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Abstract
Pair density waves, identified by Cooper pairs with finite center-of-mass momentum, have recently
been observed in copper oxide based high Tc superconductors (cuprates). A charge density
modulation or wave is also ubiquitously found in underdoped cuprates. Within a general
mean-field one-band model we show that the coexistence of charge density waves (CDWs) and
uniform superconductivity in d-wave superconductors like cuprates, generates an odd-frequency
spin-singlet pair density wave, in addition to the even-frequency counterparts. The strength of the
induced odd-frequency pair density wave depends on the modulation wave vector of the CDW,
with the odd-frequency pair density waves even becoming comparable to the even-frequency ones
in parts of the Brillouin zone. We show that a change in the modulation wave vector of the CDW
from bi-axial to uni-axial, can enhance the odd-frequency component of the pair density waves.
Such a coexistence of superconductivity and uni-axial CDW has already been experimentally
verified at high magnetic fields in underdoped cuprates. We further discuss the possibility of an
odd-frequency spin-triplet pair density wave generated in the coexistence regime of
superconductivity and spin density waves, applicable to the iron-based superconductors. Our work
thus presents a route to bulk odd-frequency superconductivity in high Tc superconductors.

1. Introduction

Broken symmetry phases characterize different condensed matter systems and define their phase diagrams.
One of the most coveted phases of matter is superconductivity. Many non-superconducting phases lie in the
proximity to superconductivity in various materials, making their phase diagram immensely complex and
rich, with charge and spin density waves (SDWs) being two of the primary candidates. The interplay of
density waves and superconductivity has already been found in transition-metal dichalcogenides [1–3],
twisted bilayer graphene [4], twisted double-bilayer graphene [5], and iron-based [6] and copper oxide
based (cuprate) [7, 8] superconductors.

In cuprates, charge density waves (CDWs) have been ubiquitously observed in underdoped samples
using many experimental probes, such as scanning tunneling microscopy [9–13], x-ray scattering [14–19],
NMR [20–23] and transport measurements [24, 25]. CDW have drawn significant attention due to its
potential ability [26–28] to explain the mysterious pseudo-gap phase [29, 30], found at temperatures larger
than the superconducting transition temperature Tc. It has been argued that CDW compete with
superconductivity (SC) in parts of the doping phase diagram [14, 17]. However, the strength of the
competition of CDW and SC clearly varies between different cuprates and a coexistence state is also
observed at high magnetic fields [18–21, 31, 32].

Apart from modulations in the charge density, spatial modulations in the superconducting pair
amplitude have also been observed using Josephson scanning tunneling microscopy in the cuprate
compound Bi2Sr2CaCu2O8+x (BSCCO) [33]. Modulating superconducting pair amplitude is often referred
to as Cooper-pair density waves (PDWs). PDW closely resemble the Fulde–Ferrell–Larkin–Ovchinnikov
(FFLO) [34, 35] state, but with no explicit time-reversal symmetry breaking or net magnetization. In
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contrast to the uniform superconducting state, the spatial average of the superconducting order parameter
is zero in the PDW state. The experimental observations of PDW, be it direct [33, 36] or indirect [37], has
always associated it to CDW and a uniform SC. Interestingly, the modulation wave vector of PDW, QPDW, is
either same or half of the CDW modulation wave vector Q [33, 36, 37] and the amplitudes of the two
modulating orders are directly correlated [36].

The PDW state has also been studied theoretically in the context of striped La-based cuprates [38–42]
and more recently when explaining the generic phase diagram of cuprates [43–46]. Fluctuating PDW have
also been proposed to be a candidate for explaining the pseudo-gap phase [47–50]. Many questions
regarding the nature of PDW in cuprates are however still left to be answered. For example, it is not yet
known whether PDW give rise to CDW [41] or a coexistence of uniform SC and CDW gives rise to PDW
[51–53]. This confusion arises due to multitude of different possibilities [41, 43, 44]: a primary PDW with
QPDW can give rise to a secondary CDW with Q = 2QPDW. An additional CDW with Q = QPDW arises when
the primary PDW coexist with uniform SC. In addition, a coexistence of uniform SC and CDW can induce
PDW with QPDW = Q. Direct measurements of PDW have only observed Q = QPDW [33, 36], strengthening
the line of thought that the PDW in cuprates are induced due to the coexistence of uniform SC and CDW.
However, recent STM experiments observe CDW both at Q = QPDW and Q = 2QPDW [37], indirectly
indicating that the PDW is a primary order, though CDW with Q = 2QPDW have not been observed with
any other experimental probe. To add to the complexity, a microscopic description of the PDW state itself is
also lacking [54].

The PDW order is characterized by finite center-of-mass momentum Cooper pairs and has so far been
described by equal time two electron correlation functions, found within conventional BCS-like theory. If
instead also unequal time pair correlation functions are considered, i.e. the two electrons can also pair at
unequal times, the Fermi–Dirac statistics allows for the exotic possibility that the correlation function
becomes odd under the exchange of the time coordinates or, equivalently, odd in frequency [55–60].
Odd-frequency Cooper pairs with zero center-of-mass momentum are present in several superconducting
systems [59–63], among which most break translational symmetry. The necessary broken translational
symmetry has been achieved in junctions [64–76], in the presence of impurities [77–81], and also in
models with a staggered lattice structure [82–84]. Bulk odd-frequency correlations are also predicted to be
present in multiband superconductors even without broken translational symmetry [63, 85–90]. But, the
thermodynamic stability [91] of odd-frequency SC has been questioned due to a most often found
paramagnetic, or negative, Meissner response [64, 92, 93]. However, a diamagnetic Meissner effect can be
restored by having a frequency dependent pair potential [94–96] or if the odd-frequency pairs have a
staggered nature [97, 98], i.e. in other words have finite center-of-mass momentum. Thus odd-frequency
SC with a spatially modulated order parameter can be thermodynamically stable. This naturally leads to the
tantalizing possibility: is the mysterious PDW state found in the cuprates an odd-frequency state?

In this work, we show that spin-singlet odd-frequency pair density wave (OPDW) correlations are
generically found in cuprates due to the simultaneous presence of uniform SC and CDW. We investigate a
time-independent Hamiltonian of coexisting CDW and uniform SC, described by equal time BCS-like
Cooper pairs with zero center-of-mass momentum, as commonly assumed present in cuprates. We find that
this conventional time-independent Hamiltonian induces PDW correlations consisting of unequal time and
finite-momentum Cooper pairs, and among those an OPDW. The OPDW in our work is an induced
correlation with QPDW = Q, i.e. it is not an order parameter and thus does not need an exotic pairing
interaction in the OPDW channel. Being induced correlations, the OPDW does not alter the ground state of
the Hamiltonian. This makes our work much more general in comparison to the earlier works finding
modulated odd-frequency SC in quasi-one-dimensional models [97–99]. We find that the OPDW is also
accompanied with an even-frequency pair density wave (EPDW). By exploring various possible CDW
modulation wave vectors and different band structures, we show that the OPDW is a generic feature of all
cuprates, whereas the relative strength of OPDW and EPDW depends on the specific material. While both
OPDW and EPDW are sign changing in momentum space, their momentum structure are characteristically
different, giving various possibilities of their experimental identification. We also explore the coexistence of
a SDW state and SC, and find a spin-triplet OPDW. This triplet OPDW is unlikely to be found in the
cuprates, but might be present in the iron-based superconductors. Our work thus shows a generic pathway
to realizing OPDW in several different coexistence phases.

We organize the rest of the article in the following way. In section 2 we give the details of a general
mean-field model of coexisting SC and CDW and discuss the possible OPDW that can be induced. We then
turn to the specific case of cuprates in section 3. We find explicit values of the induced OPDW by
considering three different possible CDW modulation wave vectors in sections 3.1–3.3, before showing in
section 3.4 that the OPDW is a robust feature to three different cuprate bands. After that, we investigate the
coexistence of SC and SDWs in section 4. Finally in section 5, we summarize our results and discuss various
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experimental consequences in cuprates and also the relevance of our findings in the context of other
materials showing coexistence phases.

2. Generic model

We start by considering a general mean-field model of coexisting SC and CDW. The corresponding
Hamiltonian in momentum space is given by,

H =
∑
k,σ

ξkc†kσckσ +
∑
k,σ

(
χkc†kσck+Qσ + H.c.

)

+
∑

k

(
Δkc−k↓ck↑ + H.c.

)
+ constant, (1)

where c†kσ (ckσ) is the creation (annihilation) operator of an electron with spin σ and momentum k, ξk is the
electron dispersion, χk is the CDW order parameter with a modulation wave vector Q and Δk is the
superconducting order parameter. In equation (1) we have considered a spin-singlet even parity
superconducting order parameter, such that Δ−k = Δk, and χk also to be parity preserving with χ−k = χk.
Here, χk =

∑
k′V

χ
k,k′ 〈c

†
k′σck′+Qσ〉 and, likewise, Δk =

∑
k′V

Δ
k,k′ 〈c

†
k′↑c†−k′↓〉, where Vχ

k,k′ and VΔ
k,k′ are the

interaction strengths driving the CDW and superconducting orders, respectively. The form and values of
these interaction strengths depend on the microscopic properties. Here we do not assume any particular
microscopic model and simply consider χk and Δk as parameters in order to keep our results as general as
possible. Note that the notation for the CDW order parameter should ideally be χk,k+Q, but for brevity we
use the short-hand notation χk with the Q index being absorbed in the definition.

The Hamiltonian in equation (1) can be written in a matrix form in the basis

Ψ† =
(

c†k↑, c†k+Q↑, c−k↓, c−k−Q↓

)
as,

H =
1

2

∑
k

Ψ†ĤΨ+ constant,

with

Ĥ =

⎛
⎜⎜⎝

ξk χk Δk 0
χk ξk+Q 0 Δk+Q

Δk 0 −ξk −χk

0 Δk+Q −χk −ξk+Q

⎞
⎟⎟⎠ , (2)

where we take χk and Δk to be real, without loss of generality. A purely imaginary χk is often considered to
describe current density wave orders [100]. In the rest of this article, we focus only on a purely real χk.
However, our analysis extends equivalently to a complex χk without any change in the outcomes. The
Green’s function G corresponding to the Hamiltonian in equation (2) is given by G−1(iω) = iω − Ĥ where
ω are fermionic Matsubara frequencies. The Matsubara frequencies are discrete and only become
continuous in the zero-temperature limit. As we are focused on the low-temperature physics, we work with
continuous Matsubara frequencies in the rest of the article. An alternative and equivalent picture can also be
developed by analytically continuing to real frequencies and considering advanced and retarded Green’s
functions [60].

2.1. Induced spin-singlet odd-frequency PDW
In the context of mean-field microscopic models pertaining to cuprates, the search for PDW has sometimes
been focused around finding an energetically minimum PDW ground state [101–103]. However, a PDW
ground state is either hard to stabilize energetically or fragile to parameters of the model [54]. So, our
starting point of this work is simply a mean-field model Hamiltonian (equation (1)) with only uniform SC
and CDW orders, as also considered previously [51–53]. We thus do not consider any PDW order
parameter in the mean-field Hamiltonian and consequently our approach does not require us to stabilize a
PDW ground state. Instead, we consider the PDW as induced correlations generated in the model and show
that this generated or induced PDW very generally has both even and odd-frequency components. More
specifically, this induced PDW can be found by looking at the Cooper pair correlator Fk,k+Q(τ) = −〈Tτ c†k↑
(τ)c†−k−Q↓(0)〉, where τ is the imaginary time and Tτ is the τ-ordering operator. Here Fk,k+Q(τ) has all the
symmetries of a PDW field as it describes a Cooper pair with a finite center-of-mass momentum, with the
same wave vector Q as that of the CDW. However, note that this induced PDW amplitude given by
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Fk,k+Q(τ) is a correlation function and is thus not associated with any interaction in the PDW channel. As a
result, the PDW correlations do not enter the Hamiltonian and consequently do not alter the free energy of
the system. (This is in sharp contrast to e.g. Fk(τ) = −〈Tτ c†k↑(τ)c†−k↓(0)〉, which in the limit of τ = 0 (equal
time) and with a finite pairing strength defines the self-consistent gap equation for Δk in the Hamiltonian).

Using the Hamiltonian in equation (2), the Green’s function is obtained by inverting the 4 × 4 matrix
G−1(iω). The Fourier transformed PDW correlator is then given by,

Fk,k+Q(iω) = G14(iω) = Feven
k,k+Q(iω) + Fodd

k,k+Q(iω),

where

Feven
k,k+Q(iω) =

χk

(
ξkΔk+Q + ξk+QΔk

)
D

, (3)

Fodd
k,k+Q(iω) =

iωχk

(
Δk −Δk+Q

)
D

, (4)

D =
(
ω2 + ξ2

k +Δ2
k

) (
ω2 + ξ2

k+Q +Δ2
k+Q

)
− 2χ2

k

(
ξkξk+Q −ΔkΔk+Q − ω2

)
+ χ4

k. (5)

The induced PDW, per definition given by G14(iω), have both even and odd-frequency components. This is
seen explicitly in equations (3) and (4), with Feven

k,k+Q(iω) and Fodd
k,k+Q(iω) having an even and odd frequency

dependence, respectively, in the numerator, while the denominator D is an even function of frequency.
In order to verify the symmetries of Fk,k+Q(τ ), we use the fact that a pair correlation function should

always satisfy the Fermi–Dirac statistics. As a result, the correlation function under a joint operation of spin
permutation (S), momentum exchange (M), and relative time permutation (T ) should satisfy SMT = −1.
Under M, Fk,k+Q(τ ) → Fk+Q,k(τ ). So, we look at the G23(iω) component of the Green’s function, giving,

Fk+Q,k(iω) = G23(iω) = Feven
k+Q,k(iω) + Fodd

k+Q,k(iω),

where

Feven
k+Q,k(iω) =

χk

(
ξkΔk+Q + ξk+QΔk

)
D

= Feven
k,k+Q(iω), (6)

Fodd
k+Q,k(iω) =

iωχk

(
Δk+Q −Δk

)
D

= −Fodd
k,k+Q(iω). (7)

The even-frequency component of the induced PDW is thus even under M (seen in equation (6)) and also
even under T. To satisfy SMT = −1, it must therefore be odd under S, or a spin-singlet state. Similarly, the
odd-frequency component is odd under M (from equation (7)), odd under T and thus, again odd under S.
As a consequence, both even and odd-frequency components of the induced PDW are spin-singlet in
nature, as we also expect since equation (1) is spin-rotation invariant.

From equation (4), we can already now gain some insights to the OPDW. If the SC is described by an
s-wave, or momentum independent, order parameter, the OPDW is zero, since then Δk+Q = Δk for any Q.
So, the coexistence of s-wave SC and CDW in a single-band system cannot give rise to the OPDW. In
contrast, if the superconducting order parameter is momentum dependent, Δk+Q 	= Δk in general. For
example, a coexistence of d-wave SC (given by Δk ∝ cos kx − cos ky) and CDW with Q = (π,π) gives the
highest OPDW as then Δk+Q = −Δk. In the next section, we investigate the OPDW in the context of
cuprates, prototype d-wave superconductors. Although SC in cuprates is achieved by doping a parent
antiferromagnetic (Q = (π,π)) insulator [104], the CDW observed in these materials have a Q different
from (π,π).

Before discussing the case of cuprates, we comment on the similarities of the Hamiltonian in
equation (2) with that of a multiband superconductor. A simple analogy with the Hamiltonian of
multiband superconductors can be drawn if we consider ξk+Q as an independent second band. In this
picture, χk is then the band hybridization between two bands ξk and ξk+Q, while Δk and Δk+Q become two
independent superconducting order parameters in each bands, respectively. As was shown in reference [85],
odd-frequency pairing arises if the band hybridization is finite and the superconducting order parameters
are not equal in two bands, i.e. if Δk+Q 	= Δk. This is the same criterion as established in equation (4) for
CDW and thus illustrates the underlying similarity, although the materials and properties are completely
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different. We also note that in the case of multiband superconductors, the odd-frequency pairing does not
have a modulation wave vector.

3. Case of cuprates

The origin of CDW in cuprates is still a debated question. Two parallel points of view have been proposed:
one based on strong real space electron interactions giving CDW with wave vectors commensurate with the
lattice and the other based on a momentum space picture where the Fermi surface plays an important role
in defining the CDW wave vectors. The former picture discusses the experimentally observed
incommensurate CDW wave vectors by disorder-induced discommensuration effects [105]. The latter gives
a CDW wave vector that connects points of different branches of the Fermi surface. In this latter picture
[26–28], it has been postulated that there exists an antiferromagnetic quantum critical point beneath the
superconducting dome. Outside the antiferromagnetic phase, short-range antiferromagnetic fluctuations
diverge near the ‘hot spots’ (k-points where the antiferromagnetic Brillouin zone intersects the Fermi
surface) in two spatial dimensions, giving rise to CDW and superconducting correlations. As a result, the
CDW wave vectors are connecting different ‘hot spots’. In this work, we consider an effective homogeneous
Hamiltonian (equation (1)) in momentum space where CDW wave vectors are considered within the latter
picture, i.e. connecting different ‘hot spots’. The model in equation (1) can also describe the former picture
with commensurate CDW wave vectors. Therefore the choice of model is not crucial for our results,
although we note that disorder-induced discommensuration effects in the first picture cannot be captured
within this model.

To continue, we consider in sections 3.1–3.3 a band dispersion mimicking the Fermi surface of the
underdoped cuprate, YBa2Cu3O7−x (YBCO) [106] with ξk given by,

ξk =
t1

2

(
cos kx + cos ky

)
+ t2 cos kx cos ky

+
t3

2

(
cos 2kx + cos 2ky

)
+

t4

2

(
cos 2kx cos ky

+ cos kx cos 2ky

)
+ t5 cos 2kx cos 2ky + μ, (8)

with

YBCO: t1 = −1.1259 eV, t2 = 0.5540 eV, t3 = −0.1174 eV,

t4 = −0.0701 eV, t5 = 0.1286 eV, μ = 0.1756 eV. (9)

It should be noted that the bilayer electronic structure of YBCO results in a splitting of the bands [106,
107]. This gives two sets of band parameters representing the bonding and the antibonding band
dispersions. In equation (9), we consider only the parameters corresponding to the bonding band
dispersion. The hole doping is given by the average of the doping in the bonding and the antibonding
bands. With this bonding band dispersion, the corresponding hole doping is 12% [106, 107], which is
where the intensity of the CDW in x-ray experiments [17] is close to maximum. We will primarily express
all energies corresponding to this band in units of t1. Motivated by experiments, superconducting [108, 109]
and CDW [13, 110] order parameters are taken to be d-wave in nature and given by,

Δk =
Δ0

2

(
cos kx − cos ky

)
, (10)

χk =
χ0

2

(
cos kx − cos ky

)
, (11)

where Δ0 and χ0 gives the maximum values of the superconducting and CDW order parameters,
respectively. We note that recent resonant x-ray scattering measurements suggest an unusual possibility of
an s-wave symmetry of the CDW in YBCO [111]. Our analysis in section 2.1 holds for any symmetry of the
CDW order, however the quantitative results in this section will differ with an s-wave CDW.

The exact values of Δ0 and χ0 can be calculated self-consistently by choosing a microscopic model with
interactions in both the SC and CDW channels. However, these values will crucially depend on the exact
choice of microscopic model and, with the microscopic origin of both SC and CDW in underdoped
cuprates still being an unresolved question, are at present nearly impossible to determine. In fact, various
microscopic models exist giving different phase diagrams and even different relative values of Δ0 and χ0

[26–28, 48]. So, in order to avoid this ambiguity, we choose a path of instead scanning a wide range of Δ0
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and χ0, without solving the self-consistent gap equations. This will automatically cover the range of possible
self-consistent solution, without hampering our conclusions. Moreover, and most importantly, the ratio of
the OPDW and the EPDW for a particular k-point in the Brillouin zone and a fixed frequency does not, in
fact, depend on the choice of Δ0 and χ0. From equations (3) and (4), and using the form of Δk and χk in
equations (10) and (11), the ratio of the OPDW and the EPDW is given by,

Fodd
k,k+Q(iω)

Feven
k,k+Q(iω)

=
iω

(
ηk − ηk+Q

)(
ξkηk+Q + ξk+Qηk

) , (12)

if χk 	= 0, Δ0 	= 0 and D 	= 0, and with ηk =
(
cos kx − cos ky

)
. Thus, the relative importance of the OPDW

to the EPDW correlations is not expected to change with any self-consistent determination of Δ0 and χ0,
although the quantitative strength of the PDW correlations might of course change.

In order to efficiently study the PDW, we use the fact that the EPDW is even and the OPDW is odd
under the M momentum exchange operation, as seen in equations (6) and (7). As a result, the total
contribution of the OPDW can be obtained by taking an antisymmetric combination of Fodd

k,k+Q and Fodd
k+Q,k,

while the total EPDW contribution is obtained by taking the symmetric combination of Feven
k,k+Q and Feven

k+Q,k.
Thus, the total contribution of the OPDW and the EPDW are given by,

Fo
k (iω) = Im

(
Fodd

k,k+Q(iω) − Fodd
k+Q,k(iω)

2

)
, (13)

Fe
k(iω) =

Feven
k,k+Q(iω) + Feven

k+Q,k(iω)

2
, (14)

where we have taken the imaginary part in the first line as both Fodd
k,k+Q(iω) and Fodd

k+Q,k(iω) are purely
imaginary, see equation (7). Looking at the functional form of the EPDW and OPDW correlations in
equations (3) and (4), it is evident that the momentum structure of Fe

k and Fo
k depend on the Q vector. In

addition, we consider both CDW and SC to have d-wave symmetry. As the induced PDW comes as a
product of CDW and SC in equations (3) and (4), we can already now conclude that Fe

k and Fo
k do not have

a simple d-wave structure. Still, we expect sign changes in Fe
k and Fo

k as they depend on both k and k + Q.
Keeping in mind that we might encounter sign changes in the induced PDW, we define the following two
momentum sums to characterize the total momentum contributions,

Fe/o(iω) =
∑

k

∣∣∣Fe/o
k (iω)

∣∣∣ , (15)

Fe/o
∗ (iω) =

∑
k

Fe/o
k (iω). (16)

If Fe/o
k has a pure d-wave structure, Fe/o

∗ will be zero.
The Fourier transformed PDW correlators Fo

k (iω) and Fe
k(iω) encode all the properties of the

superconducting pairing in the system and are thus the key quantities for providing any deeper
understanding of the superconducting phase. They also play a crucial role in the determination of
two-particle response functions, which can then be measured experimentally. For example, density response
functions can be measured experimentally in various probes like resonant inelastic x-ray scattering (RIXS),
momentum-resolved electron-loss spectroscopy (M-EELS), and Raman spectroscopy. Moreover, one of the
hallmarks of SC, the Meissner response, is a current response function and is also affected by the PDW
correlators. The Meissner response has previously been instrumental in detecting the signatures of
odd-frequency SC, when giving a paramagnetic response [64, 92, 93] in contrast to the usual diamagnetic
response of even-frequency SC. Depending on the experimental probes, either the momentum dependent
correlators or momentum averaged correlators can be relevant. Thus, in the next sections, we calculate both
the momentum structure and momentum averaged quantities for the induced PDW, choosing three specific
Q values discussed in the context of cuprates.

3.1. Diagonal CDW
The ‘hot spots’ theory [26, 27] was originally constructed with wave vectors connecting diagonal parts of
the Fermi surface. As shown in figure 1(a), the Q vectors are here given by the ones connecting ‘hot spots’
marked by ‘2’ (‘1’) and ‘6’ (‘5’), lying on diagonally opposite parts of the Fermi surface. However, the
currently experimentally observed magnitude of the CDW wave vectors do not match with the ones
proposed in the ‘hot spots’ model. Instead, experiments observe the CDW Q to be along the axial directions
[112, 113]. Still, as a first example, in this section, we start with the original diagonal CDW Q vector and
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Figure 1. Diagonal CDW. (a) Green lines show the Fermi surface of the underdoped YBCO band in the first Brillouin zone. The
antiferromagnetic Brillouin zone is shown by black dashed lines. ‘Hot spots’, defined by k-points where the antiferromagnetic
Brillouin zone intersects the Fermi surface, are marked as blue dots and numbered 1–8. CDW wave vectors Q are indicated by
arrows, connecting diagonally opposite ‘hot spots’. (b) The Brillouin zone is divided into eight regions marked R1–R8 to
preserve C4 lattice rotational symmetry. All k-points in a particular region have same diagonal Q vector, with directions and
values indicated in each region.

consider the possibility of the OPDW, before continuing the discussion of the currently experimentally
relevant CDW wave vectors in sections 3.2–3.4. The CDW order in the ‘hot spots’ theory does not break the
C4 lattice rotational symmetry. Thus, to ensure the C4 symmetry, we divide the Brillouin zone into eight
regions marked as ‘R1’ to ‘R8’ in figure 1(b). Each of these octants has a Q connecting different ‘hot spots’.
Directions and values of Q vectors are shown in figure 1(b).

Using the diagonal CDW wave vectors in figure 1, we plot in figure 2, the PDW amplitudes Fe and Fo for
different realistic values [106, 107, 114–116] of Δ0 = χ0. We only show results taking Δ0 = χ0 for two
reasons. First, recent Raman measurements [117, 118] suggest that the energy scales corresponding to the
superconducting and CDW order parameters are very close to each other for a large range of doping levels
for different cuprate materials. Second, from equation (12), the relative values of Fo

k (iω) and Fe
k(iω) do not

depend on Δ0 or χ0, for a fixed k and ω. We see in figure 2 that Fe acquires its maximum value for ω = 0
and we call this value Fe

max. On the other hand, Fo is zero at ω = 0 by definition of being odd in ω. Fo

instead peaks for low but finite ω and we call this value Fo
max. Even for the small value of Δ0 = 0.05, we note

that Fo is finite, although Fo
max is small compared to Fe

max. However, values of Fo and Fe become very similar
for ω greater than a particular value indicated by vertical arrows in figure 2. Notably, we also find that
increasing Δ0 increases Fo

max, while the same decreases Fe
max. Therefore, the ratio of Fo

max to Fe
max is strongly

increased for stronger SC. For example, for Δ0 = 0.2, Fo
max is almost half of Fe

max. In the inset of figure 2, we
also show Fo

∗ , Fe
∗, and Fo

∗ + Fe
∗, which are the total momentum sums of the OPDW, the EPDW, and the total

PDW, respectively, when considering their signs, as defined in equation (16). The large differences in the

values of Fo/e
∗ and Fo/e already suggests that there are notable sign changes in both PDWs. The total PDW

shows a considerable asymmetry in ω due to the contribution from the OPDW.
To understand the sign change and the detailed momentum structure of the induced PDW, we plot color

density maps of Fo
k (iω) and Fe

k(iω) in figure 3 for Δ0 = χ0 = 0.2 at a specific frequency, ω = 0.19. We
choose these parameters because the momentum averaged OPDW and EPDW in figure 2 are of comparable
magnitude, and the qualitative features of Fo

k (iω) and Fe
k(iω) do not change with ω. We also overlay the

Fermi surface of the YBCO band considered in green. We see that the OPDW Fo
k in figure 3(a) changes sign

along the Fermi surface, going from the anti-nodal region (near (π, 0) and three other C4 symmetric
regions) to the nodal region (near kx = ky or kx = −ky lines). In contrast, Fe

k in figure 3(b) does not change
signs along the Fermi surface, instead it changes sign as we go away from the Fermi surface. Plotting the
absolute values,

∣∣Fo
k

∣∣ and
∣∣Fe

k

∣∣ in figures 3(c) and (d), respectively, help to better visualize the zeros. Since χk

is assumed to have d-wave character, both Fe
k and Fo

k have zeros along the kx = ky or kx = −ky lines.
Additionally, Fo

k is also zero at ‘hot spots’, since Δk+Q = Δk, giving sign change across these spots. Despite
the difference in nodal structure, the regions of the Brillouin zone with high values of PDW correlations are
very similar for both the even- and odd-frequency parts.
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Figure 2. Momentum-averaged absolute values of EPDW, Fe, (dashed lines) and OPDW, Fo, (solid lines) plotted as a function of
frequency ω with diagonal Q CDW given in figure 1 for different realistic values of Δ0 = χ0. Arrows indicate the ω values above
which Fo > Fe. Inset: EPDW (red dashed line), OPDW (red solid line) and the total PDW (magenta solid line) obtained when the
momentum averaging is done considering the actual sign. The odd-frequency behavior of the OPDW is apparent in the inset.
Due to the odd-frequency behavior of the OPDW, the total PDW has a clear asymmetry between positive and negative ω. ω is in
units of t1.

Figure 3. Color density map of the momentum structure of (a) OPDW, Fo
k , and (b) EPDW, Fe

k , with Δ0 = χ0 = 0.2 at ω = 0.19
with diagonal Q CDW given in figure 1. The absolute values (c)

∣
∣Fo

k

∣
∣ and (d)

∣
∣Fe

k

∣
∣ give a clearer visualization of the momentum

structure for the same parameters as in (a) and (b). The Fermi surface is overlaid with green lines.

3.2. Bi-axial CDW
Although a diagonal CDW is the primary charge instability in models with short-range antiferromagnetic
interactions [26, 27], recent experiments in cuprates suggest that the CDW are actually axial in nature [112,
113]. In particular, at low or zero magnetic fields, the CDW Q in YBCO is found to be bi-axial with
Q = (Qx, 0) and Q = (0, Qy) [119, 120]. The magnitudes of the observed Q vectors are very close to the
wave vectors connecting neighboring ‘hot spots’ [120], as shown in figure 4(a). CDW with such axial wave
vectors have also been found as a competing instability in models with antiferromagnetic interactions [28]
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Figure 4. Bi-axial CDW. (a) Green lines show the same Fermi surface as in figure 1 with ‘hot spots’ denoted as blue dots. CDW
wave vectors Q are indicated by arrows, taken to be parallel to the crystallographic axis connecting nearest ‘hot spots’ with Q
vector along x-axis for ‘hot spots’ 2, 3, 6, 7 and along y-axis for ‘hot spots’ 4, 5, 8, 1. (b) The Brillouin zone is divided into the
same eight regions as in figure 1, but now with axial Q vectors, with direction and magnitude indicated in each region.

and can furthermore be enhanced by including an off-site Coulomb interaction [48, 121]. Thus, in this
section, we consider the CDW wave vector to be bi-axial connecting neighboring ‘hot spots’ as in
figure 4(a). As there is no experimental evidence that bi-axial CDW breaks the C4 lattice rotational
symmetry, we again separate the Brillouin zone into eight regions as shown in figure 4(b) to ensure the C4

symmetry. It should also be noted that the lattice structure of YBCO is strongly orthorhombic, thus
breaking C4 symmetry [122]. However, since we here consider a particular electronic instability with no
evidence of breaking C4 symmetry, we ignore the C4 symmetry breaking in the lattice structure of YBCO.

We plot the frequency dependence of the EPDW Fe and the OPDW Fo with bi-axial CDW wave vectors
in figure 5, for the same values of Δ0 = χ0 as used for the diagonal CDW. We again find that for all Δ0, Fo

attains a finite value, with a frequency dependence that is very similar to the case of diagonal CDW. With
increasing Δ0, the Fo

max increases. The Fe
max, on the other hand, initially decreases with an increase in Δ0,

but does not change with further increase in Δ0. The ratio of the Fo
max to the Fe

max therefore increases with
increasing Δ0, but the ratio is, however, somewhat smaller compared to the case with diagonal CDW case
reported in figure 2. Still, values of Fe

∗ and Fo
∗ , shown in the inset of figure 5, are comparable and also

illustrate the very different frequency dependencies of the EPDW and OPDW states. This difference in the
frequency dependencies gives rise to an asymmetric frequency dependence of Fo

∗ + Fe
∗, as shown in the inset

of figure 5.
We again gain additional insights into the relative strengths of Fo

k and Fe
k by looking at their momentum

structure. Color density maps of Fo
k , Fe

k,
∣∣Fo

k

∣∣ and
∣∣Fe

k

∣∣ for ω = 0.19 and Δ0 = 0.2 are plotted in
figures 6(a)–(d), respectively. Since the choice of Q is different here compared to the diagonal CDW, lines
where Δk+Q = Δk also change. This gives a very different momentum space structure, especially for Fo

k . For
example, in the region ‘R2’, Δk+Q = Δk along a line kx = kHS

x parallel to the ky-axis, where kHS
x is the

x-coordinate of ‘hot spot’ 2, see figure 4. In contrast, the line Δk+Q = Δk in the diagonal CDW case is not
parallel to the ky-axis. Similar features are observed in the other C4 symmetric regions of the Brillouin zone.
Fe

k shows a much more similar momentum space structure to the diagonal CDW case. In addition, both Fo
k

and Fe
k have usual zeros along nodal directions, i.e. along kx = ±ky.

To provide a better understanding of the relative magnitude of the EPDW and OPDW in different parts
of the Brillouin zone, we make two line cuts along the red and blue arrows in figures 6(a) and (b). Fo

k and Fe
k

are shown along the red arrow (ky = π) in figure 6(e) and along the blue arrow (ky = 0.4π) in figure 6(f).
In the anti-nodal region, ky = π, the induced PDW is clearly dominated by the even-frequency component
with the maximum of OPDW being at most 25% of the EPDW. However, close to the nodal region
(ky = 0.4π), the OPDW and EPDW have very similar maximum values. Thus, even if momentum
integrated values of Fo

k are small compared to their even-frequency counterparts, as indicated in figure 5,
the magnitudes of OPDW and EPDW become clearly very comparable in some parts of the Brillouin zone.
For example, at ky = 0.4π, the maximum magnitude of the OPDW is obtained for kx = 0.16π. At this k
point,

∣∣Fo
k

∣∣ ≈ 0.1,
∣∣Fe

k

∣∣ ≈ 0.05, and |Δk| = |χk| = 0.1. Thus, not only is the OPDW twice the magnitude of
the EPDW, it is also of equal magnitude of the uniform SC or CDW from which it is derived.
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Figure 5. Momentum-averaged absolute values of EPDW, Fe, (dashed lines) and OPDW, Fo, (solid lines) plotted as a function of
frequency ω with bi-axial Q CDW given in figure 4, and for the same realistic values of Δ0 = χ0 as in figure 2. Arrow indicates
the ω value above which Fo > Fe. Inset: EPDW (red dashed line), OPDW (red solid line) and the total PDW (magenta solid line)
obtained when the momentum averaging is done considering the actual sign. ω is in units of t1.

Figure 6. Color density map of the momentum structure of (a) OPDW, Fo
k , and (b) EPDW, Fe

k , with Δ0 = χ0 = 0.2 and
ω = 0.19 with bi-axial Q CDW given in figure 4, with absolute values given in (c) and (d), and Fermi surface overlaid with green
lines, all similar to figure 3. (e) Line cut of EPDW (dashed line) from (a) and OPDW (solid line) from (b) along the line ky = π,
indicated by red arrows in (a) and (b). (f) Line cut of EPDW (dashed line) from (a) and OPDW (solid line) from (b) along the
line ky = 0.4π, indicated by blue arrows in (a) and (b).

3.3. Uni-axial CDW
The bi-axial CDW discussed in the previous section is observed in YBCO, only at zero or low magnetic
fields [17, 119, 120]. A change in the nature of CDW, however, occurs as one applies a strong magnetic field
B. For B > 17 T, the correlation length of CDW jumps from ∼ 20 to ∼ 100 lattice spacings, indicating a
transition to a ‘true’ long-range CDW phase [18, 19, 31]. Long-range CDW are uni-axial in nature with
Q = (Qx, 0) or Q = (0, Qy), but not both. In other words, a transition occurs from a checkerboard CDW to
a stripe CDW with increasing magnetic field. Long-range CDW have also been found to coexist with SC in a
window of magnetic field Bc2 > B > 17 T [31, 123, 124], where Bc2 is the upper critical field of the
superconducting order. Although the magnetic field introduces vortex-induced inhomogeneities in a
strongly type-II cuprate superconductor, an effective homogeneous Hamiltonian, as in equation (1), still
gives a reasonable description of the coexistence phase close to Bc2 [125–128]. We therefore also study
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Figure 7. Uni-axial CDW. (a) Green lines show the same Fermi surface as in figure 1 with ‘hot spots’ denoted as blue dots. CDW
wave vector Q is indicated by an arrow, taken to be only along the x-axis, hence called uni-axial, but with same magnitude as in
figure 4. (b) The Brillouin zone is divided into four regions marked R1–R4 to ensure broken C4 symmetry but preserved C2

symmetry. All k-points in a particular region have same diagonal Q vector, with directions and values indicated in each region.

Figure 8. Momentum-averaged absolute values of EPDW, Fe, (dashed lines) and OPDW, Fo (solid lines) plotted as a function of
frequency ω with uni-axial Q CDW in figure 7 and for the same realistic values of Δ0 = χ0 as in figure 2. Arrow indicates the ω
value above which Fo > Fe. Inset: EPDW (red dashed line), OPDW (red solid line) and the total PDW (magenta solid line)
obtained when the momentum averaging is done considering the actual sign. ω is in units of t1.

uni-axial CDW, where we consider Q vectors only along one axis as shown in figure 7(a). The uni-axial
nature of CDW breaks the C4 rotational symmetry of the Brillouin zone. We thus here need to separate the
Brillouin zone into four regions, as shown in figure 7(b), instead of eight for the previously treated CDW.

Similar to the findings in the two previous sections for diagonal and bi-axial CDW, the OPDW Fo

increases with increasing Δ0 also for an uni-axial CDW, as shown in figure 8. Interestingly, Fo with uni-axial
CDW wave vectors show a considerable increase compared to Fo with bi-axial CDW (cp. figure 5) for all
values of Δ0, keeping Δ0 and χ0 unchanged in the two cases. For example, for Δ0 = 0.2, Fo

max ≈ 0.1 in
figure 8, whereas Fo

max ≈ 0.04 for a bi-axial CDW in figure 5. Compared to the other investigated CDW,
Fe

max for an uni-axial CDW behaves differently and increases with increasing Δ0. Thus, even though the
Fo

max is increased with an uni-axial CDW, the ratio of the Fo
max to the Fe

max remains about same as for the
bi-axial CDW. Notably, for high ω and Δ0, the OPDW becomes comparable and even larger than the
EPDW. For example, Δ0 = 0.2 gives Fo > Fe for all ω > 0.4 and Fo

∗ > Fe
∗ for ω > 0.25.

The broken C4 symmetry with an uni-axial CDW is clearly reflected in the momentum structure of the
OPDW and the EPDW plotted figure 9. In the anti-nodal regions near ky = ±π, both Fo

k and Fe
k behave

similar to the case of bi-axial CDW, as the choice of Q is the same in these regions for the uni-axial and
bi-axial CDW. The distinction between uni-axial CDW and bi-axial CDW instead comes in the anti-nodal
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Figure 9. Color density map of the momentum structure of (a) OPDW, Fo
k , and (b) EPDW, Fe

k , with Δ0 = χ0 = 0.2 and
ω = 0.19 with uni-axial Q CDW given in figure 7, with absolute values given in (c) and (d), and Fermi surface overlaid with
green lines, all similar to figure 3. Note that the maximum values of the color bars in (c) and (d) are much higher compared to
figures 6(c) and (d).

Table 1. Band parameters of the dispersion given in equation (8)
corresponding to three different cuprate materials. All the parameters are in
units of eV.

Band Parameters YBCO BSCCO LSCO

t1 −1.1259 −0.6798 −0.7823
t2 0.5540 0.2368 0.0740
t3 −0.1174 −0.0794 −0.0587
t4 −0.0701 0.0343 −0.1398
t5 0.1286 0.0011 −0.0174
μ 0.1756 0.196 0.0801

regions near kx = ±π. Values of Fo
k and Fe

k near kx = ±π are significantly enhanced compared to the values
near ky = ±π, with both displaying very high values near the Fermi surface. We note that

∣∣Fo
k

∣∣ decays faster
than

∣∣Fe
k

∣∣ as we go away from the Fermi surface to a region close to (±π, 0), giving
∣∣Fo

k

∣∣ < ∣∣Fe
k

∣∣ at (±π, 0).
Thus, after momentum averaging, Fo < Fe as found in figure 8, but where the two different PDW show very
similar values around the Fermi surface.

3.4. Band structure robustness
Our results above for different choices of Q vectors for the CDW show that the induced OPDW is a
common feature when there exists a coexistence of SC and CDW. One might, however, ask how sensitive
these results are to the band structure considered. Till now, we have considered only a YBCO band
structure, see equation (9). In this section we further investigate two different bands with contrasting
features. In this endeavor, we take the parameters which mimic the band structures of underdoped
Bi2Sr2CaCu2O8+x (BSCCO) and La2−xSrxCuO4 (LSCO) [116]. All the three band parameters are given in
table 1. The Fermi surfaces of the BSCCO and LSCO band structures are shown in figures 10(a) and (b),
respectively. While the BSCCO band has a Fermi surface with isotropic Fermi velocities and no nesting
regions, the LSCO band has ‘approximate’ nesting only in a small region near the anti-nodes. In contrast,
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Figure 10. Green lines show the Fermi surface of the BSCCO band (a) and the LSCO band (b) in the first Brillouin zone. ‘Hot
spots’ are marked as blue dots and bi-axial CDW wave vectors Q are indicated by arrows. Note that the magnitudes of Q are
determined by the distance between neighboring ‘hot spots’ and are different from the value in each material. A representative
k-point, k1, on the Fermi surface is marked by a red dot, with k1 + Q also marked with a red point.

the earlier considered YBCO band has long ‘approximately’ nested necks around the ‘hot spots’, as seen in
figure 1(a).

As discussed in sections 3.2 and 3.3, in YBCO, the long range uni-axial CDW is observed at high
magnetic field, whereas the bi-axial CDW is observed at low or zero magnetic fields [17, 119, 120].
However, we note that BSCCO shows local uni-axial CDW [13, 129] and LSCO features uni-axial stripe
CDW [130], even at zero magnetic fields. Still, in order to be able to primarily focus on the band structure
dependencies for the induced PDW, we here consider the case of CDW with bi-axial Q vectors for all three
cuprates and thus divide the Brillouin zone into eight regions as in figure 4(b). The magnitude of Q is given
by the distance between neighboring ‘hot spots’ in the corresponding bands, indicated in figure 10. We plot
the results in figure 11, where Fo and Fe are shown for all three cuprates at Δ0 = 0.2. In all three cases, Fo is
finite and behave very similarly with frequency. Fo

max increases notably from YBCO to BSCCO to LSCO.
This is primarily due to the fact that Δk+Q −Δk is larger in most parts of the Fermi surface in BSCCO and
LSCO compared to YBCO. In order to illustrate this statement, we focus on a representative point k1 on the
Fermi surface, indicated in figure 10. For LSCO, k1 + Q is found at kx = 0. As a result, Δk1+Q is maximum
due to the d-wave nature (note that Q = (−Qx, 0) does not change k1y). On the other hand, k1 + Q for
BSCCO lies away from kx = 0. Although not shown in figure 10, k1 + Q for YBCO lies even further away
from kx = 0. So, we clearly find Δk1+Q(LSCO) > Δk1+Q(BSCCO) > Δk1+Q(YBCO). Furthermore,
Δk1 (LSCO) ≈ Δk1 (BSCCO) ≈ Δk1 (YBCO) and Fo

k1
∝ Δk1+Q −Δk1 . As a direct consequence, Fo

max is the
largest in LSCO and smallest in YBCO. However, for YBCO, Fo decays a bit more slowly with ω, such that
its value actually become the highest among the three bands for large frequencies. We also note that these
band structure results show that the OPDW presented in the earlier three sections 3.1–3.3, is likely
underestimated in terms of its magnitude. In spite of these band effects, the ratio of Fo

max to Fe
max does not

change with the change in the band structure as Fe
max also increases in BSCCO and LSCO. Based on these

results for three different band structures, representing three different underdoped cuprates, we conclude
that the OPDW is a robust and ubiquitous feature in cuprate superconductors, although there exist some
quantitative differences.

4. Spin-triplet odd-frequency PDW: coexistence of SC and SDW

Having established that CDW generically give rise to OPDW correlations, and especially in the cuprates, we
also explore whether a SDW can induce such correlations. In order to investigate the coexistence of SC and
SDW, we write a mean-field Hamiltonian in momentum space,

HSDW =
∑
k,σ

ξkc†kσckσ +
∑
k,σ

σ
(

mkc†kσck+Qσ + H.c.
)

+
∑

k

(
Δkc−k↓ck↑ + H.c.

)
+ constant, (17)
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Figure 11. Momentum-averaged absolute values of (a) OPDW, Fo and (b) EPDW, Fe plotted as a function of frequency ω with a
bi-axial CDW and Δ0 = χ0 = 0.2 for three different band structures representing underdoped YBCO (red), BSCCO (green),
and LSCO (blue). ω is in units of t1.

where mk is the SDW order parameter with a modulation wave vector Q and all other notation is the same
as in equation (1). This Hamiltonian can be written in a matrix form, in the basis as for the CDW case:

Ψ† =
(

c†k↑, c†k+Q↑, c−k↓, c−k−Q↓

)
as,

HSDW =
1

2

∑
k

Ψ†ĤSDWΨ+ constant,

with

ĤSDW =

⎛
⎜⎜⎝

ξk mk Δk 0
mk ξk+Q 0 Δk+Q

Δk 0 −ξk mk

0 Δk+Q mk −ξk+Q

⎞
⎟⎟⎠ . (18)

We can obtain the Green’s function Gs for equation (18) in the same way as in section 2.1 and the PDW
correlator is given by,

Fs
k,k+Q(iω) = Gs

14(iω) = Fs,even
k,k+Q(iω) + Fs,odd

k,k+Q(iω),

where

Fs,even
k,k+Q(iω) =

mk

(
ξkΔk+Q − ξk+QΔk

)
D

, (19)

Fs,odd
k,k+Q(iω) =

iωmk

(
Δk +Δk+Q

)
D

, (20)

D =
(
ω2 + ξ2

k +Δ2
k

) (
ω2 + ξ2

k+Q +Δ2
k+Q

)
− 2m2

k

(
ξkξk+Q −ΔkΔk+Q − ω2

)
+ m4

k. (21)

The functional form of D here is same as that in equation (5), only with χk replaced by mk. Here again, we
see that the induced PDW, very generically has both even and odd-frequency components. However, we
note directly that there is a change of signs in the definitions of the PDW generated by SDW compared to
the earlier CDW case; the ‘+’ sign in equation (3) is now given by a ‘−’ sign in equation (19) and the ‘−’
sign in equation (4) is now given by a ‘+’ sign in equation (20).

To investigate the spin symmetries for the SDW-generated PDW, we look at the Gs
23(iω) component of

the Green’s function, similarly as in section 2.1. We obtain

Fs
k+Q,k(iω) = Gs

23(iω) = Fs,even
k+Q,k(iω) + Fs,odd

k+Q,k(iω),

where

Fs,even
k+Q,k(iω) =

mk

(
−ξkΔk+Q + ξk+QΔk

)
D

= −Fs,even
k,k+Q(iω), (22)

14



New J. Phys. 23 (2021) 033001 D Chakraborty and A M Black-Schaffer

Fs,odd
k+Q,k(iω) =

iωmk

(
Δk+Q +Δk

)
D

= Fs,odd
k,k+Q(iω). (23)

Thus, in contrast to section 2.1, the even-frequency component of the PDW is now odd under M (from
equation (22)). As the EPDW is even under T, to satisfy SMT = −1, S should be even or in a spin-triplet
configuration. Similarly, the odd-frequency component is even under M (from equation (23)), odd under
T, and thus S should also be even or spin-triplet. So, both the even and odd-frequency components of the
induced PDW are spin-triplet in nature when the SC coexists with the SDW.

It is actually not surprising that the PDW correlations in the coexistence state of the SC and the SDW
are spin-triplet in nature. The coexistence or competition of the SC and an antiferromagnetic order was
discussed within an SO(5) model in reference [131]. Within this field theoretic picture, a PDW operator
rotates a superconducting field to the antiferromagnetic field. Since we consider the superconducting state
to be spin-singlet, the spin transfer from the superconducting state to the antiferromagnetic state is unity.
Thus, the PDW operator has to be triplet with net spin unity, in order to conserve the spin. With
Q = (π,π), this PDW operator is famously known as the ‘Π’ operator. PDW correlations, obtained in
equations (19) and (20), are equivalent to the ‘Π’ operator if we take Q = (π,π). While the even frequency
is discussed in the literature in the context of SO(5) model, the odd-frequency component has, to our
knowledge, not been previously explored.

Another striking difference between the OPDW generated in the two coexistence states is that, while the
OPDW from CDW in equation (4) is zero when Δk = Δk+Q, the OPDW from SDW in equation (20) is
maximum when Δk = Δk+Q and zero when Δk = −Δk+Q. So, a coexistence of d-wave SC and SDW with
Q = (π,π) always leads to a zero OPDW. Thus, a coexistence of d-wave SC and antiferromagnetism in
cuprates cannot induce any OPDW. On the other hand, spin-triplet OPDW correlations can exist in an
s-wave superconductor, where the spin-singlet CDW-generated OPDW instead cannot be found.

A coexistence regime of an s-wave SC and SDW with Q = (π, 0) or Q = (0,π) is often observed in the
iron-based superconductors (FeSC), especially in the ferropnictides [6]. Although FeSC are multi-orbital in
nature, we can gain a simplistic understanding of the phenomenology by looking only at a single orbital
described by the Hamiltonian in equation (17). FeSC are considered to be sign changing s-wave
superconductors (s+− between the electron and the hole band) [132], with the intra-orbital pair symmetry
taking forms such as sx2y2 ∼ cos(kx) cos(ky) [133] with Δk = −Δk+Q. From equation (20) we then directly
see that sx2y2 intra-orbital pairing cannot give rise to OPDW in this simplified one band picture. However,
the SDW order has been shown to be able to promote s++ intra-orbital pairing in the coexistence phase
[134]. In the s++ state, induced spin-triplet OPDW are enhanced as Δk = Δk+Q. Furthermore, a transition
from the s+− to the s++ state is expected with the increase of impurity scatterings [135–137]. This might
then lead to the emergence of a spin-triplet OPDW with increasing disorder in FeSC. A complete
understanding of the OPDW in the coexisting state of the SC and the SDW in the FeSC will require the
consideration of multiple orbitals and is left to future work.

5. Conclusion and discussion

In summary, we showed that the d-wave nature of the superconducting state in the cuprate
high-temperature superconductors leads to induced OPDW correlations in the region of the phase diagram
where the SC coexists with a CDW. We considered several different CDW wave vectors relevant to the
cuprates and showed that the existence of the OPDW is extremely robust to the choice of the wave vector
and also to the variations in the band structure found between different families of cuprates. We find that
the OPDW is often significant in magnitude and becomes even equal or larger than the even-frequency
PDW (EPDW) near the nodal regions in momentum space. Moreover, keeping the SC and CDW order
parameters unchanged, we find that breaking the C4 lattice symmetry in the CDW wave vector with an
uni-axial wave vector further enhances the OPDW amplitude. We also do not restrict ourselves to the
cuprates, but also show that the OPDW can also be found in the coexistent state of SC and SDW in the
iron-based superconductors.

Direct experimental detection of odd-frequency SC has been challenging in the past. In our results, the
induced PDW correlations do not directly influence the one-electron spectral function because the
quasiparticle energy spectrum is not affected. So, one-electron experimental probes, such as angle-resolved
photoemission spectroscopy (ARPES) or scanning tunneling spectroscopy (STS), will not detect the
induced PDW. However, two-electron response functions, will have signatures of these PDW correlations
[138–143], and even be able to distinguish odd-frequency components. For example, the imaginary part of
the density response function χ′′(q,Ω) can characterize various bosonic excitations or correlations at
different momentum (q) and energies or frequencies (Ω) depending on the experimental probe. Note that
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there are two sets of momentum and frequencies, one internal (k and ω) and the other external (q and Ω).
While calculating the response function, we integrate over internal frequencies only and arrive at χ′′(q,Ω)
as a function of momentum and frequency of the external probe. The contribution of the OPDW to this

response function comes with terms proportional to Fo
k (iω)Fo

k+q
†
(iω +Ω). So, after integrating over k and

ω, the OPDW contribution will still remain finite even though it is odd in frequency and would cancel if
only a single Fo(iω) were to be integrated over frequencies. The same structure appears in other
two-electron response functions, making them a good tool to probe odd-frequency correlations.

Now, the question remains how to distinguish between the EPDW and the OPDW contributions? To
approach an answer to this question, we use the combined facts that the OPDW and the EPDW have
different momentum space structure and different frequency dependence (EPDW peaks at ω = 0, while
OPDW peaks at finite ω). So, we should look for experimental probes which resolve the response functions
both in momentum and frequency spaces. Probes like RIXS, M-EELS, and Raman spectroscopy can fulfill
our needs. Each of these has their own advantages. RIXS is a well-established method in the literature, with
RIXS experiments in underdoped BSCCO showing intensity peaks near q = Q (where Q is the CDW wave
vector) both at Ω = 0 and finite Ω [144]. In fact, the momentum-dispersion of the finite Ω peak has been
predicted to be signatures of the role of phonons [144] or collective modes [142]. Due to the difference in
the frequency dependence of the OPDW and the EPDW, we expect the frequency-dispersion to play a key
role in detecting the OPDW. At the same time, RIXS lacks good energy resolution, where instead M-EELS
derives a clear advantage in having a very high energy resolution of 1 meV compared to a resolution of 40
meV in RIXS [145]. But, to the best of our knowledge, M-EELS have so far only been used to investigate
optimal or overdoped cuprates [146]. Future M-EELS experiments in the underdoped regime are hence
necessary. On the other hand, Raman spectroscopy has a unique advantage of preferentially probing parts of
the Brillouin zone [118, 147]. For example, one way to distinguish the OPDW from the EPDW is Raman
measurements in the B2g channel (which preferentially probes the nodal region), as both OPDW and EPDW
are equally dominant in the nodal region. Moreover, the OPDW magnitude is also of the same order of
magnitude as the uniform SC in the nodal region. Hence, it is possible that the so-called peak-dip-hump
structure [148] in Raman intensity [118] as a function of frequency can find its explanation in terms of the
OPDW. Finally, the OPDW might also leave distinct signatures in Josephson scanning tunneling
measurements [98], Meissner response [141] and other transport measurements [99].

Let us also comment on disorder-induced inhomogeneities that are intrinsic to all cuprate materials.
Due to the Imry–Ma criterion [149], any strength of disorder disrupts the long-range phase coherence of
CDW in dimensions d � 4. Thus, at low or zero magnetic fields, CDW in two-dimensional cuprates, are
only short-ranged correlations with no long-range phase coherence. We have ignored these fluctuations due
to disorder in our mean-field calculations. However, the correlation lengths of CDW in cuprates are still
long enough [17] to allow for a finite CDW mean-field amplitude, validating the bulk of our analysis in this
work. Even if disorder fluctuations were to be included on top of the mean-field analysis, we expect the
OPDW to be present locally in regions of local coexistence of SC and CDW. In addition, the high-field
CDW is experimentally shown to be a ‘true’ long-range order [18, 19, 31]. The high-field coexistence of SC
and uni-axial CDW will thus lead to a long-range OPDW.

We have also not explored the prospects of the OPDW being responsible for the anomalous properties
of the pseudo-gap phase in cuprates. Our results should motivate future research in this direction as its
dynamical character naturally make it a hard to detect, or even hidden, order. Moreover, in the pseudo-gap
phase, there are additional broken symmetry orders, such as nematic or time-reversal symmetry broken
orders. As we found in section 3.3, the magnitude of the OPDW is significantly increased when the C4

symmetry is broken by the CDW wave vectors. We believe an additional nematic distortion of the Fermi
surface will likely further enhance the OPDW correlations.

We finally note two possible extensions. First, the translational symmetry breaking due to the CDW
order reconstructs a single band superconductor into effectively two bands, one shifted from the other by
the CDW wave vector. This shift makes the system conceptually analogous to a multiband superconductor
with different superconducting order parameters in different bands. As a result, odd-frequency correlations
are induced in the same spirit as in multiband superconductors, but with a major difference being the
modulations in the induced order. As a consequence, our work on coexisting CDW and SC can easily be
generalized to other translational symmetry breaking orders, which might thus also host significant
odd-frequency components. Second, in the one-band model considered in this work, the coexistence of SC
and CDW cannot give rise to an odd-frequency component of the induced PDW when the superconducting
order parameter is momentum-independent or s-wave. But the analysis does not hold true for multi-band
superconductors, such as transition-metal dichalcogenides (TMDs) with coexistence of SC and CDW. A
PDW state in TMDs has already been proposed theoretically [150] and also very recently observed
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experimentally [151]. Even though TMDs host s-wave SC, the multiband nature might still induce OPDW.
The search for OPDW in TMDs is a part of ongoing research.
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[129] Fujita K et al 2014 Proc. Natl Acad. Sci. 111 E3026
[130] Emery V J, Kivelson S A and Tranquada J M 1999 Proc. Natl Acad. Sci. 96 8814
[131] Zhang S-C 1997 Science 275 1089
[132] Hirschfeld P J, Korshunov M M and Mazin I I 2011 Rep. Prog. Phys. 74 124508
[133] Seo K, Bernevig B A and Hu J 2008 Phys. Rev. Lett. 101 206404
[134] Hinojosa A, Fernandes R M and Chubukov A V 2014 Phys. Rev. Lett. 113 167001
[135] Golubov A A and Mazin I I 1995 Physica C 243 153
[136] Efremov D V, Korshunov M M, Dolgov O V, Golubov A A and Hirschfeld P J 2011 Phys. Rev. B 84 180512
[137] Efremov D V, Golubov A A and Dolgov O V 2013 New J. Phys. 15 013002
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19

https://doi.org/10.1103/physrevb.90.155114
https://doi.org/10.1103/physrevb.90.155114
https://doi.org/10.1038/ncomms4280
https://doi.org/10.1038/ncomms4280
https://doi.org/10.1073/pnas.1711445114
https://doi.org/10.1073/pnas.1711445114
https://doi.org/10.1103/revmodphys.82.109
https://doi.org/10.1103/revmodphys.82.109
https://doi.org/10.1103/physrevb.97.214501
https://doi.org/10.1103/physrevb.97.214501
https://doi.org/10.1073/pnas.1406297111
https://doi.org/10.1073/pnas.1406297111
https://doi.org/10.1073/pnas.96.16.8814
https://doi.org/10.1073/pnas.96.16.8814
https://doi.org/10.1126/science.275.5303.1089
https://doi.org/10.1126/science.275.5303.1089
https://doi.org/10.1088/0034-4885/74/12/124508
https://doi.org/10.1088/0034-4885/74/12/124508
https://doi.org/10.1103/physrevlett.101.206404
https://doi.org/10.1103/physrevlett.101.206404
https://doi.org/10.1103/physrevlett.113.167001
https://doi.org/10.1103/physrevlett.113.167001
https://doi.org/10.1016/0921-4534(94)02445-6
https://doi.org/10.1016/0921-4534(94)02445-6
https://doi.org/10.1103/physrevb.84.180512
https://doi.org/10.1103/physrevb.84.180512
https://doi.org/10.1088/1367-2630/15/1/013002
https://doi.org/10.1088/1367-2630/15/1/013002
https://doi.org/10.1103/physrevb.93.024515
https://doi.org/10.1103/physrevb.93.024515
https://doi.org/10.1103/physrevb.96.094529
https://doi.org/10.1103/physrevb.96.094529
https://doi.org/10.1103/physrevb.95.214502
https://doi.org/10.1103/physrevb.95.214502
https://doi.org/10.1103/physrevb.95.214501
https://doi.org/10.1103/physrevb.95.214501
https://doi.org/10.1103/physrevb.98.224514
https://doi.org/10.1103/physrevb.98.224514
https://doi.org/10.1103/physrevresearch.2.032012
https://doi.org/10.1103/physrevresearch.2.032012
https://doi.org/10.1038/nphys4157
https://doi.org/10.1038/nphys4157
https://doi.org/10.21468/scipostphys.3.4.026
https://doi.org/10.21468/scipostphys.3.4.026
https://doi.org/10.1073/pnas.1721495115
https://doi.org/10.1073/pnas.1721495115
https://doi.org/10.1142/s0217979297001088
https://doi.org/10.1142/s0217979297001088
https://doi.org/10.1080/00018730600645636
https://doi.org/10.1080/00018730600645636
https://doi.org/10.1103/physrevlett.35.1399
https://doi.org/10.1103/physrevlett.35.1399
https://doi.org/10.1126/sciadv.aat4698
https://doi.org/10.1126/sciadv.aat4698
https://arxiv.org/abs/2007.15228

	Odd-frequency pair density wave correlations in underdoped cuprates
	1.  Introduction
	2.  Generic model
	2.1.  Induced spin-singlet odd-frequency PDW

	3.  Case of cuprates
	3.1.  Diagonal CDW
	3.2.  Bi-axial CDW
	3.3.  Uni-axial CDW
	3.4.  Band structure robustness

	4.  Spin-triplet odd-frequency PDW: coexistence of SC and SDW
	5.  Conclusion and discussion
	Acknowledgments
	Data availability statement
	References


