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Abstract
We report on a novel mechanism of BCS-like superconductivity, mediated by a pair of Bogoliubov
quasiparticles (bogolons). It takes place in hybrid systems consisting of a two-dimensional electron
gas in a transition metal dichalcogenide monolayer in the vicinity of a Bose–Einstein condensate.
Taking a system of two-dimensional indirect excitons as a testing ground of Bose-Einstein
condensate we show, that the bogolon-pair-mediated electron pairing mechanism is stronger than
phonon-mediated and single bogolon-mediated ones. We develop a microscopic theory of
bogolon-pair-mediated superconductivity, based on the Schrieffer–Wolff transformation and the
Gor’kov’s equations, study the temperature dependence of the superconducting gap and estimate
the critical temperature of superconducting transition for various electron concentrations in the
electron gas and the condensate densities.

1. Introduction

The conventional microscopic Bardeen–Cooper–Schrieffer (BCS) superconductivity originates from the
interaction between electrons and phonons (crystal lattice vibrations), which results in the attraction
between electrons with opposite momenta and spins with the sequential formation of Cooper pairs [1, 2].
However, this phenomenon is usually observed at low temperatures (as compared with room temperature),
of the order of several Kelvin since the phonon-mediated superconducting (SC) gap usually amounts to
several meV. And superconductors with the critical temperature of SC transition Tc above 30 K are
traditionally considered high-temperature superconductors [3].

In an attempt to increase the electron-phonon coupling and Tc, one immediately faces certain obstacles,
one of which is the Peierls instability [4]. In the mean time, the search for high-temperature
superconductivity is a rapidly developing area of research nowadays, especially in low-dimensional systems
[5, 6]. In hybrid superconductor-semiconductor electronics and circuit quantum electrodynamics,
two-dimensional (2D) superconductors might allow for scaling down the characteristic size of a device
down to atomic-scale thickness for possible application in quantum computing [7–9]. Low-dimensional
superconductors also provide such advantages as the robustness against in-plane magnetic fields due to the
spin-valley locking [10] and an additional enlargement of Tc in the atomic-scale layer limit [11]. From the
fundamental side, the SC phase in samples of lower dimensionality usually either co-exists or competes with
other (coherent) many-body phases such as the quantum metallic or insulator states, the charge density
wave, or magnetic phase, giving rise to richer physics than in three-dimensional systems [12]. The
drawbacks and limitations of phonons as mediators of electron pairing for realizing high-Tc 2D
superconductors motivate the search for other pairing mechanisms.
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Figure 1. System schematic. 2DEG with parabolic dispersion in the vicinity of a 2D BEC. We consider the BEC of indirect
excitons, which reside in a double quantum well: n-doped and p-doped layers of MoS2 and WSe2 separated by an hBN. Electrons
and the condensate particles are coupled via the Coulomb forces, which allows electrons with opposite spins (yellow dots) form
Cooper pairs.

There have been various attempts to replace regular phonons by some other quasiparticles aiming at
increasing Tc and the SC gap. One of the routes is exciton-mediated superconductivity [13–15].
Photon-mediated superconductivity has also been recently predicted [16]. Another way is to use the
excitations above a Bose–Einstein condensate (BEC), called the Bogoliubov quasiparticles (bogolons) in
hybrid Bose–Fermi systems, where one expects the SC transition in the fermionic subsystem. The bosonic
subsystem can be represented by an exciton or exciton–polariton condensate, which have been predicted
[17–22] and studied experimentally [23–25] at relatively high temperatures sometimes reaching the room
temperature. In systems of indirect excitons, spatially separated electron–hole pairs, achieving
high-temperature condensation should be possible if using 2D materials based on transition metal
dichalcogenides such as MoS2 thank to large exciton binding energy [26]. Bogolons possess some of the
properties of acoustic phonons and can, in principle, give electron pairing, as it has been theoretically
shown in several works [27–29]. These proposals, however, operated with single-particle (single-bogolon)
pairing, assuming that multi-particle processes belong to the higher orders of the perturbation theory and
thus they are weak and can be safely disregarded. Is this widespread assumption true?

As the earlier work [30] points out, the bogolon-pair-mediated processes (2b processes in what follows)
can give the main contribution when considering the scattering of electron gas in the normal state (above
Tc). If we go down Tc, several questions arise naturally. Will there occur 2b-mediated pairing? What is its
magnitude, as compared with single-bogolon (1b) processes? Is the parameter range [in particular,
condensate density, concentration of electrons in two-dimensional electron gas (2DEG)] achievable
experimentally? In this article, using the BCS formalism we develop a microscopic theory of 2b
superconductivity and address all these questions.

2. Theoretical framework

Let us consider a hybrid system consisting of a 2DEG and a 2D BEC, taking indirect excitons as an example,
where the formation of BEC has been reported [25, 31] (figure 1). The electrons and holes reside in n- and
p-doped layers, respectively. These layers can be made of MoS2 and WSe2 materials separated by several
layers of hexagonal boron nitride (hBN) [25]. The 2DEG and exciton layers are also spatially separated by
hBN and the particles are coupled by the Coulomb interaction [32, 33] described by the Hamiltonian

H =

∫
dr

∫
dRΨ†

rΨrg (r − R)Φ†
RΦR, (1)

where Ψr and ΦR are the field operators of electrons and excitons, respectively, g (r − R) is the strength of
Coulomb interaction between the particles, r and R are the in-plane coordinates of the electron and the
exciton center-of-mass motion.

Furthermore, we assume the excitons to be in the BEC phase. Then, we can use the model of a weakly
interacting Bose gas and split ΦR =

√
nc + ϕR, where nc is the condensate density and ϕR is the field

operator of the excitations above the BEC. Then, the Hamiltonian (1) breaks into three terms, two of which
are

H1 =
√

nc

∫
drΨ†

rΨr

∫
dRg (r − R)

[
ϕ†

R + ϕR

]
, (2)

2
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H2 =

∫
drΨ†

rΨr

∫
dRg(r − R)ϕ†

RϕR. (3)

The first term, H1, is responsible for electron-single bogolon interaction, and the second term, H2, is
bogolon-pair-mediated. The third term reads gnc

∫
drΨ†

rΨr. It gives a shift δμ = gnc of the Fermi energy
μ = �

2p2
F/2m, where pF is the Fermi wave vector and m is electron effective mass. Then pF also becomes

nc-dependent, strictly speaking, but we disregard this correction in what follows.
We express the field operators as the Fourier series,

ϕR =
1

L

∑
p

eip·R(upbp + vpb†−p), Ψr =
1

L

∑
k

eik·rck,

where bp(ck) and b†p(c†k) are the bogolon (electron) annihilation and creation operators, respectively, and L
is the length of the sample. The Bogoliubov coefficients read [34]

u2
p = 1 + v2

p =
1

2

⎛
⎝1 +

[
1 +

(
Ms2

ωp

)2
]1/2

⎞
⎠ ,

upvp = −Ms2

2ωp
, (4)

where M is the exciton mass, s =
√
κnc/M is the sound velocity, κ = e2

0d/ε0ε is the exciton–exciton
interaction strength in the reciprocal space, e0 is electron charge, ε is the dielectric constant, ε0 is the
dielectric permittivity, ωp = �sp(1 + p2ξ2

h)1/2 is the spectrum of bogolons, and ξh = �/2Ms is the healing
length. Then equations (2) and (3) transform into

H1 =

√
nc

L

∑
k,p

gp

[
(vp + u−p)b†−p + (v−p + up)bp

]
c†k+pck, (5)

H2 =
1

L2

∑
k,p,q

gp

[
uq−puqb†q−pbq + uq−pvqb†q−pb†−q + vq−puqb−q+pbq + vq−pvqb−q+pb†−q

]
c†k+pck, (6)

where gp is the Fourier image of the electron–exciton interaction. Disregarding the peculiarities of the
exciton internal motion (relative motion of the electron and hole in the exciton), we write the
electron-exciton interaction in direct space as

g(r − R) =
e2

0

4πε0ε

(
1

re–e
− 1

re–h

)
, (7)

where re–e =
√

l2 + (r − R)2 and re–h =
√

(l + d)2 + (r − R)2; d is an effective size of the boson, which is
equal to the distance between the n- and p-doped layers in the case of indirect exciton condensate, and l is
the separation between the 2DEG and the BEC [35]. The Fourier transform of (7) gives

gp =
e2

0

(
1 − e−pd

)
e−pl

2ε0εp
. (8)

Following the BCS approach [36], we find the effective electron s-wave [37] pairing Hamiltonian [see
supplemental material (https://stacks.iop.org/NJP/23/023023/mmedia) [38]], considering 1b and 2b
processes separately to simplify the derivations and draw the comparison between them,

H(λ)
eff = H0 +

1

2L2

∑
k,k′,p

Vλ(p)c†k+pckc†
k′−p

ck′ , (9)

where H0 is a free particle dispersion term and

V1b(p) = − nc

Ms2
g2

p , (10)

V2b(p) = −M2s

4�3

g2
p

p

(
1 +

8

π

∫ p/2

pmin

dqNq√
p2 − 4q2

)
(11)

are effective potentials of electron–electron interaction. In equation (11), Nq =
[

exp( ωq

kBT ) − 1
]−1

is the

bogolon Bose distribution function. It gives the divergence of the integral at q = 0 typical for 2D systems

3
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[31, 39, 40]. Therefore, we introduce a cutoff pmin, responsible for the convergence and associated with the
finite size of the sample (or condensate trapping). The factor Nq emerges at finite temperatures and gives an
increase of the exchange interaction between electrons. The number of thermally activated bogolons
increases with temperature, which enhances the 2b-mediated electron scattering.

Furthermore, we use the equation for the SC gap Δλ [36]

Δλ(k) = − 1

L2

∑
p

Vλ(p)
Δλ(k − p)

2ζ(λ)
k−p

tanh

(
ζ(λ)

k−p

2kBT

)
, (12)

where ζ(λ)
k =

√
ξ2

k +Δ2
λ(k) with ξk = �

2k2/2m − μ being the kinetic energy of particles measured with

respect to the Fermi energy. Then, we change the integration variable and cancel out Δλ in both sides of
equation (12) (since we consider the s-wave pairing when the SC gap is momentum independent). As a
result, equation (12) transforms into

1 = −
∫ ∞

0

dpp

2π

∫ 2π

0

dθ

2π

Vλ(|k − p|)
2ζ(λ)

p
tanh

(
ζ(λ)

p

2kBT

)
, (13)

where θ is the angle between the vectors k and p. Furthermore, we switch from the integration over the
momentum to the integration over the energy: p → 2m(μ+ ξ), and introduce an effective cut-off
ωb = �s/ξh in accordance with the BCS theory. This parameter appears by analogy with the Debye energy
ωD (in the case of acoustic phonon-mediated pairing), which is connected with the minimal sound
wavelength of the order of the lattice constant and has obvious physical meaning. In the case of bogolons,
this cut-off is less intuitive and, in principle, it remains a phenomenological parameter [29]. Its value �s/ξh

might be attributed to the absence of bogolon excitations with wavelengths shorter than the condensate
healing length.

Let us, first, consider zero-temperature case, when the tanh function in equation (13) becomes unity
and Nq = 0. Assuming that the main contribution into the effective electron-electron interaction comes
from electrons near the Fermi surface and pFd, pFl � 1, we find analytical expressions,

Δ1b(T = 0) = 2ωb exp

[
−8Ms2

ν0nc

(
ε0ε

e2
0d

)2
]

, (14)

Δ2b(T = 0) = 2ωb exp

[
−16�3pF

ν̃0M2s

(
ε0ε

e2
0d

)2
]

, (15)

where ν0 = m/π�2 is a density of states of 2DEG, ν̃0 = ν0 log(4pFL)/π is an effective density of states, and
L is the system size. Note, that in equation (15) there emerges an additional logarithmic factor (as compared
with the standard BCS theory). It happens due to the momentum dependence of the 2b-mediated pairing
potential V2b and due to the integration over the angle θ in the self-consistent equation for the SC gap
[equation (13)].

The SC critical temperature can be estimated from equation (13) exploiting the condition Δλ(Tλ
c ) = 0.

For 1b processes, it gives T(1b)
c = (γ/π)Δ1b(T = 0), where γ = exp C0 with C0 = 0.577 the Euler’s constant

(see, e.g. [41]). The analytical estimation of T(2b)
c this way is cumbersome due to the presence of

Nq-containing term in equation (11).

3. Results and discussion

Full temperature dependence of Δλ can be studied numerically using equations (10)–(13). Here, we
account for the temperature dependence of the condensate density using the formula, which describes 2D
BEC in a power-law trap [40], nc(T) = nc[1 − (T/TBEC

c )2], where TBEC
c is a critical temperature of the BEC

formation. We take TBEC
c = 100 K in accordance with recent predictions [19, 25]. We also neglect the finite

lifetime of bogolons, studied in works [42, 43] since in our case, the effective time of Cooper pair formation
∼Δ−1

λ is smaller than the exciton scattering time on impurities τ , Δλτ/(ξhk)2 	 1.
Figure 2 shows the comparison between the SC order parameters induced by 1b- and 2b-mediated

pairings. At the same condensate density nc and concentration of electrons in the 2DEG ne, 2b-induced gap
Δ2b(T) is bigger than Δ1b(T). This drastic difference between them is caused by the ratio of two effective
electron–electron pairing potentials, V1b/V2b ∼ (ξhkF)(ncξ

2
h) � 1. Moreover, the finite-temperature

correction to the 2b-mediated pairing potential in equation (11) leads to dramatic enhancement of the SC
gap with the increase of temperature. As a result, 2b-induced order parameter reveals a pronounced

4
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Figure 2. SC gap as a function of temperature. Red solid curve shows 2b-mediated gap disregarding Nq-containing term in
equation (11). Black dashed curve accounts for the full temperature dependence [including the influence of Nq-containing term
in equation (11)]. Inset shows one-bogolon SC gap for comparison. We used the parameters, typical for MoS2 and hBN:
ε = 4.89, m = 0.46m0 (where m0 is free electron mass), M = m0, d = 1 nm, l = 2.5 nm, and L = 10−6 ∼ m. We also take
ne = 1.2 × 1012 cm−2 and nc = 5.0 × 1010 cm−2.

non-monotonous temperature dependence. We want to note, that non-monotonous dependence of the
order parameter due to two-acoustic phonon-mediated pairing has been theoretically investigated in
three-dimensional multi-band superconductors. There, however, the two-phonon processes were considered
as a second-order perturbation [44] giving a contribution in the absence of single-phonon processes. In our
case, 2b pairing belongs to the same order of the perturbation theory as 1b pairing [see equations (10) and
(11)], as it will be discussed below.

We should also address the issue of Coulomb repulsion between electrons in 2DEG. A standard
calculation [45] gives the following renormalization of the coupling constant: Ṽλ(pF) → Vλ(pF) − V ′

C,
where VC

′ = VC/[1 + ν0VC log(μ/ωb)] with VC the momentum-averaged Coulomb potential [46]. Using
the same parameters as in figure 2, we estimate ν0VC

′ ≈ 0.2, while we consider ν0V2b in the range 0.4–1
(along the text).

It should also be noted, that our approach is valid in the weak electron–bogolon coupling regime where
the BCS theory is applicable [36, 47]. It corresponds to ν0V2b(pF) < 1. Thus we only use ν0V2b(pF) in the
range 0.4–1, where unity corresponds to a provisional boundary, where the weak coupling regime breaks
and a more sophisticated strong-coupling treatment within the Eliashberg equations approach is required
[46, 48–50]. However, we leave it beyond the scope of this article.

Figure 3 shows the dependence of the 2b-mediated gap and the critical temperature on the condensate
density. As it follows from equation (15) (and equation (14) for 1b processes), both Δλ and Tc grow with
the increase of nc (via the sound velocity s) or decrease of ne (via the Fermi wave vector pF in the
exponential factor in gpF ). A naive idea which comes to mind is to start increasing nc up to the maximal
experimentally achievable values and decreasing ne while possible. However, the applicability of the BCS
theory imposes an additional requirement: ne/nc > d/ael

B , where ael
B = πε0ε�

2/me2
0 is the Bohr radius of

electrons in 2DEG. Meanwhile, considering only bogolons with a linear spectrum dictates another
requirement: kFξ < 1, that gives the condition ne/nc < d/aex

B , where aex
B = πε0ε�

2/Me2
0 is the Bohr radius

of exciton. It results in a condition imposed on the effective masses: the effective electron mass in 2DEG
should be smaller than the mass of the indirect exciton. The optimal relation between ne and nc is
ne/nc ∼ C1πε0ε�

2/m0e2
0, where C1 is a numerical constant and m0 is a free electron mass.

Why is 2b superconductivity stronger than 1b? The electron-single bogolon and electron–bogolon pair
interactions are processes of the same order with respect to the electron–exciton interaction strength gp due
to the properties of weakly interacting Bose gas at low temperature. The full density of the Bose gas consists
of three parts: (i) the condensate density nc, (ii) density of excitations above the condensate ϕ†

RϕR, and (iii)
the ‘mixed density’

√
nc(ϕ†

R + ϕR). This last term here does not conserve the number of Bose-particles in a
given quantum state and usually gives small contribution to different physical processes, such as electron
scattering, since only the non-diagonal matrix elements of this operator are nonzero, see equation (2).

To understand the microscopic origin of this phenomenon, in figure 4 we show the Feynman diagrams,
corresponding to 1b and 2b pairings, as it follows from the Schrieffer–Wolff transformation (see
supplemental material [38]). The matrix elements of the electron–boson interaction gp are multiplied by
the Bogoliubov coefficients. In the 1b case, it is the sum (up + v−p), while in the 2b case a product of the

5
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Figure 3. (a) SC gap due to bogolon-pair-mediated processes as a function of temperature for different condensate densities:
nc = 3.5 × 1010 cm−2 (brown), nc = 4.0 × 1010 cm−2 (red), nc = 5.0 × 1010 cm−2 (blue), and nc = 6.0 × 1010 cm−2 (green).
(b) Critical temperature as a function of condensate density for single-bogolon processes (blue), two-bogolon processes without
the Nq-containing term in equation (11) (red), and two-bogolon processes with the Nq-containing term (black dashed). We used
ne = 1.0 × 1012 cm−2. All other parameters are the same as in figure 2.

Figure 4. Effective Feynman diagrams of single-bogolon-mediated (a) and bogolon-pair-mediated (b) electron pairing.

kind uqvq−p. We see, that the key reason of suppression of the 1b processes is that there emerges a small
factor (up + v−p) ∼ (pξh)2 � 1 [30]. Indeed, both |up|, |vp| 	 1, and they have opposite signs, thus
negating each other in the sum. It can be looked at as a destructive interference of waves corresponding to
bp and b†−p. There is no such self-cancellation in the 2b matrix elements since upvp ∼ (pξh)−1 	 1 (instead
of up + v−p). Here we can also recall the acoustic phonons, where such a cancellation effect does not take
place, and hence the single-phonon scattering prevails over the two-phonon one, and thus the latter can be
usually neglected. However, the physics in question is general and might be relevant to other proximity
effects of the BEC phase. We want to mention also, that the processes involving three and more bogolons

6
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belong to the higher-order perturbation theory with respect to the electron–exciton interaction gp and can
be disregarded, as it has been discussed in [51].

We note, that performing the calculations and evaluating the gap and Tc, we assumed that the electron
gas is degenerate at given ne and temperature. We have to also note, that the approach discussed in this
article is only valid as long as nc is macroscopically large (nc � 108 cm−2). Only under this condition, we can
treat the bogolon dispersion as linear and use the mean field approach and the Bogoliubov transformations.

Certainly, SC Tc should be smaller than TBEC
c . In GaAs-based excitonic structures, TBEC

c ∼ 1 − 7 K [52]
and it is predicted to reach ∼100 K or more in MoS2 [19], which finds its experimental signatures [25]. If
the temperature is above the critical one, there is no BEC but electrons are still coupled with excitons via
Coulomb forces. However, we believe that in this case Bose gas-mediated superconductivity is strongly
suppressed [53].

Usually, the conventional phonon-mediated superconductivity is explained the following quantitative
way: one electron moving along the crystal polarizes the media due to the Coulomb interaction between
this electron and the nuclei, and then another electron (moving with the opposite or close-to-opposite
momentum to the first electron) feels this polarization of the media, and by that the electrons effectively
couple with each other. In our case, the ions of the crystal lattice are replaced by indirect excitons. And here,
the mechanism of electron–electron pairing is similar qualitatively but quantitatively different: instead of
the deformation potential, one deals with the direct Coulomb interaction between electrons and excitons,
which can be treated as dipoles. Thus, the effective matrix elements of this interaction are different. As the
result, one electron disturbs the excitonic media in BEC, while another one (with opposite momentum)
feels the polarization, and the SC pairing might occur.

4. Conclusions

We have studied electron pairing in a 2DEG in the vicinity of a two-dimensional BEC, taking a condensed
dipolar exciton gas as an example. We have found that the bogolon-pair-mediated electron interaction turns
out to be the dominant mechanism of pairing in hybrid systems, giving large SC gap and critical
temperatures of SC transition up to 80 K. The effect is twofold. First, the bogolon-pair-induced gap is
bigger than the single-bogolon one even at zero temperature due to the structure and magnitudes of the
matrix elements of electron interaction. Second, we predict that, in contrast to single-bogolon-mediated
processes, two-bogolon electron pairing potential acquires an additional temperature-dependent term,
associated with the increase of the number of thermally activated bogolons with temperature. As a
consequence, such term leads to non-monotonous temperature characteristics of the SC gap and a
considerable increase of Tc. We expect this exotic feature to be observable experimentally. Moreover, instead
of indirect excitons, one can employ microcavity exciton polaritons, where the BEC is reported to exist up
to the room temperature [54], or other bosons.
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