the layer 3 instead of the layer 1. Thus, there would be one strong positive contribution to the
susceptibility (from layer 1) and two mid to low negative contributions (layers 2 and 3), leading to a second
resonance mode with lower intensity. Making t1 = t3 = tH ensures that the layer 1 and 2 precess in phase.
For t2, a wide range of values are possible, but in general there are two limit behaviors: t2 = tH would
provide higher intensity modes, while t2 = tL provides more stability under experimental variations of
individual parameters. Nonetheless, after using the MLP to identify parameter combinations that provide
the desired number of high intensity modes, it is recommended to perform theoretical calculations and/or
micromagnetic simulations in order to ensure that the predictions are correct.

6. Conclusions

A theoretical model was used to calculate the susceptibility and number of high intensity FMR modes of a
magnetic trilayer for several combinations of thicknesses and magnetic saturation of each layer.
Approximately 10 × 106 data points were generated, and used to train a MLP neural network to classify the
data according to the number of peaks found in the susceptibility. After taking appropriate measures such as
normalization and balancing of the training data, a neural network with an accuracy of more than 99.8%
was obtained.

The neural network was then used to identify a combination of parameters of the multilayer which
provides the maximum number of high-intensity modes. Two high intensity modes at different frequencies
are obtained which are robust under in-plane external magnetic fields. Although the intensity of low
frequency mode tends to decrease as the field increases, the intensity of the high frequency mode remains
constant. Moreover the frequency of both modes increases with the field because the magnetization of the
layers are always aligned with it.
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The parameters of the multilayer were varied to test for stability and to compare the predictions with
results from the theoretical model. In all cases the neural network reproduces the theoretical data
remarkably well, with some differences around transitions in the number of peaks.

Finally, correlations between the paramaters were calculated based on 600+ million of data points
obtained by using the trained ML model. After analysing these correlations, basic guidelines that ensure two
high intensity resonant modes were identified, and physical interpretations of why these particular values of
parameters conduce to two high intensity resonance modes are provided. To ensure that the predicted data
is as correct as possible, it is also recommended to choose parameter combinations that are far from
transitions, and then corroborate the predicted parameters by comparison with theoretical calculations
and/or micromagnetic simulations.

These results provide a simple way to find combinations of the magnetic parameters of the trilayer that
have a high number of high intensity modes, thus greatly simplifying the design process of magnetic
multi-band frequency devices.
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