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Abstract
The interaction between anharmonic quantum emitters (e.g. molecular vibrations) and confined
electromagnetic fields gives rise to quantum states with optical and chemical properties that are
different from those of their precursors. The exploration of these properties has been typically
constrained to the first excitation manifold, the harmonic approximation, ensembles of two-level
systems [Tavis–Cummings (TC) model], or the anharmonic single-molecule case. The present
work studies, for the first time, a collective ensemble of identical multi-level anharmonic emitters
and their dipolar interaction with a photonic cavity mode, which is an exactly solvable many-body
problem. The permutational properties of the system allow identifying symmetry classified
submanifolds in the energy spectrum. Notably, in this approach, the number of particles, typically
in the order of several millions, becomes only a parameter from the operational standpoint, and
the size of the dimension of the matrices to diagonalize is independent of it. The formalism
capabilities are illustrated by showing the energy spectrum structure, up to the third excitation
manifold, and the calculation of the photon contents as a permutationally invariant quantity.
Emphasis is placed on (a) the collective (superradiant) scalings of light–matter couplings and the
various submanifolds of dark (subradiant) states with no counterpart in the single-molecule case,
as well as (b) the delocalized modes containing more than one excitation per molecule with no
equivalent in the TC model. We expect these findings to be applicable in the study of non-linear
spectroscopy and chemistry of polaritons.

1. Introduction

Optical microcavities and similar devices enable the dipolar interaction between the electromagnetic (EM)
field they confine and the degrees of freedom of quantum emitters in the same energy range [1–5]. The
coupled system, whose excitations receive the name of polaritons, is a hybrid between light and matter, and
its properties have motivated extensive exploration from research fields such as quantum optics [6],
excitonic and two-dimensional materials science [7–9], and chemistry [10, 11]. In many systems of interest,
observable effects emerge only when a large number of atoms or molecules cooperatively interact with a
single photon mode through their dipole moments [12, 13].

Polaritons have been produced using diverse setups and materials whose description requires various
theoretical frameworks. For instance, real spins, nitrogen-vacancy centers [14], qubits [15],
superconducting quantum interference devices [16], quantum dots [17, 18], and electronic transitions in
organic molecules [19] are approached as two-level systems, while low vibrational transitions in molecules
can be modeled with harmonic oscillators [20, 21]. The success of these two models stems from their
simplicity and the fact that conditions can be found for their realization in interesting experimental settings.

The interest in strongly coupled systems in which the emitters have a multi-level anharmonic spectrum
has recently increased. For instance, the role that light–matter interaction might play on chemical reactivity

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac00d7
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1156-3012
https://orcid.org/0000-0002-8605-9665
https://orcid.org/0000-0002-8701-8793
mailto:jcamposg@ucsd.edu
mailto:joelyuen@ucsd.edu


New J. Phys. 23 (2021) 063081 J A Campos-Gonzalez-Angulo et al

has been explored by studying the Rabi model with a single emitter described by a Morse oscillator [22, 23].
Additionally, signatures of the non-linearities present in states with two energy quanta have been observed
experimentally [24–27], studied from theory [28, 29], and motivated innovative theoretical ideas for signal
enhancement [30–32].

The dynamics of the interaction between many multi-level systems and several EM modes has been
discussed when non-energy-conserving terms of the Hamiltonian can be neglected, i.e. under the so-called
rotating wave approximation (RWA) [33–35]. From these studies, it is known that analytical solutions exist
for the coupling of r-level systems to r − 1 EM modes [36]. In the context of the problem of N molecules
coupled to a single EM mode, the RWA allows separating the Hamiltonian of the system enabling the
computation of exact solutions. However, in this kind of system the Hilbert space scales as the number of
molecules considered; therefore, these calculations are suitable only for systems of relatively small size.
Nonetheless, for the case of identical emitters, the permutational symmetry implies a high degree of
degeneracy, which can be exploited to reduce the number of degrees of freedom of the Hamiltonian, thus
increasing the computational capabilities of the model. Such an approach has been utilized to provide a
formulation for open quantum systems that can be used to explore spectroscopic measurements and other
processes involving relaxation [37, 38]. However, the literature on the stationary features of such systems,
which are discussed in depth in the present work, is quite limited [39].

Permutational symmetry has been exploited in the few body limit to study systems such as nuclear
structure [40], quantum circuits [41], magnons [42], ultracold atoms [43], nuclear spins within molecules
[44], and the one-dimensional Hubbard model [45]. In the general case, the properties of the symmetrized
quantum states have also been extensively discussed [39, 46]. This algebraic approach has been applied to
the problem of light–matter coupling in the collective regime for two-level systems [46, 47]; however, to the
best of our knowledge, there has not been an effort to present concrete results beyond this approximation.

There has been also a recently increasing number of efforts devoted to exactly solvable problems
regarding light–matter coupling [48, 49], as well as their generalizations and extensions [50–53]. Among
these, the many-body systems are particularly attractive [54–56].

In the present work, we provide a sophisticated yet insightful procedure to simplify the
time-independent Schrödinger equation for N emitters, each with r non-degenerate and non-equispaced
bound states in their energy spectrum, coupled to a harmonic field mode through a bilinear and
excitation-conserving interaction. We identify a correlation between the symmetries of the system and the
distribution of photonic component among the emerging manifolds. Of particular interest is the realization
that collective states, comprising excitations of distinct symmetry, give rise to cooperative couplings that
depart from the well-known factor of

√
N, which characterizes polaritons in the singly excited manifold. We

also present the effects of anharmonicity, detuning, and intensity of collective coupling on the
eigenenergies, and photon contents of the eigenstates.

This paper is organized as follows: in section 2 we introduce the model Hamiltonian, discuss the implied
approximations, and provide a layout of the algebraic structure that enables its separation. In section 3 we
introduce the tools and concepts that enable the block-diagonalization, and show the form and distribution
of the diagonal elements. In section 4 we formulate the off-diagonal matrix elements that result from the
block-diagonalization. In section 5 we summarize the simplification method, providing a general recipe to
put it in practice. In section 6 we present examples for the separation for the lowest-lying excitation
manifolds. In section 7 we explore the implications of varying parameters on properties of the eigenstates.
Finally, we present the conclusions in section 8.

2. Description of the model

The Hamiltonian

Ĥbare(N) = �ω

(
â†0â0 +

1

2

)
+

N∑
i=1

r∑
v=0

εvσ̂
(i)
v,v , (1)

describes a collection of N identical emitters with r + 1 states each (which could represent the lowest
vibrational bound states of the ground electronic state of an anharmonic molecule) and an EM mode with
frequency ω. Here, â(†)

0 is the annihilation (creation) operator of the EM mode, εv is the energy of the vth
state of the emitter, and σ̂(i)

v,u is the transition operator between levels u and v in the ith emitter, i.e.

σ̂(i)
α,β |v0v1 . . . vi . . . vN〉 = δviβ |v0v1 . . . αi . . . vN〉 . (2)

In (2), the eigenstates of Ĥbare(N) in (1), henceforth primitive bare-eigenstates (PBEs), are written in a
collective Fock representation where the index vi indicates the number of bosonic excitations in the ith
emitter or the EM mode (i = 0). Hereafter, modes with v = 0 are considered implicitly for brevity.

2



New J. Phys. 23 (2021) 063081 J A Campos-Gonzalez-Angulo et al

The Hamiltonian describing the emitters, the EM mode, and their dipolar interactions under the RWA is

Ĥ(N) = Ĥbare(N) + Ĥint(N), (3)

where

Ĥint(N) =
r−1∑
v=0

(
gv,v+1â†0 Ĵ(v+1,v)

− + gv+1,v Ĵ(v+1,v)
+ â0

)
, (4)

with collective ladder operators for the emitters,

Ĵ(v+ 1±1
2 u,v− 1∓1

2 u)
± =

N∑
i=1

σ̂(i)
v±u,v u > 0. (5)

Here, the coupling constant gv±u,v =
√

�ω
2ε0V 〈v ± u| ex̂ |v〉 is the product of the amplitude of the

single-photon electric field, confined to a mode volume V , and the value of the transition dipole moment
between emitter states v ± u and v. Notice, in (4), that the model only accounts for coupling between states
that differ by one excitation, and therefore neglects overtone transitions, which is a useful approximation at
low energies.

The operator n̂exc = â†0â0 +
∑N

i=1

∑r
v=0vσ̂

(i)
v,v acts on the PBEs according to

n̂exc |v0v1 . . . vN〉 =
N∑

j=0

vj |v0v1 . . . vN〉 , (6)

thus indicating the total number of excitations of a given state; moreover, since
[
Ĥ(N), n̂exc

]
= 0, this

operator corresponds to a constant of motion. Therefore, the Hamiltonian can be recast in the form

Ĥ(N) =
∑
nexc

Ĥnexc (N), (7)

in which each of the terms in the sum of the right-hand-side can be represented as block matrices spanned
by PBEs of constant nexc, these blocks generate the so-called excitation manifolds. Appendix A displays their
explicit form for 0 � nexc � 3.

While separating (3) in excitation manifolds significantly simplifies the diagonalization of this
Hamiltonian, it is important to remark that the matrices generated with this approach can quickly become

intractable as the number of molecules increases. For instance, Ĥnexc (N) is an operator in
(

N+nexc
nexc

)
dimensions. Therefore, it is impractical to deal with the number of molecules required to achieve
observable ensemble strong coupling, which is usually in the order of millions [57–59].

3. Permutational symmetry

Further simplification of (3) requires to identify the additional symmetries of the Hamiltonian. An
inspection of the explicit form of Ĥnexc (N) (see appendix A) reveals that PBEs with the same distribution of
quanta are degenerate eigenstates of Ĥbare(N); therefore, it becomes convenient to introduce a label that
characterizes PBEs yet avoids spurious identification due to accidental degeneracies. In principle, this
characterization could be achieved with the bare energy and the collection of eigenvalues of the operators

Ĵ(u,v)
0 =

1

2

[
Ĵ(u,v)
+ , Ĵ(u,v)

−

]
0 � v < u � r, (8)

which commute with Ĥbare(N); indeed, the relevance of these operators and those in (5) will be revisited in
section 4. Nonetheless, a much simpler approach is the description of the distribution of quanta itself. Let
us define the spectral configuration:

μ̃ =

r∏
v=0

vnμ̃(v), (9)

a notation device that indicates the number of emitters nμ̃(v) in the vth excited state. It must be noted that
the product operator in (9) does not represent an arithmetic operation acting on integers, but rather a
symbolic one acting on labels. See table B1 for usage examples.

The spectral configuration labels not only PBEs, but also any bare eigenstate (BE) resulting from linear
combinations of PBEs with the same distribution of quanta; however, the spectral configuration itself does
not include any information about the EM mode. The BEs can thus be partially characterized with three

3
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labels: the excitation manifold (nexc), the spectral configuration (μ̃), and a degeneracy index (y) whose
meaning depends on the basis. These states fulfill

Ĥbare(N) |nexc, μ̃; y〉 = ε(μ̃)
nexc

|nexc, μ̃; y〉 , (10)

where

ε(μ̃)
nexc

= �ω

(
v(nexc,μ̃)

0 +
1

2

)
+

nexc∑
v=0

nμ̃(v)εv (11)

is the characteristic bare energy for states with those labels, and v(nexc,μ̃)
0 = nexc −

∑nexc
v=1vnμ̃(v) is the

corresponding number of quanta in the EM mode.
Since

∑r
v=0nμ̃(v) = N for a given μ̃, the spectral configuration corresponds to a partition of the total

number of emitters. For reasons that will become apparent, it is convenient to write these partitions in their
regular (non-increasing) form, i.e.

μ = [μ1,μ2, . . . ,μr+1], (12)

where μi = nμ̃(vi−1) under the constraint that μi � μi
′for i > i′ [60]. In what follows, all the empty

elements, μi = 0, will be omitted for brevity, as illustrated in table B1. Furthermore, the spectral
configurations can be identified as partitions of the number of excitations distributed among the emitters,
i.e. for every μ̃ there exists a regular partition ν(μ̃) such that

ν(μ̃) = {v(i) : 1 � v � r, 0 � i � nμ̃(v)}, (13)

as illustrated in table B1. The above considerations lead to the result that the number of possible spectral
configurations within a given manifold is

|nexc| =
nexc∑
n=0

p(n), (14)

where p(n) is the number of partitions of the integer n. These numbers can be extracted from the expansion
[61]

m∏
k=1

(
1 − xk

)−1
=

m∑
n=0

p(n)xn + O
(
xm+1

)
. (15)

Since the emitters are considered as identical, Ĥ(N) is invariant under the action of the symmetric
group of degree N, SN, whose elements are the N! possible permutations of labels of the emitters. In other
words, for all permutations π̂ ∈ SN ,

[
Ĥ(N), π̂

]
= 0.

The permutation operators act on the BEs according to

π̂ |nexc, μ̃; y〉 = |nexc, μ̃; y′〉 , (16)

which means that BEs with common nexc and μ̃ carry a representation of SN, as illustrated in appendix B.
A partition μ identifies representations of SN that are, in general, reducible; they receive the name of

permutation modules and are denoted by Mμ [62]. The dimension of this representation is the number of
BEs with the same μ, i.e.

dim(Mμ) =
N!

r+1∏
i=1

μi!

. (17)

The permutation modules can, in turn, be decomposed in irreducible representations (irreps) according
to Young’s rule [63]:

Mμ =
⊕
λ�μ

KλμSλ, (18)

where Sλ symbolizes the irreps of the permutational group, also known as Specht modules [64].
The direct sum in (18) runs over all partitions λ of N that dominate (denoted by the symbol �) over μ,

i.e. they fulfill [63]
j∑

i=1

λi �
j∑

i=1

μi ∀j : 1 � j � r. (19)

For instance, consider the spectral configurations in the triply excited manifold: 0N, 0N−111, 0N−212, 0N−121,
0N−313, 0N−21121, and 0N−131. Since they correspond to the same regular partition, the spectral configura-
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tions 0N−111, 0N−121 and 0N−131 have identical permutational properties. Let us identify how each partition
relates to [N − 2, 1, 1] in terms of dominance. Following (19), it is possible to conclude that

[N] � [N − 2, 1, 1],

[N − 1, 1] � [N − 2, 1, 1],

[N − 2, 2] � [N − 2, 1, 1],

[N − 3, 3] � [N − 2, 1, 1],

[N − 2, 1, 1] � [N − 2, 1, 1].

(20)

The coefficients Kλμ in (18) are known as Kostka numbers [65]; they indicate the number of times a
permutation module contains a Specht module. While obtaining a closed analytical expression to calculate
them remains an open problem [66, 67], these coefficients can be found through their combinatorial
interpretation: the number of semi-standard Young tableaux (SSYT) of shape λ and content μ [63]. A
Young diagram (YD) of size N and shape λ is a collection of N cells arranged in r left-justified rows with λi

cells on the ith row. The present work uses the English notation, i.e. with decreasing row-length from top to
bottom, which is consistent with the regular form of the partitions (see table B1 for selected examples). An
SSYT of shape λ and content μ is obtained by filling in the cells of a λ-shaped YD with a collection of
ordered symbols partitioned according to μ in such a manner that the rows do not decrease to the right and
the columns increase to the bottom [63]. For instance, the SSYT of shape [N − 1, 1] and content
[N − 2, 1, 1] are

(21)

therefore, K[N−1,1],[N−2,1,1] = 2.
With the above definitions, it can be verified that the representation of SN in the basis of all BEs with

μ̃ = 0N−21121 fulfills
M[N−2,1,1] = S[N] ⊕ 2S[N−1,1] ⊕ S[N−2,2] ⊕ S[N−2,1,1]. (22)

The dimension of the Specht modules corresponds to the number of standard Young tableaux (SYT) of
shape λ, i.e. the number of ways in which the sequence [1, 2, . . . , N] fills a λ-shaped YD such that the
entries increase across rows and columns [63]. For instance, the SYTs for λ = [3, 2] are

(23)

This quantity is given by the hook-length formula [68]:

dim(Sλ) =
N!∏N

i=1hλ(i)
, (24)

where hλ(i) represents the number of cells in the hook of the ith cell in the λ-shaped YD, i.e. the number of
cells that are either directly below of, directly to the right of, or the ith cell itself. An example of this
computation is illustrated in appendix B.

A direct result from Young’s rule is that

dim(Mμ) =
∑
λ�μ

Kλμ dim(Sλ). (25)

The dimensions of the permutation and Specht modules for the spectral configurations found up to
nexc = 4 are displayed in table 1.

The irreps identify the smallest possible subspaces that remain mutually excluded under permutations.
In other words, the space of BEs with the same μ̃ can be split into sets of symmetry adapted linear
combinations of BEs (SABEs) labeled by λ for which

π̂ |nexc, μ̃,λ; y, w〉 = |nexc, μ̃,λ; y′, w〉 , (26)

for all π̂ ∈ Sn, where y identifies a particular SYT of shape λ, and the label w has been added to
acknowledge repetition of irreps, i.e. when Kλμ > 1.

It is a well-known result from representation theory that(
Cr+1

)⊗N ∼=
⊕
λN

(
Sλ ⊗ Vλ

r+1

)
, (27)

5
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Table 1. Spectral configurations, EM mode excitations and degeneracies for the first five excitation manifolds.

nexc

0 1 2 3 4
μ̃ v(nexc ,μ̃)

0 dim(Mμ) dim(Sλ)a

0N 0 1 2 3 4 1 1
0N−111 0 1 2 3 N N − 1
0N−212 0 1 2 N(N − 1)/2 N(N − 3)/2
0N−121 0 1 2 N
0N−313 0 1 N(N − 1)(N − 2)/6 N(N − 1)(N − 5)/6
0N−21121 0 1 N(N − 1) (N − 1)(N − 2)/2
0N−131 0 1 N
0N−414 0 N(N − 1)(N − 2)(N − 3)/24 N(N − 1)(N − 2)(N − 7)/24
0N−31221 0 N(N − 1)(N − 2)/2 N(N − 2)(N − 4)/3
0N−222 0 N(N − 1)/2
0N−21131 0 N(N − 1)
0N−141 0 N
|nexc| 1 2 4 7 12
|λnexc | 1 2 3 5 7

aλ = μ when applicable.

where Cr+1 is the vector space spanned by the energy eigenstates of each molecule, and therefore
(
Cr+1

)⊗N

is the vector space spanned by the BEs. The expression λ  N indicates that λ is a partition of N, and Vλ
r+1

is a so-called weight-space; it corresponds to an irrep of the unitary group U(r + 1). This result, known as
the Schur–Weyl duality [69, 70], implies that the SABEs are arranged in exclusive subspaces, labeled by λ, in
which they are classified according to not only their behavior under permutations, but also under unitary
operators acting on the internal degrees of freedom of each molecule. Furthermore, the decomposition in
(27) provides with the meaning of all the indices in (26).

As previously discussed, the dimension of a Specht module corresponds with the number of SYT of
shape λ, and the index y was used to enumerate them; therefore the indices λ and y uniquely define an
SYT. In what remains of this paper, the index y will encode the elements of the Young tableaux after
removal of the top row. See some examples in table B2.

On the other hand, the dimension of the irreps of U(r + 1) correspond to the Kostka numbers. To be
specific, the elements of the weight space Vλ

r+1 can be enumerated with SSYT, and thus uniquely identified
with the indices μ̃, λ, and w. In the remaining of the present work, w will encode the elements of the SSYT
after removal of the top row. See some examples in table B3.

To gain some insight into the meaning of the irreps, let us consider the global ground-state of the
emitters, i.e. the state with μ̃ = 0N . The only partition that dominates over [N] is itself, and there is a
unique SSYT when the shape and content correspond to the same partition; therefore, M[N] = S[N]. These
facts are consistent with the uniqueness of the state within each manifold where all the excitations reside in
the EM mode, which is denoted by |nexc, 0N , [N]; 0, 0〉.

Since
[
π̂, Ĵ(u,v)

+

]
= 0, the states |nexc, μ̃,λ; y, w〉 behave identically to â0 Ĵu,v

+ |nexc, μ̃,λ; y, w〉 under

permutations. This means that, even though the operator â0 Ĵ(u,v)
+ modifies the spectral configuration, the

states it couples carry the same irrep. Consequently

â0 Ĵ(u,0)
+

∣∣nexc, 0N , [N]; 0, 0
〉
∝
∣∣nexc, 0N−1v1, [N]; 0, 0

〉
. (28)

However, M[N−1,1] = S[N] ⊕ S[N−1,1], which means that the remaining SABEs with μ̃ = 0N−1u1 carry the
irrep with λ = [N − 1, 1]. These states,

∣∣nexc, 0N−1v1, [N − 1, 1]; k, 11
〉

with 1 � k � N − 1, can be
obtained through Gram–Schmidt orthogonalization over the basis of PBEs but with

∣∣nexc, 0N−1v1, [N]; 0, 0
〉

replacing one of the states and remaining fixed as seed of the procedure. The structure of the doubly excited
manifold can be understood in terms of this procedure as illustrated in figure 1. Appendix B includes the
example of reduced representations of the group S3, and appendix C discusses the generalities of the
expression of the SABEs in terms of the PBEs.

The spectral configurations, μ̃, giving rise to partitions that are valid labels, λ, for the irreps fulfill

nμ̃(v) � nμ̃(v′) ∀ v, v′ : v′ > v > 0; (29)

6
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Figure 1. Diagram of the relations between SABEs in the doubly excited manifold. GS denotes Gram–Schmidt
orthogonalization, 2 � k � N, 2 � k′ < �, and 4 � � � N.

this constraint produces the so-called partitions with weakly decreasing multiplicities [71]. The
enumeration of these partitions imply that the total number of irreps in the nexcth manifold is

|λnexc | =
nexc∑
n=0

q(n), (30)

where q(n) is the number of partitions of n with weakly decreasing multiplicities as illustrated in table 1.
These numbers can be extracted from the expansion [60, 61]

m∏
k=2

(
1 − x

(
k
2

))−1

=
m∑

n=0

q(n)xn + O
(
xm+1

)
. (31)

The main result of this section is that the Hamiltonians of the excitation manifolds can be split
according to

Ĥnexc (N) =

|λnexc |∑
i=1

Ĥ(λi)
nexc

, (32)

where

Ĥ(λ)
nexc

=

dim(Sλ)∑
j=1

Ĥ

(
λ,yj

)

nexc , (33)

with each Ĥ(λ,y)
nexc encoding the energies and interactions of spectral configurations with the same symmetry.

Equation (33) implies that the states obtained from diagonalizing Ĥ(λ)
nexc

are dim(Sλ)-fold degenerate. In
particular, for the diagonal part of the Hamiltonian, we have

Ĥ(λ)
bare,nexc

=
∑

μ̃:μ�λ

dim(Sλ)∑
i=1

Kλμ∑
j=1

ε(μ̃)
nexc

∣∣nexc, μ̃,λ; yi, wj

〉 〈
nexc, μ̃,λ; yi, wj

∣∣ , (34)

Notice that
dim

(
Ĥ(λ,y)

nexc

)
=
∑
μ�λ

Kλμ. (35)

The simplification achieved with this strategy is significant since, for each excitation manifold, the problem

has been reduced to the diagonalization of |λnexc | ∼ exp(An1/3
exc ) matrices with dimensions in the

neighborhood of |nexc| ∼ exp(
√

Cnexc) [72], both independent of N, which is a substantial gain over the

original
(

N+nexc
nexc

)
-dimensional matrices.

A complete discussion of the structure of the Hamiltonians requires to include the couplings between
spectral configurations induced by collective excitations; these will be explored in section 4.

4. Collective couplings

After determining the SABEs, it is possible to evaluate the matrix elements of the interaction Hamiltonian.
Let us consider the collective transition of a quantum from level v∗ to v∗ + s, i.e. the action of the operator
Ĵv

∗+s,v∗
+ on a SABE with spectral configuration μ̃. As a result of the transition, the new SABE belongs to the

7
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spectral configuration μ̃′, which relates to the initial spectral configuration according to

s =
nexc∑
v=1

v[nμ̃′(v) − nμ̃(v)]. (36)

Additionally, the occupation of levels in the two spectral configurations fulfill

nμ̃(v∗) − nμ̃′(v
∗) = nμ̃′(v

∗ + s) − nμ̃(v∗ + s) = 1. (37)

Given the definition of Ĥint(N) in (4), the only possible transitions are those between neighboring levels;
consequentially, s = ±1. It can be shown that under this constraint, for a given manifold, the number of
pairings {μ̃′, μ̃} afforded by photonic (de)excitations is

nint(nexc) =
nexc−1∑

n=0

n∑
m=0

p(m). (38)

The matrix elements of the interaction Hamiltonian are〈
n′

exc, μ̃′,λ′; y′, w′∣∣ Ĥint(N) |nexc, μ̃,λ; y, w〉 = gμ̃′,μ̃B(nexc)
μ̃′,μ̃ L(λ)

μ̃′,μ̃C(λ)
μ̃′ ,μ̃(w′, w)δn′excnexc

δλ′λδy′y, (39)

where, in agreement with the discussion above,

gμ̃′ ,μ̃ = gv∗+s,v∗δ|s|,1δnμ̃′ (v
∗),nμ̃(v∗)−1δnμ̃′ (v

∗+s),nμ̃(v∗+s)+1, (40)

while the coefficient

B(nexc)
μ̃′,μ̃ =

(
v(nexc,μ̃)

0 + δs,−1

)1/2
(41)

accounts for the (de)excitation of the EM mode.
To describe the redistribution of quanta among the emitters, let us define the operators

Ĵ(μ̃′,μ̃)
r = Ĵ(v∗+s,v∗)

r , (42)

where r ∈ {−, 0,+}, that generate the su(2) algebra with Casimir operator

Ĵ2
μ̃′ ,μ̃ =

(
Ĵ(μ̃′,μ̃)

0

)2
+

1

2

(
Ĵ(μ̃′ ,μ̃)
+ Ĵ(μ̃′,μ̃)

− + Ĵ(μ̃′,μ̃)
− Ĵ(μ̃′,μ̃)

+

)
. (43)

These operators allow the definition of the quantities

Mμ̃′,μ̃ = 〈μ̃| Ĵ(μ̃′,μ̃)
0 |μ̃〉 (44)

and
J(λ)
μ̃′,μ̃

(
J(λ)
μ̃′,μ̃ + 1

)
= 〈μ̃,λ| Ĵ2

μ̃′ ,μ̃ |μ̃,λ〉 , (45)

where the explicit labels in bras and kets are the only relevant ones in the calculation of the indicated matrix
elements as pointed out in the study of two-level systems, where the SABEs are known as Dicke states, and
J(λ)
μ̃′ ,μ̃ as the Dicke cooperation number [73]. To be specific

Mμ̃′,μ̃ =
nμ̃(v∗ + s) − nμ̃(v∗)

2
, (46)

and
J(λ)
μ̃′ ,μ̃ = max

μ̃′′

(
〈μ̃′′,λ| Ĵ(μ̃′ ,μ̃)

0 |μ̃′′,λ〉
)
. (47)

According to the prescription of quantum angular momentum, the contribution of collective
(de)excitations to the coupling between states is given by

L(λ)
μ̃′,μ̃ =

[(
J(λ)
μ̃′ ,μ̃ + Mμ̃′,μ̃

)(
J(λ)
μ̃′,μ̃ − Mμ̃,μ̃′

)]1/2
. (48)

Couplings are said to be superradiant if L(λ)
μ̃′ ,μ̃ > 1, and subradiant if L(λ)

μ̃′ ,μ̃ < 1 [73]. Appendix D shows a
couple of neat ways to calculate these coefficients.

The last component of (39), the coefficient C(λ)
μ̃′,μ̃(w′, w), acknowledges the fact that, since[

Ĵ(v′,v)
+ , Ĵ(u′,u)

+

]
∝ 1 − δuvδu′v′ , two strings of the same raising operators applied in different order to a SABE

will not, in general, produce the same state. This situation creates an ambiguity when Ĥ(λ,y)
nexc requires more

8
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Table 2. Coefficients of projected couplings involving
μ̃′ = 0N−21121 for repeated irreps with λ = [N − 1, 1].

|3, μ̃′ ,λ; 2, 1〉 |3, μ̃′,λ; 2, 2〉 μ̃ C(λ)
μ̃′ ,μ̃(11, 11) C(λ)

μ̃′ ,μ̃(11, 21)

|A〉 |B〉 0N−212 1 0
0N−121 〈X|A〉 〈X|B〉

|X〉 |Y〉 0N−212 〈A|X〉 〈A|Y〉
0N−121 1 0

than one function with the same μ̃, i,e, when Kλμ > 1; otherwise, C(λ)
μ̃′ ,μ̃(w′, w) = 1. For instance, consider

the state
∣∣3, 0N−111, [N − 1, 1]; 2, 1

〉
= (|2011〉 − |2012〉)/

√
2, and apply to it consecutive excitations to get

to a state with μ̃ = 0N−21121. There are two possible paths:

|2011〉 − |2012〉√
2

â0 Ĵ(1,0)
+−−−−→

N∑
i=3

|10111i〉 − |10121i〉√
2(N − 2)

â0 Ĵ(2,1)
+−−−−→

N∑
i=3

|211i〉 − |221i〉+ |112i〉 − |122i〉
2
√

N − 2
,

(49a)

and
|2011〉 − |2012〉√

2

â0 Ĵ(2,1)
+−−−−→ |1021〉 − |1022〉√

2
â0 Ĵ(1,0)

+−−−−→ 1√
2(N − 1)

[
|2112〉 − |1122〉+

N∑
i=3

(|211i〉 − |221i〉)
]
.

(49b)

While the identifications

∣∣3, 0N−212, [N − 1, 1]; 2, 1
〉
=

N∑
i=3

|10111i〉 − |10121i〉√
2(N − 2)

,

∣∣3, 0N−121, [N − 1, 1]; 2, 1
〉
=

|1021〉 − |1022〉√
2

(50)

are immediate, the assignment of
∣∣3, 0N−21121, [N − 1, 1]; 2, 1

〉
and

∣∣3, 0N−21121, [N − 1, 1]; 2, 2
〉

is unclear
since the two obtained states are linearly independent yet not mutually orthogonal. Bypassing this
ambiguity requires the definition of an orthonormal basis spanned by the previous states, then the
coefficients can be extracted from the identity

L(λ)
μ̃′μ̃C(λ)

μ̃′μ̃(w′, w) = 〈μ̃,λ; y, w| Ĵ(μ̃′,μ̃)
− |μ̃′,λ; y, w′〉 . (51)

For instance, let us set

|A〉 =
N∑

i=3

|211i〉 − |221i〉+ |112i〉 − |122i〉
2
√

N − 2
, (52)

and

|X〉 = |2112〉 − |1122〉+
∑N

i=3(|211i〉 − |221i〉)√
2(N − 1)

, (53)

and compute their orthogonal complements:

|B〉 = Î − |A〉 〈A|(
1 − | 〈X|A〉 |2

)1/2
|X〉 , (54)

and

|Y〉 = Î − |X〉 〈X|(
1 − | 〈X|A〉 |2

)1/2 |A〉 , (55)

where Î is the identity operator. The values of the coefficients calculated with both working basis are shown

in table 2. Since the bare energies, ε(μ̃)
nexc

, are independent of the index w, and
∑Kλμ′

t′=1

∣∣∣C(λ)
μ̃′μ̃(w′, w)

∣∣∣2 = 1, the

choice of basis is immaterial for the eigenvalues of Ĥ(λ,y)
nexc .

9
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In summary, the full symmetrized blocks of the interaction Hamiltonian are given by

Ĥ(λ,y)
int,nexc

=
∑

μ̃:μ�λ

∑
μ̃′:μ′�λ

Kλμ∑
i=1

Kλμ′∑
i′=1

gμ̃′μ̃B(nexc)
μ̃′,μ̃ L(λ)

μ̃′,μ̃C(λ)
μ̃′ ,μ̃(w′

i′ , wi) |nexc, μ̃
′,λ; y, w′

i′ 〉 〈nexc, μ̃,λ; y, wi| . (56)

5. Algorithm for Hamiltonian separation

In this section we lay out the specific steps to write the block diagonalized Hamiltonian of a given excitation
manifold.

(a) Define nexc, the manifold.

(b) List all relevant μ̃, the spectral configurations.

1. Enumerate all the partitions, ν = [v1, v2, . . . , vk], of integers from 0 to nexc. These must amount to
|nexc| as calculated with (14) and (15).

2. Gather the unique elements in each partition and their corresponding multiplicities. These are the
excited levels, 1 � v � r, and their populations, nμ̃(v), respectively.

3. Write the spectral configurations according to (9), taking into account that

nμ̃(0) =

{
N if ν = [0]

N − k otherwise
. (57)

(c) Calculate all the relevant bare energies, ε(μ̃)
nexc

, with (11).

(d) List all the allowed λ, the symmetry defining partitions.

1. Enumerate the spectral configurations as μ, i.e. as partitions in regular form.

2. Discard redundancies. The remaining partitions are the possible λ. Their number must add up to
|λnexc | as calculated with (30) and (31).

(e) Determine the composition of each μ̃ in terms of λ according to Young’s rule in (18).

1. Find out the dominance relations among partitions according to (19).

2. Compute the pertinent Kostka numbers (Kλμ).
(f) Write the diagonal of Ĥ(λ)

nexc
.

1. Write the diagonal of Ĥ(λ,1)
nexc

.

(i) Identify all the μ̃ to which λ contributes.

(ii) Collect the bare energies with the μ̃ identified above and list each of them Kλμ times.

2. Calculate the dimension of the representation, dim(Sλ), according to the hook-length formula (24).

3. By following
H(λ)

nexc
= 1dim(Sλ) ⊗ H(λ,1)

nexc
, (58)

register the blocks of the Hamiltonian.

(g) Calculate the couplings.

1. Among the available spectral configurations, determine all pairings {μ̃′, μ̃} such that∣∣∣∣∣
nexc∑
v=1

v
[
nμ̃′(v) − nμ̃(v)

]∣∣∣∣∣ = 1. (59)

The number of pairings inside a given manifold must be nint(nexc) as calculated with (38).

2. For each pair

(i) Identify the the levels involved in the transition, v∗ and v∗ + s, as well as the respective
transition dipole moment, and calculate gμ̃′,μ̃ with (40).

(ii) Compute the contribution from the transition in the EM mode, Bnexc
μ̃′,μ̃, with (41).

3. Write the off-diagonal terms of Ĥ(λ,1)
nexc

. For each pair {μ̃′, μ̃} within each block of symmetry λ:

(i) Evaluate the contributions from the transition in the space of emitters, L(λ)
μ̃′ ,μ̃, according to (48). This

can be accomplished by brute-force computation of (46) and (47), or with the strategies described
in appendix D.

(ii) If Kλμ′ > 1

10
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Table 3. Relevant partitions, spectral configurations, excitations in the EM mode, bare energies, and module dimensions calculated in
the block diagonalization of Ĥ3(N).

n p(n) ν μ̃ v(3,μ̃)
0 ε(μ̃)

3 μ q(n) λ dim(Sλ)

0 1 [0] 0N 3 7
2�ω + Nε0 [N] 1 [N] 1

1 1 [1] 0N−111 2 5
2�ω + (N − 1)ε0 + ε1 [N − 1, 1] 1 [N − 1, 1] N − 1

2 2 [2] 0N−121 1 3
2�ω + (N − 1)ε0 + ε2 [N − 1, 1] 1 — —

[1, 1] 0N−212 1 3
2�ω + (N − 2)ε0 + 2ε1 [N − 2, 2] [N − 2, 2] N(N − 3)/2

3 3 [3] 0N−131 0 �ω
2 + (N − 1)ε0 + ε3 [N − 1, 1] 2 — —

[2, 1] 0N−21121 0 �ω
2 + (N − 2)ε0 + ε1 + ε2 [N − 2, 1, 1] [N − 2, 1, 1] (N − 1)(N − 2)/2

[1, 1, 1] 0N−313 0 �ω
2 + (N − 3)ε0 + 3ε1 [N − 3, 3] [N − 3, 3] N(N − 1)(N − 5)/6

|μ̃3| = 7 |λ3| = 5

Table 4. Kostka numbers, Kλμ, relating the permutation and
Specht modules that appear in the triply excited manifold.

μ

λ [N] [N − 1, 1] [N − 2, 2] [N − 2, 1, 1] [N − 3, 3]

[N] 1 1 1 1 1
[N − 1, 1] 0 1 1 2 1
[N − 2, 2] 0 0 1 1 1
[N − 2, 1, 1] 0 0 0 1 0
[N − 3, 3] 0 0 0 0 1

(A) Construct SABEs, |nexc, μ̃i,λ; y1, w1〉, for all μ̃i connected to μ̃′ in a convenient basis.

(B) Apply Ĵμ̃
′,μ̃i

+ to generate a basis.

(C) Orthogonalize the basis.

(D) Apply Ĵμ̃
′,μ̃i

− to the elements of the basis and extract the quantities L(λ)
μ̃′μ̃C(λ)

μ̃′μ̃(w ′, w) using (51).

(iii) Calculate the coupling matrix element according to (39).

(h) Collect the calculated couplings in their respective blocks.

6. Worked examples

6.1. The triply excited manifold
In this section we illustrate the implementation of the algorithm when dealing with the system when it
holds three quanta, i.e. nexc = 3.

Table 3 compiles the quantities computed according to steps (a)–(d) of the algorithm in the previous
section, as well as the dimensions of the irreps in step (f) 2.

In table 4, we show the Kostka numbers that indicate the composition of the spaces spanned by
wavefunctions with the same μ̃ in terms of symmetrized subspaces labeled by λ. Notice that Kλμ = 0
implies that λ � μ.

The factors required to calculate the off-diagonal elements, as prescribed by step (g), up until [(g) 3. (i)],
are on display in table 5. Step (g) 3. (ii) was worked in detail in the discussion leading to table 2. What is left
to this section are the explicit forms of the overlaps:

〈X|A〉 =
(

N − 2

2(N − 1)

)1/2

,

and

〈X|B〉 =
(

N

2(N − 1)

)1/2

= 〈A|Y〉 .

11
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Table 5. Energy levels involved and contributions from transitions in the EM and
emitter modes to the couplings between spectral configurations in the triply excited
manifold.

μ̃ μ̃′ v∗ v∗ + s B(3)
μ̃′ ,μ̃ L[N]

μ̃′ ,μ̃ L[N−1,1]
μ̃′ ,μ̃ L[N−2,2]

μ̃′ ,μ̃

0N 0N−111 0 1
√

3
√

N
0N−111 0N−212 0 1

√
2

√
2(N − 1)

√
N − 2

0N−111 0N−121 1 2
√

2 1 1
0N−212 0N−313 0 1 1

√
3(N − 2)

√
2(N − 3)

√
N − 4

0N−212 0N−21121 1 2 1
√

2
√

2
√

2
0N−121 0N−21121 0 1 1

√
N − 1

√
N − 1

0N−121 0N−131 2 3 1 1 1

With all these elements, the Hopfield–Bogoliubov forms of the block-diagonalized Hamiltonian are

(60a)

(60b)

(60c)

12
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H[N−3,3]
3 = 1N(N−1)(N−5)/6 ⊗

(
ε(0N−313)

3

)
, (60d)

and
H[N−2,1,1]

3 = 1(N−1)(N−2)/2 ⊗
(
ε(0N−21121)

3

)
, (60e)

where 1n is the n × n identity matrix. The matrices above are displayed in a diagrammatic form such that
the horizontal lines represent energy levels, and therefore their labels correspond to diagonal elements,
while the double-headed arrows indicate the couplings with their labels corresponding to off-diagonal
matrix elements. In constructing (60b), the couplings involving the states with μ̃ = 0N−21121 were worked
out with the basis {|A〉 , |B〉}.

In the case of the totally symmetric subspace, we can recognize a ladder of four superradiantly coupled
levels, corresponding to the Dicke states. These are weakly connected to a two-level superradiant interaction
between the SABEs with one excitation in v = 2. In turn, this interaction connects weakly with the
remaining SABE in which the third excited state is populated. For the (N − 1)-degenerate subspace with
λ = [N − 1, 1], the superradiantly connected Dicke states form a three-level system in Ξ configuration.
They weakly couple to a Λ three-level system produced by the degeneracy introduced by the two-fold
contribution of μ̃ = 0N−21121 to this symmetry. As in the case above, the remaining SABE interacts only
weakly with this array. For the symmetry λ = [N − 2, 2] the subspace corresponds to a three-level system
with configuration Λ and degeneracy degree of N(N − 3)/2. However, only one of the couplings is
superradiant while the other is weak. The remaining subspaces with symmetries [N − 3, 3] and [N − 2, 1, 1]
are dark, and therefore there are no interactions among the states with degeneracy degrees
N(N − 1)(N − 5)/6 and (N − 1)(N − 2)/2, respectively.

6.2. Matrices for lower manifolds
Finally, we present the Hopfield-Bogoliubov form of the Hamiltonian operators for 0 � nexc � 2. Their
properties have been exhaustively discussed elsewhere [12, 74, 75].

H[N]
0 =

(
ε(0N )

0

)
, (61)

H[N]
1 =

(
ε(0N )

1 g10

√
N

g01

√
N ε(0N−111)

1

)
, (62a)

H[N−1,1]
1 = 1N−1 ⊗

(
ε(0N−111)

1

)
, (62b)

H[N]
2 =

⎛
⎜⎜⎜⎝

ε(0N )
2 g10

√
2N 0 0

g01

√
2N ε(0N−111)

2 g10

√
2(N − 1) g21

0 g01

√
2(N − 1) ε(0N−212)

2 0

0 g12 0 ε(0N−121)
2

⎞
⎟⎟⎟⎠ , (63a)

H[N−1,1]
2 = 1N−1 ⊗

⎛
⎜⎝ ε(0N−111)

2 g10

√
N − 2 g21

g01

√
N − 2 ε(0N−212)

2 0

g12 0 ε(0N−121)
2

⎞
⎟⎠ (63b)

H[N−2,2]
2 = 1N(N−3)/2 ⊗

(
ε0N−212

2

)
. (63c)

7. Properties of eigenstates

To showcase the usefulness of the formalism, in this section, we analyze the behavior of the energy spectrum
and photon content of the eigenstates as a function of parameters in the Hamiltonian, such as
anharmonicity, intensity of coupling and detuning.

If each of the emitters is a harmonic oscillator (HO), we can define

âi = σ̂(i)
v−1,v v > 0, (64)

and the eigenstates can be represented as excitations of the polariton modes:

|v(UP)v(LP)v(D1) . . . v(DN−1)〉 = (a†+)v(UP)(a†−)v(LP)
N−1∏
k=1

(âD(k))
v(Dk) |0〉 , (65)

13
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where

â†± =
1√

2Ω10

(
±
√
Ω10 ±Δâ†0 +

√
Ω10 ∓Δ

N

N∑
i=1

â†i

)
, (66a)

âD(k) =
1√
k

(
√

k − 1â†k −
1√

k − 1

k−1∑
i=1

â†i

)
. (66b)

The quantities Δ = ω − (ε1 − ε0)/�, and Ω10 = [Δ2 + 4(g10/�)2N]1/2 are the detuning between the EM
mode and the 0 → 1 transition of the emitters, and Rabi frequency, respectively. The labels UP, LP and D
stand for upper, lower and dark polaritons, respectively.

When anharmonicity is considered, the excitations in the polaritonic modes are no longer good
quantum numbers; however, the actual eigenstates are similar enough to those in the harmonic case that the
labels introduced in (65) can still be consistent with some of the features displayed by these states.

The method introduced in this work requires only of the energy spectrum of a single emitter and is
therefore compatible with any approach to determine or approximate it. Since it is a good approximation
for covalent interactions, we introduce anharmonicities by considering each emitter as a Morse oscillator
(MO) [76], i.e. the single-emitter Hamiltonians include a potential energy function of the form

V(R) = De

(
1 − e−

√
8Deχe(R−Re)/�

)2
, (67)

where R is the mass-scaled length of the oscillator with value at equilibrium Re, De = V(∞) − V(Re) is the
dissociation energy, and χe is the so-called anharmonicity constant. The corresponding eigenenergies are
given by

εv = 4Deχe

(
v +

1

2

)[
1 − χe

(
v +

1

2

)]
εv � De, (68)

with the implication that the number of bound-states is �rMO�, where

rMO =
1 − χe

2χe
; (69)

therefore, the potential becomes harmonic as De →∞ (χe → 0) [77].
From (67), it follows that, in the neighborhood of the equilibrium length, the emitters oscillate with

frequency

ωMO =
4Deχe

�
. (70)

On the other hand, the difference in energies of contiguous levels fulfill

εv+1 − εv = �ωMO [1 − 2χe (v + 1)] ; (71)

therefore, χe characterizes the mechanical anharmonicity introduced by this model. There is also an electric
anharmonicity, which stems from the fact that [78]

gMO
v+1,v

gHO
v+1,v

=
2

2(rMO − v) − 1

[
(rMO − v)(rMO − v − 1)

χe(2rMO − v)

]1/2

. (72)

It is pertinent to remark that the dipole moment operator induces transitions between all the levels in an
MO; however, the model in this work focuses only on the v → v ± 1 processes.

Figure 2 compares the eigenenergies as functions of the Rabi splitting, �Ω10 = 2g10

√
N, of systems with

different anharmonicities, and in which the frequency of the EM mode is resonant with the transition
0 → 1 of the emitters. As expected, the slope of the energy as a function of the coupling intensity is
proportional to the number of quanta in the non-dark modes, with the sign of the contribution being
positive for UP, and negative for LP. The introduction of anharmonicity lifts the degeneracy of states with
multiple excitations in the dark modes, which has some remarkable consequences.

In the harmonic case, the quantum numbers facilitate the identification of the symmetry of a state just
by inspection of its multiplicity. For instance, the state |3(UP)〉 is unique in regards of its spectral
configuration; therefore, it belongs to λ = [N]. On the other hand, states of the form |1(UP)1(LP)1(Dk)〉
have multiplicity of N − 1 and symmetry λ = [N − 1, 1]. Also, from the (N − 1)(N − 2)/2 states of the
form |1(LP)1(Dk)1(Dk′)〉, one has symmetry λ = [N] while the remaining N(N − 3)/2 are of the
λ = [N − 2, 2] kind. In contrast, when anharmonicities are involved, the eigenstates can be labeled
according to harmonic states of reference with the appropriate energetics. As a consequence, a state with

14
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Figure 2. Energy spectra of emitters with various anharmonicities coupled to a harmonic EM mode as a function of the
coupling intensity, �Ω10, in the weak-to-strong regime. The parameters of the Morse potential are such that the number of
bound states, rMO, are ∞, 24 and 4, respectively, for each of the displayed columns. The legend to the left shows the labels of
states in the harmonic case, while the legend to the right labels states in the anharmonic regime.
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Figure 3. Energy spectra of anharmonic emitters coupled to a harmonic EM mode with illustrated degeneracies as a function of
the number of emitters, N. The Morse potential parameters are De = 15.25�ω and χe = 0.053. The thickness of the lines are
logarithmically proportional to the degeneracies of the irreps, dim(Sλ).

Figure 4. Photon content of harmonic eigenstates as a function of detuning.

labels |1(LP)2(Dk)〉, which accounts for BEs with μ̃ = 0N−121, now has symmetry λ = [N] despite
belonging to a multiplet of size N − 1. The lift in degeneracy, together with the diversity in slopes with
which the eigenenergies depend on the coupling strength generate situations in which the ordering of levels
changes for different coupling intensities. This might result in the inversion of labeling of spectroscopic
signals for samples with different concentrations of emitters, which, in turn, may open the door for
coherent control strategies based on reactive systems. Furthermore, conditions of near degeneracy
modulated by light–matter coupling can result in enhancement of multiphoton absorption, as suggested in
[32] for the doubly excited manifold.

In figure 3, the energy of the eigenstates is plotted against the number of coupled molecules with the
thickness of the lines illustrating the degeneracy of each energy level. In each case, the thickness corresponds
to log[dim(Sλ)] and should not be mistaken by any broadening mechanism such as dissipation or disorder.
It can be seen that both, degeneracy and energy separation, increase with the number of molecules.
Furthermore, the most degenerate levels are those with constant energy. Among such states there are dark,
with no component whatsoever from the EM mode, and states where v(UP) = v(LP) in which the
contributions from both polaritonic modes balance each other energetically. This observation informs that
light–matter coupling might not impact processes that engage the matter component, such as chemical
reactions, even when anharmonicities are taken into account. Moreover, the resolution in energies also
suggests that naturally occurring broadenings shall smear bands of nearby energy levels making them
effectively indistinguishable.
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The formalism presented in this work also allows to calculate observables associated with operators for
which the permutational symmetry holds. One clear example is the photon number operator, v̂0 = â†0â0,
which measures the photon contents of a given state. In the symmetrized basis, this operator is diagonal and
has the form

v̂0 =
∑

μ̃:μ�λ

dim(Sλ)∑
i=1

Kλμ∑
j=1

v(nexc,μ̃)
0

∣∣nexc, μ̃,λ; yi, wj

〉 〈
nexc, μ̃,λ; yi, wj

∣∣ . (73)

In figure 4 the photon content of the eigenstates is plotted as a function of the detuning for a fixed value of
the collective coupling. The inclusion of anharmonicity should be inconsequential except for the change in
the labeling of eigenstates.

8. Conclusions

In this paper, we address the problem of the coupling between N identical dipoles, each with an arbitrary
spectral structure, and a harmonic electromagnetic mode confined in a cavity. We have introduced tools
from group theory that capitalize from the permutational symmetry of the system to simplify the
time-independent Schrödinger equation. In the symmetry-adapted basis, the Hamiltonian breaks down into
manageable matrices whose dimension is independent of the number of emitters and grows
subexponentially with the number of excitations. While the total number of these matrices does depend
polynomially on the number of emitters, they encode highly degenerate subspaces; therefore, the effective
number of matrices to diagonalize is actually small. Since the method here presented does not rely on the
explicit form of the basis transformation, the off-diagonal matrix elements are constructed by taking
advantage of the fact that the structure of the Hilbert space also displays the symmetry of the special unitary
group, and therefore can be described with the tools from angular momentum theory. This procedure
exhibits the (super)radiant character of the transitions. We have also explored the immediate implications
of including anharmonicities on the energetic and combinatorial characterization of the eigenstates. Finally,
we have calculated the photon content of the eigenstates to exemplify the utility of the method in the
extraction of observables associated with symmetry-preserving operators.
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Appendix A. System Hamiltonian separated by excitation manifolds

After recognizing nexc as a conserved quantity, the explicit forms of Ĥnexc for the groundstate, as well as the
first, second, and third excitation manifolds are, respectively, Ĥ0(N) =

( �ω
2 + Nε0

)
|0〉 〈0|

Ĥ1(N) =

(
3

2
�ω + Nε0

)
|10〉 〈10|+

(
�ω
2

+ ε1 + (N − 1)ε0

) N∑
i=1

|1i〉 〈1i| (1.1a)

+

N∑
i=1

(
g01 |10〉 〈1i|+ g10 |1i〉 〈10|

)
, (1.1b)

Ĥ2(N) =

(
5

2
�ω + Nε0

)
|20〉 〈20|+

(
3

2
�ω + ε1 + (N − 1)ε0

) N∑
i=1

|101i〉 〈101i|

+

(
�ω
2

+ 2ε1 + (N − 2)ε0

) N−1∑
i=1

N∑
j=i+1

∣∣1i1j

〉 〈
1i1j

∣∣
17
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+

(
�ω
2

+ ε2 + (N − 1)ε0

) N∑
i=1

|2i〉 〈2i|

+

N∑
i=1

⎡
⎣√2g01 |20〉 〈101i|+ |101i〉

⎛
⎝g12 〈2i|+ g01

∑
j�=i

〈
1i1j

∣∣
⎞
⎠+ H.c.

⎤
⎦ , (1.1c)

Ĥ3(N) =

(
7

2
�ω + Nε0

)
|30〉 〈30|+

(
5

2
�ω + ε1 + (N − 1)ε0

) N∑
i=1

|201i〉 〈201i|

+

(
3

2
�ω + ε2 + (N − 1)ε0

) N∑
i=1

|102i〉 〈102i|

+

(
3

2
�ω + 2ε1 + (N − 2)ε0

) N−1∑
i=1

N∑
j=i+1

∣∣101i1j

〉 〈
101i1j

∣∣

+

(
�ω
2

+ ε3 + (N − 1)ε0

) N∑
i=1

|3i〉 〈3i|

+

(
�ω
2

+ ε2 + ε1 + (N − 2)ε0

) N∑
i=1

∑
j�=i

∣∣2i1j

〉 〈
2i1j

∣∣

+

(
�ω
2

+ 3ε1 + (N − 3)ε0

) N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

∣∣1i1j1k

〉 〈
1i1j1k

∣∣

+

N∑
i=1

⎡
⎣√3g01 |30〉 〈201i|+

√
2 |201i〉

⎛
⎝g12 〈102i|+ g01

∑
j�=i

〈
101i1j

∣∣
⎞
⎠+ H.c.

⎤
⎦

+

N−1∑
i=1

N∑
j=i+1

⎧⎨
⎩
∣∣101i1j

〉⎡⎣g12

(〈
2i1j

∣∣+ 〈2j1i

∣∣)+ g01

∑
k �=i,j

〈
1i1j1k

∣∣
⎤
⎦+ H.c.

⎫⎬
⎭

+

N∑
i=1

⎡
⎣|102i〉

⎛
⎝g23 〈3i|+ g01

∑
j�=i

〈
2i1j

∣∣
⎞
⎠+ H.c.

⎤
⎦ , (1.1d)

where |0〉 = |0001 . . . 0N〉 is the global ground state and H.c. stands for Hermitian conjugate.
In general, these can be written in terms of the spectral configuration as

Ĥnexc (N) =
∑
μ̃

|μ̃|∑
y=1

εμ̃ |nexc, μ̃; y〉 〈nexc, μ̃; y|

+
∑
μ̃

(
gμ̃′ ,μ̃Ĵ(μ̃′,μ̃)

+ â0 |nexc, μ̃; y〉 〈nexc, μ̃; y|+ H.c.
)

, (1.2)

where the first sum runs over the possible |nexc| spectral configurations within the respective manifold, and

|μ̃| = N!
r∏

i=1

μi!

. (1.3)

Appendix B. Notation and permutational formulae. Examples of usage

This section includes useful illustrations for some of the tools and concepts introduced throughout the
main text.
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Table B1. Examples of spectral configurations, partitions, and Young diagrams
corresponding to selected PBEs with nexc = 0.

PBE μ̃ μ ν Young diagrama

|0〉 0N [N] [0]

|1i〉 0N−111 [N − 1, 1] [1]

∣
∣1i1j

〉
0N−212 [N − 2, 2] [1, 1]

|2i〉 0N−121 [N − 1, 1] [2]

∣
∣2i4j5k

〉
0N−3214151 [N − 3, 1, 1, 1] [5, 4, 2]

∣
∣1i1j2k2�2m4n

〉
122341 [3, 2, 1] [4, 2, 2, 2, 1, 1]

aN = 6.

Table B2. Examples of standard Young tableaux and their
associated indices for N = 6.

SYT λ y

[6] 0

[5, 1] 6

[4, 2] (3, 5)

[3, 3] (3, 5, 6)

[4, 1, 1] (3; 4)

[3, 2, 1] (2, 5; 6)

B.1. Spectral configurations and Young tableaux
Tables B1–B3 display examples of the relations between the spectral configuration and the main partitions
to consider, as well as the corresponding Young diagrams, standard Young tableaux, and semistandard
Young tableaux.

B.2. Determination of hook-lengths
Let us consider the Young diagram for λ = [6, 4, 3, 2, 1], the hook of the cell with coordinates (2, 2) is

and the hook-lengths for each cell are
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Table B3. Examples of semistandard Young tableaux and their
associated indices for N = 6 and μ̃ = 031221.

SSYT λ w

[6] 0

[5, 1] 11

[5, 1] 21

[4, 2] 1121

[3, 3] 1221

[4, 1, 1] (11, 21)

[3, 2, 1] (12, 21)

B.3. Reduction of representations of S3

The six elements of S3 in the basis of PBEs with μ̃ = 11 are

π̂() = |11〉 〈11|+ |12〉 〈12|+ |13〉 〈13| ,

π̂(12) = |11〉 〈12|+ |12〉 〈11|+ |13〉 〈13| ,

π̂(23) = |11〉 〈11|+ |12〉 〈13|+ |13〉 〈12| ,

π̂(31) = |11〉 〈13|+ |12〉 〈12|+ |13〉 〈11| ,

π̂(123) = |11〉 〈13|+ |12〉 〈11|+ |13〉 〈12| ,

π̂(132) = |11〉 〈12|+ |12〉 〈13|+ |13〉 〈11| .

(2.1)

Let us investigate the consequence of changing the basis to that of the SABEs.
Starting from the state

∣∣1, 03, [3]; 0, 0
〉
, the action of the operator â0 Ĵ(1,0)

+ yields

∣∣1, 0211, [3]; 0, 0
〉
=

1√
3

(
|11〉+ |12〉+ |13〉

)
. (2.2)

The remaining two SABEs with μ̃ = 0211 are

∣∣1, 0211, [2, 1]; 2, 11
〉
=

|11〉 − |12〉√
2

, (2.3a)

and

∣∣1, 0211, [2, 1]; 3, 11
〉
=

− |11〉 − |12〉+ 2 |13〉√
6

. (2.3b)
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The permutation operators thus become

π̂() = |[3]; 0〉 〈[3]; 0|+ |[2, 1]; 2〉 〈[2, 1]; 2|+ |[2, 1]; 3〉 〈[2, 1]; 3| ,

π̂(12) = |[3]; 0〉 〈[3]; 0| − |[2, 1]; 2〉 〈[2, 1]; 2|+ |[2, 1]; 3〉 〈[2, 1]; 3| ,

π̂(23) = |[3]; 0〉 〈[3]; 0|+ 1

2

(
|[2, 1]; 2〉 〈[2, 1]; 2| − |[2, 1]; 3〉 〈[2, 1]; 3|

)

+

√
3

2

(
|[2, 1]; 2〉 〈[2, 1]; 3|+ |[2, 1]; 3〉 〈[2, 1]; 2|

)
,

π̂(31) = |[3]; 0〉 〈[3]; 0|+ 1

2

(
|[2, 1]; 2〉 〈[2, 1]; 2| − |[2, 1]; 3〉 〈[2, 1]; 3|

)

−
√

3

2

(
|[2, 1]; 2〉 〈[2, 1]; 3|+ |[2, 1]; 3〉 〈[2, 1]; 2|

)
,

π̂(123) = |[3]; 0〉 〈[3]; 0| − 1

2

(
|[2, 1]; 2〉 〈[2, 1]; 2|+ |[2, 1]; 3〉 〈[2, 1]; 3|

)

−
√

3

2

(
|[2, 1]; 2〉 〈[2, 1]; 3| − |[2, 1]; 3〉 〈[2, 1]; 2|

)
,

π̂(132) = |[3]; 0〉 〈[3]; 0| − 1

2

(
|[2, 1]; 2〉 〈[2, 1]; 2|+ |[2, 1]; 3〉 〈[2, 1]; 3|

)

+

√
3

2

(
|[2, 1]; 2〉 〈[2, 1]; 3| − |[2, 1]; 3〉 〈[2, 1]; 2|

)
,

(2.4)

where the notation was simplified by making implicit the common indices nexc = 1 and μ̃ = 0211, as well as
by omitting the label w. As it can be seen, there are two clear independent subspaces labeled by [1–3],
respectively.

Appendix C. Schur–Weyl basis

The SABEs obtained through application of the collective excitations, Ĵ(u,v)
+ , and Gram–Schmidt

orthogonalization have been discussed in the literature under the name of Schur–Weyl states [42, 79–81],
or Gelfand–Tsetlin states [82–85]. Although not necessary for the block-diagonalization of the
Hamiltonian, an illustration of the explicit form of the symmetrized states in terms of the PBEs might be
useful for the reader. The following formulae is proven to work for SABEs up to the triply excited manifold,
but we have reason to believe that it prepares the ground for a method that also works with upper
excitations. Since symmetrization only affects the portion of the Hilbert space concerning the emitters, the
quantum number nexc, as well as the operators acting on the photonic mode, â(†)

0 , are not included in the
following discussion, i.e. the SABEs are denoted by |μ̃,λ; y, w〉.

If the explicit form of the SABE in terms of PBEs is known, the application of collective excitation
operators gives a straightforward result. For instance, the ground-state and some of its collective excitations
are ∣∣0N , [N]; 0, 0

〉
= |0〉 , (3.1a)

∣∣0N−1v1, [N]; 0, 0
〉
=

1√
N

N∑
i=1

|vi〉 , (3.1b)

∣∣0N−2v2, [N]; 0, 0
〉
=

(
N

2

)−1/2N−1∑
i=1

N∑
j=i+1

∣∣vivj

〉
, (3.1c)

∣∣0N−3v3, [N]; 0, 0
〉
=

(
N

3

)−1/2N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

∣∣vivjvk

〉
, (3.1d)

∣∣0N−2u1v1, [N]; 0, 0
〉
=

1√
N(N − 1)

N−1∑
i=1

N∑
j=i+1

(∣∣uivj

〉
+
∣∣viuj

〉)
, (3.1e)

where λ = [N] and y = 0 indicate the SYT This tableau implies that the wavefunction must
be invariant under any permutation of all the labels. Since all emitters are in the same state in the collective
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ground-state, this condition is met by default. The linear combinations of the excited spectral
configurations are thus totally symmetric.

The states with spectral configuration such that μ = λ cannot be generated through excitation
operators, and thus require a orthogonalization strategy. Since these states are highly degenerate, the change
of basis is not unique; however, there is an approach that highlights the meaning of the label y. For a 1D
array (i1, i2, . . . , in), let us define the vandermonde-like matrix V̂(i1, i2, . . . , in) with elements[

V̂(i1, i2, . . . , in)
]
α,β

= σ̂
(iβ )
α−1,0. (3.2)

A given SYT can be associated to Young operators of the form

Ŷ(λ, y) =
∑
ψ

λ1∏
j=1

det
(

V̂(colj[y′ψ])
)

, (3.3)

where colj(A) extracts the jth column of array A, and y′ψ is any permutation of the elements in each row of y
that produces downwards increasing columns. For instance, the SYT

(3.4)

generates the arrays

(3.5a)

(3.5b)

(3.5c)

And the corresponding operator is

Ŷ ([3, 2, 1], (2, 5; 6)) = det
(

V̂(1, 2, 6)
)

det
(

V̂(3, 5)
)

det
(

V̂(4)
)

+ det
(

V̂(1, 2, 6)
)

det
(

V̂(3)
)

det
(

V̂(4, 5)
)

+ det
(

V̂(1, 2)
)

det
(

V̂(3, 5, 6)
)

det
(

V̂(4)
)

+ det
(

V̂(1, 2)
)

det
(

V̂(3)
)

det
(

V̂(4, 5, 6)
)
. (3.6)

If μ = λ, the wavefunction |μ̃,λ; y, w〉 is proportional to Ŷ(λ, y) |0N , [N]; 0, 0〉. Notice that the
constraint μ = λ uniquely defines an SSYT, and therefore a w.

The states orthogonal to
∣∣0N−111, [N]; 0, 0

〉
with the same μ̃ can be written as

∣∣0N−111, [N − 1, 1]; k, 11
〉

,
with 2 � k � N. The corresponding SYT are

which have associated Young operators of the form

Ŷ([N − 1, 1], k) =
k−1∑
i=1

i−1∏
j=1

σ̂
(j)
0,0 ·
∣∣∣∣σ̂(i)

0,0 σ̂(k)
0,0

σ̂(i)
1,0 σ̂(k)

1,0

∣∣∣∣ ·
N∏

j′=i+1

σ̂
(j′)
0,0 . (3.7)
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Table C1. SABEs in terms of PBEs for spectral configurations with at most three excitations in the emitters.

μ̃ λ y w Ô{μ̃,λ; y, w} N−2 Notes

0N [N] 0 0 1 1

0N−1v1 [N] 0 0
N∑

i=1
σ̂(i)
v,0 N v ∈ {1, 2, 3}

[N − 1, 1] k v1 (k − 1)σ̂(k)
v,0 − Ô{0k−211, [k − 1]; 0, 0} k(k − 1) 2 � k � N

0N−212 [N] 0 0 2
N−1∑
i=1

N∑
j=i+1

σ̂(i)
1,0σ̂

(j)
1,0 2N(N − 1)

[N − 1, 1] k 11

(k − 2)σ̂(k)
1,0Ô{0k−211, [k − 1]; 0, 0} − Ô{0k−312, [k − 1]; 0, 0}

+

N∑
j=k+1

σ̂
(j)
1,0Ô{0k−111, [k − 1, 1]; k, 11}

k(k − 1)(N − 2) 2 � k � N

[N − 2, 2] (k, �) 12 (�− 3)σ̂(�)
1,0Ô{0k−111, [k − 1, 1]; k, 11} − Ô{0�−312, [�− 2, 1]; k, 11} k(k − 1)(�− 2)(�− 3)

4 � � � N
2 � k < �

0N−313 [N] 0 0 6
N−2∑
h=1

N−1∑
i=h+1

N∑
j=i+1

σ̂(h)
1,0σ̂

(i)
1,0σ̂

(j)
1,0 6N(N − 1)(N − 2)

[N − 1, 1] k 11

(k − 3)σ̂(k)
1,0Ô{0k−312, [k − 1]; 0, 0} − Ô{0k−413, [k − 1]; 0, 0}

+2
N∑

h=k+1

σ̂(h)
1,0

[
(k − 2)σ̂(k)

1,0Ô{0k−211, [k − 1]; 0, 0} − Ô{0k−312, [k − 1]; 0, 0}
]

+ 2
N−1∑

j=k+1

N∑
h=j+1

σ̂
(j)
1,0σ̂

(h)
1,0Ô{0k−111, [k − 1, 1]; k, 11}

2k(k − 1)N(N − 1) 2 � k � N

[N − 2, 2] (k, �) 12
(�− 4)σ̂(�)

1,0Ô{0�−312, [�− 2, 1]; k, 1} +

N∑
h=�+1

σ̂(h)
1,0Ô{0�−312, [�− 3, 2]; (k, �), 12}

−Ô{0�−413, [�− 2, 1]; k, 11}

k(k − 1)(�− 2)(�− 3)(N − 4)
4 � � � N
2 � k < �

[N − 3, 3] (k, �, m) 13 (m − 5)σ̂(m)
1,0 Ô{0�−312, [�− 3, 2]; (k, �), 12}+ Ô{0m−413, [m − 3, 2]; (k, �), 12} k(k − 1)(�− 2)(�− 3)(m − 4)(m − 5)

6 � m � N
4 � � < m
2 � k < �
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Table C2. SABEs in terms of PBEs with μ̃ = 0N−21121.

μ̃ λ y w Ô{μ̃,λ; y, w} N−2 Notes

0N−21121 [N] 0 0 2
N−1∑
i=1

N∑
j=i+1

(
σ̂(i)

2,0σ̂
(j)
1,0 + σ̂

(j)
2,0σ̂

(i)
1,0

)
4N(N − 1)

[N − 1, 1] k 11

(k − 2)
(
σ̂(k)

2,0Ô{0k−211, [k − 1]; 0, 0}+ σ̂(k)
1,0Ô{0k−221, [k − 1]; 0, 0}

)

−
N∑

j=k+1

(
σ̂

(j)
1,0Ô{0k−221, [k − 1]; 0, 0}+ σ̂

(j)
2,0Ô{0k−211, [k − 1]; 0, 0}

)

+ (k − 1)
N∑

j=k+1

(
σ̂(k)

2,0σ̂
(j)
1,0 + σ̂(k)

1,0σ̂
(j)
2,0

)
− Ô{0k−31121, [k − 1], 0, 0}

2k(k − 1)(N − 2) 2 � k � N

21

k
(
σ̂(k)

2,0Ô{0k−211, [k − 1]; 0, 0} − σ̂(k)
1,0Ô{0k−221, [k − 1]; 0, 0}

)

+

N∑
j=k+1

(
σ̂

(j)
2,0Ô{0k−211, [k − 1]; 0, 0} − σ̂

(j)
1,0Ô{0k−221, [k − 1]; 0, 0}

)

+ (k − 1)
N∑

j=k+1

(
σ̂(k)

2,0σ̂
(j)
1,0 + σ̂(k)

1,0σ̂
(j)
2,0

)
2k(k − 1)N 2 � k � N

[N − 2, 2] (k, �) 1121
(�− 3)

(
σ̂(�)

1,0Ô{0k−121, [k − 1, 1]; k, 21}+ σ̂(�)
2,0Ô{0k−111, [k − 1, 1]; k, 11}

)
−Ô{0�−31121, [�− 2, 1]; k, 11}

2k(k − 1)(�− 2)(�− 3)
4 � � � N
2 � k < �

[N − 2, 1, 1] (k; �) (11, 21)
(�− 2)

(
σ̂(k)

2,0σ̂
(�)
1,0 + σ̂(k)

1,0σ̂
(�)
2,0

)
+

�−1∑
i=k+1

[(
σ̂(k)

2,0 − σ̂(�)
2,0

)
σ̂(i)

1,0 +
(
σ̂(�)

1,0 − σ̂(k)
1,0

)
σ̂(i)

2,0

]

+
(
σ̂(k)

2,0 − σ̂(�)
2,0

)
Ô{0k−111, [k − 1]; 0, 0}+

(
σ̂(�)

1,0 − σ̂(k)
1,0

)
Ô{0k−121, [k − 1]; 0, 0}

2�(�− 1)
3 � � � N
2 � k < �
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Therefore, the corresponding SABEs are

∣∣0N−111, [N − 1, 1]; k, 11
〉
=

1√
k(k − 1)

(
−

k−1∑
i=1

|1i〉+ (k − 1) |1k〉
)
. (3.8)

The functions
∣∣0N−1v1, [N − 1, 1]; k, v1

〉
for v > 1 have an equivalent form. Furthermore, the action of the

collective excitation Ĵ(1,0)
+ yields

∣∣0N−212, [N − 1, 1]; k, 11
〉
= [(N − 2) k (k − 1)]−1/2

k∑
i=1

N∑
j=i+1

c(k)
ij

∣∣1i1j

〉
, (3.9a)

where

c(k)
ij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−2 for 1 � i < k − 1 and 1 < j � k − 1,

k − 2 for 1 � i � k − 1 and j = k,

−1 for 1 � i � k − 1 and k < j � N,

k − 1 for i = k and k < j � N

. (3.9b)

Following the same reasoning, the remaining states with μ̃ = 0N−212 that are orthogonal to all the states
above are

∣∣0N−212, [N − 2, 2]; (k, �), 12
〉
= [k(k − 1)(�− 2)(�− 3)]−1/2

k∑
i=1

�∑
j=i+1

c(k,�)
ij

∣∣1i1j

〉
, (3.10a)

where

c(k,�)
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 for 1 � i < k − 1 and 1 < j � k − 1,

−(k − 2) for 1 � i � k − 1 and j = k,

1 for 1 � i � k − 1 and k < j < �,

−(�− 3) for 1 � i � k − 1 and j = �,

−(k − 1) for i = k and k < j < �,

(k − 1)(�− 3) for i = k and j = �,

0 otherwise

. (3.10b)

Tables C1 and C2 show, up to the triply excited manifold, the excitation operators, Ô{μ̃,λ; y, w}, that
produce the states with the same labels when applied to the global groundstate of the emitters, i.e.

Ô{μ̃,λ; y, w} |0〉 = N−2 |μ̃,λ; y, w〉 . (3.11)

The nested structure of the operators responds to the fact that the higher states are obtained through either
collective excitations, or Gram–Schmidt orthogonalization of the lower ones.

Appendix D. Efficient calculation of L(λ)
μ̃′,μ̃

In this section, we present two approaches, one analytical and other computational, to the calculation of the
contribution of the collective transitions in the Hilbert space of the emitters to the couplings between states
in (39).

First, we introduce a by-hand method to compute individual instances of (48). Taking advantage of the
fact that nμ̃(v∗ + s) + nμ̃(v∗) = nμ̃′(v∗ + s) + nμ̃′(v∗), we can write

L(λ)
μ̃′μ̃ =

{[
nμ̃(v∗) − ρJ

] [
nμ̃′(v

∗ + s) − ρJ

]}1/2
, (4.1)
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Table D1. Contribution of transitions in emitter space to the
coupling coefficients between μ̃ = 0N−212 and μ̃′ = 0N−313.
Notice that nμ̃(0) = N − 2 and nμ̃′ (1) = 3.

λ J(λ)

0N−3 13,0N−2 12 ρJ L(λ)

0N−313,0N−2 12

[N] N
2 0

√
3(N − 2)

[N − 1, 1] N
2 − 1 1

√
2(N − 3)

[N − 2, 2] N
2 − 2 2

√
N − 4

[N − 3, 3] N
2 − 3 3 0

where ρJ = [nμ̃(v∗ + s) + nμ̃(v∗)]/2 − J(λ)
μ̃′μ̃. When ρJ = 0, which is a typical situation among low excitation

manifolds, the term inside the radical has an intuitive interpretation since it can be read as the product of
the number of emitters in μ̃ available for excitation with the number of emitters in μ̃′ available for
deexcitation. Furthermore, ρJ increases as λ becomes less dominant, i.e. strays away from [N]; this provides
with an automatic way to determine the symmetry labels for which a given coupling is worth to calculate.
Table D1 illustrates this calculation for the couplings between μ̃ = 0N−212 and μ̃′ = 0N−313.

Second, we discuss a computational method to get not only multiple values of the sought coefficients,
but also the SABEs connected by a particular raising operator. Given that

Ĵ(μ̃′,μ̃)
+ |μ̃,λ; y, w〉 = L(λ)

μ̃′,μ̃C(λ)
μ̃′,μ̃(w′, w) |μ̃′,λ; y, w′〉 , (4.2)

it is possible to write

Ĵ(μ̃′,μ̃)
+ =

∑
λ�μ′

dim(Sλ)∑
i=1

Kλμ′∑
j′=1

Kλμ∑
j=1

L(λ)
μ̃′,μ̃C(λ)

μ̃′,μ̃(w′, w)
∣∣∣μ̃′,λ; yi, w′

j′

〉〈
μ̃,λ; yi, wj

∣∣ , (4.3)

and define

Û μ̃ =
∑
λ�μ

dim(Sλ)∑
i=1

Kλμ∑
j=1

∣∣μ̃,λ; yi, wj

〉 〈
μ̃,λ; yi, wj

∣∣ . (4.4)

The latter implies that, if the raising operator is written in the basis of the PBEs, the coefficients
L(λ)
μ̃′,μ̃C(λ)

μ̃′,μ̃(w′, w) are its singular values, while the unitary operators Û μ̃′ and Û μ̃ correspond to the matrices
of singular vectors, which provide with the changes of basis between PBEs and SABEs. In short, singular

value decomposition of Ĵ(μ̃′,μ̃)
+ in an arbitrary basis yields the coupling coefficients as well as the

symmetrized states in the subspaces of functions with the spectral configurations involved in the transition.
The apparent contradiction in (3) that there are symmetry labels such that λ � μ′ yet λ � μ is solved by

recognizing the set of states {|μ̃′,λ; y, t′〉 : λ � μ} as the null-space of the raising operator, i.e. L
(λ�μ)

μ̃′,μ̃ = 0.

This feature is consistent with the fact that dim(Mμ ′
) > dim(Mμ).

To conclude, we work the example of the coupling, in a system with N = 4, between μ̃ = 0311 and
μ̃′ = 0212. The subspaces and couplings are given by

⎛
⎜⎜⎝
|11〉
|12〉
|13〉
|14〉

⎞
⎟⎟⎠ Ĵ(1,0)

−−−⇀↽−−
Ĵ(1,0)
+

⎛
⎜⎜⎜⎜⎜⎜⎝

|1112〉
|1113〉
|1114〉
|1213〉
|1214〉
|1314〉

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.5)

In this basis, the raising operator is

J(0212,0311)
+ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.6)

Its singular value decomposition yields
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U0311 =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
√

3 0 0

1
1√
3

−
√

8

3
0

1
1√
3

√
2

3
−
√

2

1
1√
3

√
2

3

√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.7)

U0212 =
1√
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −
√

2 0 − 1√
2

√
3

2

1 −1
1√
2

−
√

3

2

√
2 0

1 −1
1√
2

√
3

2
− 1√

2
−
√

3

2

1 1 − 1√
2

−
√

3

2
− 1√

2
−
√

3

2

1 1 − 1√
2

√
3

2

√
2 0

1 1
√

2 0 − 1√
2

√
3

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.8)

S0212

0311 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
6 0 0 0

0
√

2 0 0

0 0
√

2 0
0 0 0

√
2

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.9)

where Sμ̃′
μ̃ = U†

μ̃′J
(μ̃′,μ̃)
+ Uμ̃ is the matrix whose diagonal lists the singular values of J(μ̃′,μ̃)

+ . Notice that these

values correspond with the expected
√

2(N − 1) and
√

N − 2 with degeneracy degrees of 1 and N − 1
respectively; furthermore, the null-space has dimension N(N − 3)/2.
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