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Abstract
Distinguishing physical processes is one of the fundamental problems in quantum physics.
Although distinguishability of quantum preparations and quantum channels have been studied
considerably, distinguishability of quantum measurements remains largely unexplored. We
investigate the problem of single-shot discrimination of quantum measurements using two
strategies, one based on single quantum systems and the other one based on entangled quantum
systems. First, we formally define both scenarios. We then construct sets of measurements
(including non-projective) in arbitrary finite dimensions that are perfectly distinguishable within
the second scenario using quantum entanglement, while not in the one based on single quantum
systems. Furthermore, we show that any advantage in measurement discrimination tasks over
single systems is a demonstration of Einstein–Podolsky–Rosen ‘quantum steering’. Alongside, we
prove that all pure two-qubit entangled states provide an advantage in a measurement
discrimination task over one-qubit systems.

1. Introduction

Distinguishability of different physical processes is a fundamental question in the field of quantum
physics [1]. It all started with the seminal work on quantum state discrimination by Helstrom [2], in which
an upper bound on the probability of discrimination between the two states was derived. In recent years the
problem of state discrimination has been explored extensively not only from the fundamental perspective
but has also been studied due to its relevance for quantum information protocols such as quantum
communication or quantum cryptography [3–6]. It has also been studied in the context of resource
theories of measurements in the quantum mechanical [7, 8] as well as the generalized probability theory [9]
scenario. On the other hand, via the well-known Choi–Jamiołkowski isomorphism [10, 11], the state
discrimination problem of Helstrom has been, quite naturally, translated to the problem of discrimination
of quantum channels, whose various aspects have intensively been studied in recent years [12–19].

At the same time, the problem of quantum measurement discrimination remains relatively unexplored.
It should be noted here that the most intriguing feature of the measurement discrimination problem, as
compared to state discrimination, is that in it one can enhance the probability of distinguishing
measurements by using quantum entanglement [20–22]. In [23, 24] unambiguous discrimination of
quantum measurements is reported, where two shots are needed for perfect discrimination. Furthermore,
in a recent experiment [25] the optimal discrimination of two projective quantum measurements has been
investigated. However, most of the previous results, are either restricted to two-dimensional quantum
systems [20, 21, 23, 25], or have been studied in the multiple-shot scenario [20, 26]. Like in [21], here we
consider the most practical single-shot scenario wherein only one copy of the measurement device is
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Figure 1. Schematic illustration of the single-shot measurement distinguishability problem in the single-system scenario. A
measurement device is fed with a known state ρ and performs a measurement Mx on it, yielding an outcome a. Depending on the
outcome one then chooses the post-processing strategy to provide the best guess for the input x. The user has full control over the
preparation device.

available, and the measurements are destructive, that is, we assume that there is no access to the
post-measurement state.

The main aim of this work is to explore the advantage in discriminating arbitrary dimensional
measurements provided by entangled quantum systems. Precisely, we derive criteria allowing to decide
whether a set of measurements in arbitrary dimension d is perfectly distinguishable in
entanglement-assisted scenario, but not within the single-system scenario for: (i) rank-one projective
measurements, (ii) d2 outcome Positive Operator-Valued Measurements (POVMs), and (iii) d + 1 outcome
POVMs. Moreover, we provide many classes of measurement of these types and further study the qualitative
advantage obtained in entanglement-assisted scenario as compared to the single-system scenario.
Remarkably, any advantage provided by the entangled systems in the measurement discrimination problem
is a proof of ‘quantum steering’. Quantum steering manifests the nonlocal effects of entangled states, which
was scrutinized by Einstein–Podolsky–Rosen [27] and formalized later in [28]. Alongside, we show there
exists a set of measurements (up to a local unitary equivalence) for which all pure two-qubit entangled
states provide advantage.

The paper is organised as follows. In section 2, we formulate the measurement distinguishability task in
two different scenarios and identify the necessary resource for the advantage with entangled systems. The
advantage of the entangled systems over the single systems is studied in section 3. Finally, we conclude in
section 4 with many possibilities of future investigation.

2. Framework for measurement distinguishability problem

In this section, we formulate the quantum measurement distinguishability problem and then describe two
scenarios in which it can be addressed.

Assume that we are given a measurement device that performs one of n a priori known m-outcome
measurements Mx := {Ma

x}a, where Ma
x stands for a measurement operator corresponding to the outcome a

of the xth measurement with x ∈ [n] = {0, . . . , n − 1} and a = [m] = {0, . . . , m − 1}. These
measurements are sampled from the probability distribution p(x). We additionally assume that all the
measurements act on Cd where, in general, d may not be equal to m. In order to distinguish the
measurements, the measurement device is fed with a known quantum state that belongs to C

d and the
device performs one of the measurements Mx with probability p(x) on it. We assume that there is no access
to the post-measurement state. The single-shot measurement distinguishability problem consists in
maximizing the probability of correctly guessing which measurement has been performed based solely on
the obtained outcome a.

Now, we formalize two different scenarios to address the above task: (i) the one in which the
measurements are performed on a single quantum system (which in principle can be entangled to another
quantum system, however, we do not have access to it), and (ii) the one exploiting quantum entanglement
in which the particle going through our measurement device is quantum mechanically correlated to another
system which we have access to and can measure it.

2.1. Measurement distinguishability with single systems
To discriminate the measurement we consider the following strategy using single quantum system
(figure 1). Given a known quantum preparation ρ, the measurement device performs a measurement Mx on
it. Upon obtaining the outcome a we can, in general, perform a classical post processing defined by
Q := {q(z|a)} where z ∈ {0, . . . , n − 1} and ∀ a,

∑
z q(z|a) = 1. Post-processing is just a stochastic map that

acts on the probability distribution p(a|Mx, ρ) and returns p̄(z|Mx, ρ) as the output z (the guess) is supposed

2
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Figure 2. Schematic illustration of the entanglement-assisted measurement distinguishability problem. A known bipartite state
ρAB is sent to two measurement devices held by Alice and Bob. However, there is a catch. Alice performs one of the measurement
from the set {Mx} and obtains a outcome a. Depending on that outcome Bob selects a measurement Ny from the known set
{Ny}, such that the outcome b guesses the measurement setting x of Alice. Devices with nob are fully controllable by the users.

to be equal to x. The optimal single-shot distinguishing probability of the measurement set, denoted by D,
is given by

D = max
ρ,{q(z|a)}

∑
x

p(x)p̄(z = x|Mx, ρ)

= max
ρ,{q(z|a)}

∑
x,a

q(z = x|a)p(x) Tr(ρMa
x ). (1)

We note that the term inside the summation is just a convex mixture of p(x) Tr(ρMa
x ) with weightage q(z|a)

for every a, and thus we choose the appropriate {q(z|a)} which yields the optimal distinguishing
probability. Therefore, the above quantity can be expressed only in terms of Tr(ρMa

x) as follows

D = max
ρ

∑
a

max
x

{
p(x) Tr(ρMa

x )
}
. (2)

Note that it is sufficient to consider only pure quantum states to obtain D. This is because the
maxx{p(x) Tr(ρMx

a)} is a convex function of the state ρ. Following this argument we can infer that the
maximum is always achieved by a pure quantum state. Let us finally mention that D = 1 means that the
corresponding strategy perfectly distinguishes the measurements.

2.2. Entanglement-assisted measurement distinguishability
As shown in figure 2 the strategy is as follows. A known bipartite state ρAB is sent to Alice and Bob. Alice
performs the unknown measurement Mx from the set {Mx} on her sub-system and sends the outcome a to
Bob. Upon obtaining the outcome from Alice, Bob chooses to perform one of m measurements, denoted
Ny, which yields an outcome b. Bob’s outcome is his guess of Alice’s input. It is noteworthy that any
classical post-processing of the outcome a can be included into Bob’s measurement.

We can express the distinguishing probability in such entanglement-assisted scenario by a Bell
expression. Precisely, the experiment made by Alice and Bob can be described by the joint probabilities
p(a, b|x, y), where x, y and a, b are input and output variables, respectively. A general linear Bell expression
in this scenario is ∑

x,y,a,b

cx,y,a,bp(a, b|x, y), (3)

where cx,y,a,b are some real coefficients.
In the context of measurement distinguishability task, Alice’s device performs n m-outcome

measurements, whereas Bob can choose to perform one of m measurements, each having n outcomes; so
x, b ∈ {0, . . . , n − 1} and y, a ∈ {0, . . . , m − 1}. Moreover, we are interested in only those cases where Bob’s
input y is same as Alice’s output a, and Bob’s output b should be the guess of Alice’s input x. Thus, the
distinguishing probability in the entanglement-assisted scenario is given by∑

x,a

p(x)p(a, b = x|x, y = a), (4)

and it is a particular instance of the Bell expression (3) with cx,y,a,b = p(x) when y = a, b = x, and cx,y,a,b = 0
otherwise. In quantum theory, the entanglement-assisted distinguishing probability pertaining to a
particular shared state ρAB is expressed as

BρAB = max
{Nb

y }

∑
x,a

p(x) Tr
[
ρAB

(
Ma

x ⊗ Nb=x
y=a

)]
, (5)

3
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where {Mx} is the given set of quantum measurements (with probability p(x)) which we want to
distinguish. The optimal entanglement-assisted distinguishing probability (denoted by B) can be achieved
by optimizing over all the bipartite states, that is,

B = max
ρAB

BρAB . (6)

Analogously to the previous case, here the maximum is also achieved by a pure state. Note that the
maximum value of B = 1 corresponds to the case of perfect distinguishability. In the following subsection
we show that the advantage in a measurement distinguishability problem for a entangled bipartite system
over a single system can be related to a necessary condition for quantum steering.

2.3. Quantum steering is the necessary condition for advantage in a measurement distinguishability
task
Let us now make a connection between the measurement distinguishability task and quantum steering.

Theorem 1. Given any set of measurements {Mx}, BρAB > D implies the shared state ρAB is steerable by Bob.

Proof. If the shared state ρAB has a local hidden-state (LHS) model for any choice of measurements in a
given scenario where Alice has the quantum device, then for all a, b, x, y, the joint probabilities obtained
from that state can be written as [28],

p(a, b|x, y) =
∑
λ

μ(λ) Tr(ρλMa
x )pB(b|y,λ), (7)

where
∑

λ μ(λ) = 1, pB(b|y,λ) represents arbitrary probability distributions depending on the hidden
variable λ, which, without any loss of generality, can always be assumed to be deterministic. Finally,
Tr(ρλMa

x ) corresponds to the probability of obtaining the outcome a when the measurement x is performed
on the hidden state ρλ. Whenever the joint probabilities cannot be expressed in the above form, then the
shared state is steerable from Bob to Alice. Now, let us define the distinguishing probability in
entanglement-assisted scenario when the shared state admits a LHS model,

B′ = max
ρAB∈LHS

∑
x,a

p(x)p(a, b = x|x, y = a), (8)

wherein LHS denotes the set of states admitting LHS model so that the joint probabilities are given by
equation (7). To prove the desired result, it suffices to show B′ = D. Notice that by using equation (7) we
obtain ∑

a,x

p(x)
∑
λ

μ(λ) Tr(ρλMa
x )pB(b = x|y = a,λ)

=
∑

a

∑
λ

μ(λ)

(∑
x

p(x) Tr(ρλMa
x )pB(b = x|y = a,λ)

)

�
∑

a

∑
λ

μ(λ)max
x

{
p(x) Tr(ρλMa

x )
}

, (9)

where the inequality stems from the fact that pB(b|y,λ) is a deterministic probability distribution for any
choice of the measurement y and the variable λ. The above clearly implies that

B′ � max
ρ

∑
a

max
x

{
p(x) Tr(ρMa

x )
}

, (10)

and thus, B′ � D (cf equation (2)). Furthermore, the upper bound of B′ in the above equation is achieved
within the entanglement-assisted scenario by considering Bob’s measurements to be a classical
post-processing on the outcome a, and hence, B′ = D. This completes the proof. �

Hence, a steerable state provides an advantage in the measurement distinguishability task over the
single-system scenario. In fact, any set of measurements Mx gives rise to a steering inequality B � D whose
violation indicates that the entanglement-assisted scenario is advantageous over the single-system one in the
measurement distinguishing task.

4
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3. Advantage of the entanglement-assisted scenario over the single-system one

In this article, we mostly restrict ourselves to instances where the measurements are perfectly
distinguishable with the maximally entangled state, and they are drawn from a uniform ensemble. In the
following, we discuss the advantage of using quantum entanglement in a measurement discrimination
problem for different measurement scenarios.

3.1. Advantage for rank-one projective measurements

Theorem 2. A set of d distinct rank-one projective measurements in dimension d defined by the vectors {|va
x〉}

where x, a ∈ {0, . . . , d − 1} (x, a denote measurement setting and outcome respectively), is perfectly
distinguishable in entanglement-assisted scenario but not perfectly distinguishable with single system, whenever
the vectors satisfy the following relations,

(a) ∀ x, x′, a, 〈va
x |va

x′ 〉 = δx,x′ ,

(b) there exists a, a′ such that |〈va
x |va′

x′ 〉| < 1 for all x, x ′.

Proof. We show that in the entanglement-assisted scenario there exists a quantum strategy (Bob’s
measurements along with an entangled state) achieving one in equation (5), whereas in the single-system
scenario for any quantum strategy the value of (2) does not reach one.

In the entanglement-assisted scenario let us consider that Alice and Bob share the maximally entangled
state in Cd ⊗ Cd,

|φ+〉 = 1√
d

d−1∑
i=0

|ii〉 (11)

and that Bob’s measurements are defined by the following measurement operators

Nx
a = (|va

x〉〈va
x |)T, (12)

where T stands for the transposition in the standard basis. Taking into account the first condition and the
fact that transposition respects all the properties of a projector, we have Nx

a Nx′
a = δx,x′Nx

a for all a, x, x′ as
well as

∑
x Nx

a = 𝟙.
Let us now recall the following property of the maximally entangled state.

Fact 1. For any two operators A, B acting on Cd, A ⊗ B|φ+〉 = 𝟙⊗ BAT|φ+〉.

Using it and taking p(x) = 1/d in the expression of B in equation (5) we obtain,

B|φ+〉 =
1

d

∑
x,a

〈φ+||va
x〉〈va

x | ⊗ (|va
x〉〈va

x |)T|φ+〉

=
1

d

∑
a

〈φ+|𝟙⊗
(∑

x

|va
x〉〈va

x |
)T

︸ ︷︷ ︸
𝟙

|φ+〉 = 1. (13)

On the other hand, the distinguishability given in equation (2) in this case can be stated as

D =
1

d
max
|ψ〉

∑
a

max
x

|〈ψ|va
x〉|2, (14)

and it amounts to one if, and only if there exists |ψ〉 such that the following conditions

max
x

|〈ψ|va
x〉|2 = 1 (15)

hold true with a = 0, . . . , d − 1. Imagine then that there exists such a state |ψ〉 that the above conditions are
satisfied. Then, it is not difficult to see that for any pair a, a′ such that a 
= a′ there exist x and x′ such that

|ψ〉 = |va
x〉 = |va′

x′ 〉, (16)

which certainly contradicts assumption (b) of the theorem. This completes the proof. �

5
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Table 1. An example of a list of the vectors |va
x〉 in dimension 4 satisfying the two sets of relations given in

theorem 2.

a = 0 a = 1 a = 2 a = 3

x = 0 |0〉 |1〉 |2〉 |3〉
x = 1 (|1〉 − |2〉)

√
2 (|0〉+ |3〉)

√
2 (|0〉 − |3〉)

√
2 (|1〉+ |2〉)

√
2

x = 2 (|1〉+ |2〉+ |3〉)/
√

3 (|0〉+ |2〉 − |3〉)/
√

3 (|1〉 − |3〉 − |0〉)/
√

3 (|1〉 − |2〉+ |0〉)/
√

3
x = 3 (|1〉+ |2〉 − 2|3〉)

√
6 (−|0〉+ 2|2〉+ |3〉)

√
6 (2|1〉+ |3〉+ |0〉)

√
6 (|1〉+ |2〉 − 2|0〉)

√
6

3.1.1. Example
As we show in appendix in the simplest cases n = d = 2, 3 there are no projective measurements satisfying
the two conditions of theorem 2, and the first nontrivial case for which such measurements can be
constructed is n = d = 4. An exemplary choice of the corresponding vectors

∣∣va
x

〉
is presented in table 1.

One can verify that the above set of vectors satisfy the conditions given in theorem 2 and hence D < 1.

3.1.2. Numerical optimization to find the value of D
In order to find the maximum value of D, we consider the following parameterization of a pure state
in Cd [29]

|ψ〉 = cos θ1|0〉+
d−2∑
k=1

[(
k∏

i=1

sin θi

)
cos θk+1 e𝕚νk |k〉

]
+

(
d−1∏
i=1

sin θi

)
e𝕚νd−1 |d − 1〉, (17)

where θi ∈ [0,π/2] and ν i ∈ [0, 2π] (for i = 1, . . . , d − 1) are 2(d − 1) number of unknown parameters.
Given any set of measurements {Mx}, we can obtain the value of D by performing a numerical
optimization of the expression (2) over the parameters, θi and ν i. For the exemplary set of four-dimensional
measurements given in table 1, we find D ≈ 0.7752 after carrying out such optimization for equation (14).
Since, there are only six parameters in this case, this value is expected to be the global maximum. Therefore,
we have a clear advantage in distinguishing the projective measurements with the maximally entangled
state. We follow this procedure to find the values of D in the other examples given later.

In the following subsections we discuss the advantage of entanglement-assisted scenario for more
general measurements or POVMs.

3.2. Advantage for d2-outcome POVMs
Given a dimension d, let us denote by ω = exp(2π𝕚/d) the dth root of unity, and define the following
unitary matrices

Z =
d−1∑
i=0

ωi|i〉〈i|, X =
d−1∑
i=0

|i + 1〉〈i|, (18)

where the sum (+) is taken to be modulo d sum. Let us then introduce the following set of d2 unitary
matrices,

Uk,l = XkZl, (19)

where k, l = 0, . . . , d − 1.
We can now state one of our main results.

Theorem 3. Given any set of orthonormal vectors {|vi〉}d−1
i=0 such that for at least one pair k, l,

∀ i, j, |〈vj|Uk,l|vi〉| < 1, (20)

there exists a set of d POVMs, each having d2 outcomes, that are perfectly distinguishable in
entanglement-assisted scenario but not perfectly distinguishable in the single-system scenario.

Proof. Consider the following positive semi-definite rank-one operators acting on Cd,

Mk,l
x =

1

d
Uk,l|vx〉〈vx|U†

k,l (21)

where x = 0, . . . , d − 1 and a = (k, l) denote the measurement settings and the outcomes, respectively.
Using the following relation (see, e.g., reference [30])

d−1∑
k,l=0

Uk,l Ξ U†
k,l = d Tr(Ξ)𝟙, (22)

6
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that holds true for any operator Ξ acting on Cd, one easily finds that

d−1∑
k,l=0

Mk,l
x = 𝟙, (23)

and thus the d2 operators Mk,l
x with k, l = 0, . . . , d − 1 form a valid POVM for each x.

Our aim now is to show that the above generalized measurements are perfectly distinguishable in the
entanglement-assisted scenario, while not in the single-system scenario. To show that B = 1, let alice and
Bob share the maximally entangled state of two qudits |φ+〉 (11). Moreover, let Bob’s measurements be
given by

Nx
k,l = (Uk,l|vx〉〈vx|U†

k,l)
T = d(Mk,l

x )T. (24)

It is trivial to see that Nx
k,lN

x′
k,l = δx,x′Nx

k,l for all k, l since |vx〉 are orthogonal. Further, for any pair k, l,

∑
x

Nx
k,l =

(
Uk,l

∑
x

|vx〉〈vx|U†
k,l

)T

= 𝟙, (25)

thereby, for any pair k, l, the operators Nx
k,l form a valid projective measurement. Let us then calculate the

following quantity taking p(x) = 1/d,

B|φ+〉 =
1

d

∑
x,(k,l)

p((k, l), x|x, (k, l))

=
1

d

∑
x,k,l

〈φ+|Mk,l
x ⊗ Nx

k,l|φ+〉

=
1

d2

∑
x,k,l

〈φ+|(Nx
k,l)

T ⊗ Nx
k,l|φ+〉, (26)

where we have used the relation in (24). Using fact 1 the above expression can be further simplified as,

B|φ+〉 =
1

d2

∑
x,k,l

〈φ+|(𝟙⊗ |vx〉〈vx|)|φ+〉

=
1

d2

∑
k,l

〈φ+|

⎛
⎜⎜⎜⎜⎝𝟙⊗

∑
x

|vx〉〈vx|︸ ︷︷ ︸
𝟙

⎞
⎟⎟⎟⎟⎠ |φ+〉 = 1. (27)

On the other hand, to show that D is strictly less than 1, let us first see that

〈ψ|Mk,l
x |ψ〉 = 1

d
|〈ψ|Uk,l|vx〉|2 (28)

for an arbitrary pure state |ψ〉 ∈ C
d. Subsequently, we have

D =
1

d2
max
|ψ〉

∑
k,l

max
x

{
|〈ψ|Uk,l|vx〉|2

}
. (29)

The above expression is 1, if and only if there exists a state |ψ〉 such that

max
x

{
|〈ψ|Uk,l|vx〉|2

}
= 1 (30)

is satisfied for any pair k, l. For k = l = 0, U00 = 𝟙 and therefore equation (30) implies |ψ〉 = |vx′ 〉 (up to a
phase) for some x′. So, we can replace |ψ〉 by |vx′ 〉 in equation (30) for the other pairs k, l. Note that
equation (20) does not hold for k = l = 0. So, there exists another pair k, l for which (20) must hold, and
for that k, l, equation (30) is not satisfied. Hence, D < 1 which completes the proof. �

7
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3.2.1. Existence of |vx〉 in all dimension
Let us now explore whether one can find an orthonormal basis |vi〉 (i = 0, . . . , d − 1) in Cd for any d � 2
that satisfies the condition (20). To this end, we prove the following fact.

Proposition 1. The eigenvectors of any unitary U satisfy the condition (20), whenever U and XkZl do not share
any common eigenvector for all k, l, except k = l = 0.

Proof. We prove this statement by contradiction. Say |vi〉 are the eigenvectors of U. Negation of (20) states
that for all k, l there exists i, j such that

XkZl|vi〉 = e𝕚θk,l |vj〉 (31)

for some θk,l ∈ R. Since they do not share any common eigenvector, i must be different than j for all k, l
such that k 
= 0 or l 
= 0. Note that there are d2 − 1 operators XkZl for which (31) holds. On the other hand,

there are at most d distinct eigenvectors of U which means there are at most
(

d
2

)
= d(d − 1)/2 possibilities

to choose two distinct vectors among them. Thus, for equation (31) to hold where i 
= j, there are at least
two different operators, say XkZl and Xk′Zl′ , such that there exist the same pair i, j for which

XkZl|vi〉 = e𝕚θ|vj〉, Xk′Zl′ |vi〉 = e𝕚θ
′ |vj〉, (32)

for some θ, θ′ ∈ R. Taking the conjugate transpose of the first one and multiplying with the second, we get,

|〈vi|Xk′−kZl′−l|vi〉| = 1. (33)

Now we arrive at a contradiction since the above implies |vi〉 is an eigenvector of Xk′ −kZl′−l. �

Many examples of such unitary can be found in all dimension. Let us mention one of those,

Ud =

d−1∑
i=0

ωi+ 1
2 |i〉〈i| − 2

d

d−1∑
i,j=0

(−1)δi,0+δj,0ω
i+j+1

2 |i〉〈 j|, (34)

that has been discussed in [31].
Let us then present another example in Hilbert spaces of dimension d = 2r for any r � 2. To this end,

consider the following states
|v0〉 = cos β|0〉+ e𝕚α sin β|1〉 (35)

and
|v1〉 = e−𝕚α sin β|0〉 − cos β|1〉, (36)

where β = (0,π/4). These two states form a basis in C2. Subsequently, by taking their tensor products we
can create a basis in Cd with d = 2r in the following way

|vx1 ...xr 〉 =
r⊗

i=1

|vxi〉, (37)

where x1 · · · xr = 0, 1. For instance, the vectors |v0〉 ⊗ |v0〉, |v0〉 ⊗ |v1〉, |v1〉 ⊗ |v0〉 and |v1〉 ⊗ |v1〉 form a
basis in the two-qubit Hilbert space.

Now, it is easy to check that U0,1 = Z can be decomposed as the following tensor product

Z =

r⊗
i=1

Vi, (38)

where Vi is a 2 × 2 unitary matrix of the form Vi = diag(1,ω2r−i−1
). One can easily verify that for any k,

|〈vi|Vk|vj〉| < 1 with i, j = 0, 1. Therefore

|〈vx1 ...xr |Z|vy1...yr〉| < 1 (39)

for any configuration of x1, . . . , xr, y1, . . . , yr = 0, 1. Hence, the entanglement-assisted scenario provides
advantage over a single system. Moreover, using equation (38) a similar conclusion can be drawn for the
powers of Z, which allows to further lower the value of D.

3.3. Advantage for informationally complete POVMs
Interestingly, the POVMs defined in (21) are informationally complete (IC) when the orthogonal vectors
satisfy the following condition [30],

∀ i, k, l, |〈vi|Uk,l|vi〉| 
= 0. (40)

8
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Proposition 2. The set of IC-POVMs constructed from the orthogonal vectors stated in (21) are also perfectly
distinguishable in entanglement-assisted scenario but not perfectly distinguishable with single system.

Proof. We need to prove the above condition (40) implies (20). The contrapositive statement is more
obvious. Negation of (20) states that for all k, l there exists i, j such that

Uk,l|vi〉 = e𝕚θk,l |vj〉 (41)

for some θ depending on k, l. Since U1,0 = X, U0,1 = Z do not share any single common eigenstate, for X or
Z, (41) can hold only when i 
= j. Then multiplying both side of (41) by 〈vi|, we obtain a contradiction of
(40) either for X or Z. �

3.3.1. Examples of |vx〉
For d = 2, the vectors given in equation (35) with an extra condition α = (0,π/2), satisfy the condition
(40) for IC-POVM. Taking α = π/4 and β = cos−1(1/

√
3)/2, one obtains D ≈ 0.7887 for the respective

IC-POVMs.
For d = 3, consider the following unnormalized basis

|v0〉 = |1〉 − |2〉,

|v1〉 = (1 +
√

3)|0〉+ |1〉+ |2〉,

|v2〉 = (1 −
√

3)|0〉+ |1〉+ |2〉. (42)

This basis satisfies the condition (40) to be IC-POVM. By performing a simple optimization over four
parameters (see section 3.1.2), we get D ≈ 0.6436 for the IC-POVMs obtained from the above vectors
in (42).

For d = 4, we consider the tensor product basis |v0〉 ⊗ |v0〉, |v0〉 ⊗ |v1〉, |v1〉 ⊗ |v0〉 and |v1〉 ⊗ |v1〉,
where |v0〉 and |v1〉 are given in equation (35) with α = π/4 and β = cos−1(1/

√
3)/2. From an

optimization over six parameters described in section 3.1.2, we find D ≈ 0.622 for the respective
IC-POVMs.

For d = 2r dimension, consider the tensor product basis of the vectors given in equation (35) with
α = π/4 and β = cos−1(1/

√
3)/2. We verify that the vectors constructed this way satisfy the condition of

IC-POVM given in equation (40) for r = 1, 2, 3, 4, 5. Possibly the vectors may satisfy the condition for any
d = 2r.

3.4. Advantage for (d + 1)-outcome POVMs
In the above scenario, Bob requires to perform d2 measurements that grows polynomially with d. We now
show another result of similar kind, where the number of measurements on Bob’s side (or the outcome of
the POVMs that we want to distinguish) is d + 1.

Theorem 4. Given any set of orthogonal vectors {|vi〉}d−1
i=0 that satisfy the conditions,

|〈j|vi〉| =
1

d

⎧⎨
⎩1, i = j,
√

d + 1, i 
= j,
(43)

there exists a set of d POVMs, each having d + 1 outcomes, that are perfectly distinguishable in
entanglement-assisted scenario but not perfectly distinguishable with single system. Here |j〉 is the computational
basis.

Proof. Let us begin by using the orthonormal vectors |vi〉 to introduce the following unitary matrix

U =

d−1∑
i=0

|vi〉〈i|. (44)

Thus, U is the unitary that takes the computational basis to the basis {|vi〉}.
Let us then define the following vectors,

|ηa
x〉 = Za U|x〉 (45)

for a = 0, . . . , d − 1 and
|ηd

x 〉 = |x〉 (46)

9
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for a = d, where x = 0, . . . , d − 1 and Z is given in equation (18).
With the aid of these vectors we consider the POVM elements,

Ma
x =

d

d + 1
|ηa

x〉〈ηa
x |. (47)

Clearly, the eigenvalues of these operators are non-negative and less than 1. Let us then show that∑
a Ma

x = 𝟙. To do so, we need the following relation that for any operator Ξ =
∑

i,j ci,j|i〉〈j| acting on C
d,

d−1∑
a=0

Za Ξ (Za)† =
∑

i,j

d−1∑
a=0

ωa(i−j)ci,j|i〉〈j|

= d
∑

i

ci,i|i〉〈i|, (48)

where we have applied the following identity,

d−1∑
a=0

ωak =

⎧⎨
⎩0, k 
= 0

d, k = 0.
(49)

Replacing |ηa
x〉 from (45) and using the above relation (48), we find

d−1∑
a=0

Ma
x =

d

d + 1

d−1∑
a=0

Za|vx〉〈vx|(Za)† +
d

d + 1
|x〉〈x|

=
d

d + 1

⎡
⎣d
∑
i
=x

|〈i|vx〉|2|i〉〈i| +
(
d|〈x|vx〉|2 + 1

)
|x〉〈x|

⎤
⎦ . (50)

Due to the conditions (43), the above quantity is 𝟙 and hence, Ma
x form a valid POVM for all x.

To show B = 1, let alice and Bob share maximally entangled state (11), and let Bob’s measurements be
given by

Nx
a = (|ηa

x〉〈ηa
x |)T =

d + 1

d
(Ma

x )T. (51)

It is trivial to see that Nx
a Nx′

a = δx,x′Nx
a for all a, and

∑
x Nx

a = 𝟙, thereby Nx
a form valid projective

measurements. Following the similar method as in the proof of previous theorems we can readily show
B = 1, by taking p(x) = 1/d.

Now to check that D < 1, we first note that

〈ψ|Ma
x |ψ〉 =

d

d + 1

⎧⎨
⎩|〈ψ|Za|vx〉|2, a = 0, . . . , d − 1

|〈ψ|x〉|2, a = d,
(52)

where |ψ〉 is an arbitrary pure state from Cd. Subsequently, we have

D =
1

d + 1
max
|ψ〉

[
d−1∑
a=0

max
x

{|〈ψ|Za|vx〉|2}+ max
x

{|〈ψ|x〉|2}
]
. (53)

The above expression is 1, if and only if, for all a = 0, . . . , d − 1,

max
x

{|〈ψ|Za|vx〉|2} = 1 (54)

and
max

x
{|〈ψ|x〉|2} = 1. (55)

For a = 0, equation (54) implies |ψ〉 = |vx〉 for some x. In that case, max
x

{|〈vx|x〉|2} cannot be one due to

equation (43). Hence, D < 1 which completes the proof. �
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3.4.1. Examples in d = 2, 3, 4
Let us here present exemplary sets of vectors |vx〉 satisfying (43) for d = 2, 3, 4.

For d = 2, we consider the following two orthogonal vectors

|v0〉 =
1

2

(
|0〉+

√
3|1〉
)

, |v1〉 =
1

2

(√
3|0〉 − |1〉

)
, (56)

which satisfy the conditions given in equation (43). The optimal value of D for the measurements defined
by (45)–(47) is 5/6 (see the next subsection for a proof). This particular measurement set was proposed by
Sedlák and Ziman in reference [21].

For d = 3, consider the following set of orthogonal vectors,

|vi〉 =
1

3
|i〉 − 2

3
|i + 1〉 − 2

3
|i + 2〉, (57)

where i = 0, 1, 2 and the sum inside |·〉 is modulo 3. They readily satisfy conditions given in equation (43).
By performing an optimization over four parameters described in section 3.1.2, we find D ≈ 0.698 for the
POVMs defined by (45)–(47).

For d = 4, the vectors are as follows,

|v0〉 =
1

4
|0〉+

√
5

4
|1〉+

√
5

4
|2〉+

√
5

4
|3〉

|v1〉 =
√

5

4
|0〉 − 1

4
|1〉+

√
5

4
|2〉 −

√
5

4
|3〉

|v2〉 =
√

5

4
|0〉 −

√
5

4
|1〉 − 1

4
|2〉+

√
5

4
|3〉

|v3〉 =
√

5

4
|0〉+

√
5

4
|1〉 −

√
5

4
|2〉 − 1

4
|3〉. (58)

Again, a simple optimization over six parameters yields D ≈ 0.706 for the respective POVMs.

3.5. All pure two-qubit entangled states provide advantage
So far, we have employed only the maximally entangled state (11) for presenting the merit of using
entanglement-assisted scenario. Let us probe whether such merit persists if we use non-maximally
entangled states. For this purpose, we consider the pair of two-dimensional POVMs
Mx = {Ma

x}2
a=0 (x = 0, 1) introduced in section 3.4.1 as follows

M0
i =

2

3
|vi〉〈vi|, M1

i =
2

3
|ṽi〉〈ṽi|, M2

i =
2

3
|i〉〈i|, (59)

where |vi〉 (i = 0, 1) are defined in equation (56) and |ṽi〉 = Z |vi〉. This pair is perfectly distinguishable
using the two-qubit maximally entangled state [21]. Here, we aim to show that if Alice and Bob share any
pure two-qubit entangled state, then the same pair of measurements (up to unitary rotation) can be
distinguished with higher probability than the optimal probability obtained with single systems. To this
end, we state the following theorem.

Theorem 5. For any two-qubit pure entangled state |φ〉, there exists a set of two three-outcome POVMs such
that Bφ > D.

Proof. Consider the two POVM defined by the measurement operators Ma
x given in equation (59), where

x = {0, 1} and a = {0, 1, 2}. Here |v0〉, |v1〉 are defined in equation (56), and |ṽi〉 = Z |vi〉. These
measurement operators follow the construction given in equation (47) and since they all belong to the x-z
plane of the Bloch sphere, without loss of generality, we can consider the form of the state to be
|ψ〉 = sin δ|0〉+ cos δ|1〉, where δ ∈ [0,π/4]. One can straightforwardly verify that for this state D
expresses as

D =
1

12

{
4 max{cos2 δ, sin2 δ}+ max

{
2 −

√
3 sin(2δ) − cos(2δ), 2 +

√
3 sin(2δ) + cos(2δ)

}
+ max

{
2 −

√
3 sin(2δ) + cos(2δ), 2 +

√
3 sin(2δ) − cos(2δ)

}}

=
1

6
×

⎧⎨
⎩3 + 2 cos(2δ), 0 � δ � π/12,

3 + cos(2δ) +
√

3 sin(2δ), π/12 � δ � π/4
. (60)

11
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It is easy to check that the optimal value of D is 5/6 for δ = 0 and π/6.
For any pure two-qubit entangled state |φ〉, we know that there exists two local unitary operations UA

and UB such that
|φ′〉 :=UA ⊗ UB|φ〉 = sin α|00〉+ cos α|11〉 (61)

for α ∈ (0,π/4]. To find the value of B, we first consider the non-maximally entangled state |φ′〉. On Bob’s
side, we then consider three projective measurements with the measurement operators given in the general
form

Nx
a =

1

2
𝟙+ (−1)x(sin θa cos φaσx + sin θa sin φaσy + cos θaσz), (62)

where 0 � θa � π and 0 � φa � 2π. Using the form of Ma
x given in the equation (59) and for the state (61)

we have

Bφ′ = max
{Nx

a}

∑
x,a

p(x)〈φ′|Ma
x ⊗ Nx

a |φ′〉

=
1

12
max

{θ0,θ1,θ2,φ0,φ1,φ2}
(6 + 2 cos θ0 − cos θ1 − cos θ2

−
√

3 sin(2α) sin θ2 cos φ2 +
√

3 sin(2α) sin θ1 cos φ1

)
=

1

12
max
{θ1,θ2}

[
8 +

√
3 sin(2α)(sin θ1 + sin θ2) − cos θ1 − cos θ2

]
. (63)

Using the fact that a sin t − b cos t �
√

a2 + b2, where the maximum is achievable for sin t = a/
√

a2 + b2,
we find

Bφ′ =
1

6

(
4 +
√

1 + 3C2
)

, (64)

where C = sin(2α) is the concurrence [32] of the state |φ′〉. Hence, B > 5/6 as C > 0 whenever the state is
entangled. Remark that for the two-qubit maximally entangled state the value is one. The optimal
observables for Bob are as follows

N0 = sin θσx − cos θσz, N1 = − sin θσx − cos θσz (65)

and
N2 = σz , (66)

where sin θ =
√

3C/
√

1 + 3C2.
Subsequently, for the general state |φ〉, the measurement set UAMa

x U†
A along with the Bob’s

measurement UBNyU†
B given in equations (59) and (65) respectively, achieve the same value of Bφ′ as given

in equation (64). This completes the proof. �

We finally discuss the efficacy of a class of mixed states in the above mentioned measurement
discrimination task. Let us consider the Werner state [33],

ρW = p|φ+〉〈φ+|+ 1 − p

4
𝟙, (67)

where |φ+〉 is the two-qubit maximally entangled state given in equation (11). The state (67) is entangled
for p > 1/3 and steerable for p > 1/2 [28]. If we use this state for discriminating the measurements given
in equation (59), a straight forward calculation leads to

BρW =
1 + p

2
. (68)

Thus, the Werner state (67) provides advantage when p > 2/3. Note that the state is steerable in the range
1/2 < p � 2/3, but does not show any advantage in this particular measurement distinguishability task.
However, there may exists another measurement discrimination task for which this state provides advantage
in that range.

4. Conclusion and open problems

In this article we discuss the single-shot measurement discrimination problem for an arbitrary
d-dimensional quantum system. We introduce a framework allowing to study the problem in two scenarios:
the single-system scenario and the entanglement-assisted one. Interestingly, entangled quantum systems can

12
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provide an advantage in a measurement distinguishability task. To be precise, we provide criteria to
ascertain whether a set of measurements (projective or generalized) can be perfectly discriminated with the
aid of the maximally entangled state, but not in the single-system scenario. Furthermore, we prove that the
advantage in the entanglement-assisted scenario is a witness of steerability of the underlying quantum state.
Finally, we show that any pure two-qubit entangled state provides advantage in the measurement
discrimination task.

Let us also outline some possible directions for further research. In [14, 19], Piani and Watrous showed
that entangled states and steerable states are necessary as well as sufficient for the advantage in channel
discrimination and sub-channel discrimination task, respectively, in certain scenarios. Likewise, in
section 2.3, we show that steerability is the necessary condition for the advantage in measurement
distinguishability tasks. But, whether it is also a sufficient criteria or not, remains an open question. Since
quantum measurements are reckoned as a sub-class of quantum channels, the following conjecture certainly
enhances the previous results—for every steerable state ρAB by Bob, there exists a set of quantum measurements
{Mx} such that BρAB > D. Alongside, one may extend the result of theorem 5 to all the pure entangled
states. Furthermore, as maximally entangled states can perfectly discriminate the measurements given in
theorems 2–4, it would be interesting to look for a set of measurements in any d such that the advantage is
unbounded, or, to be precise, B/D increases with d. In addition, one may investigate measurements for
which the optimal probability is achieved by a non-maximally entangled states. Besides, there has been
some work on discriminating measurements without labelling the outcomes [23, 24] and hence, it would be
interesting to generalize our protocol to unambiguous measurement discrimination problem.
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Appendix. A proof

Here we show that for n = d = 2 and n = d = 3 there are no orthonormal bases in C2 and C3, respectively
which satisfy the assumptions (a) and (b) of theorem 2.

Let us begin with the simpler case of n = d = 2 and consider two two-element orthonormal bases in
C2 {|v0

0〉, |v1
0〉} and {|v0

1〉, |v1
1〉}. Without any loss of generality we can assume the first basis to be the

computational one, i.e., |vi
0〉 = |i〉. The assumption (a) of theorem 2 imposes that also {|v0

0〉, |v0
1〉} and

{|v1
0〉, |v1

1〉} are also orthonormal bases in C2, implying that up to phases |v0
1〉 = |1〉 and |v1

1〉 = |0〉. This
means that also the second basis {|v0

1〉, |v1
1〉} is the computational one. Then, however, the assumption (b) is

violated.
Let us now move on to the case n = d = 3 and consider three orthonormal bases in C3, {|v0

x〉, |v1
x〉, |v2

x〉}
with x = 0, 1, 2. As before we can assume that the first basis is the computational one, |vi

0〉 = |i〉. The first
assumption of theorem 2 means that {|va

0〉, |va
1〉, |va

2〉} with a = 0, 1, 2 must also be orthonormal bases in
C3. It is not difficult to see that the most general form of the vectors |va

x〉 compatible with this requirement
is given in the table below,

a = 0 a = 1 a = 2

x = 0 |0〉 |1〉 |2〉
x = 1 a|1〉+ b|2〉 p|0〉+ q|2〉 s|0〉 − t|1〉
x = 2 b∗|1〉 − a∗|2〉 q∗|0〉 − p∗|2〉 t∗|0〉 − s∗|1〉

13
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where a, b, p, q, s, t ∈ C. We additionally need to impose that the vectors in the second and the third row of
this table are pairwise orthogonal. It is, however, fairly easy to see that this last requirement can only be met
if all the vectors |va

x〉 are actually elements of the computational basis of C3. But then, as before, the second
assumption of theorem 2 cannot be met.
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