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Abstract
We show a certain kind of non-local operations can be simulated by sampling a set of local
operations with a quasi-probability distribution when the task of a quantum circuit is to evaluate
an expectation value of observables. Utilizing the result, we describe a strategy to decompose a
two-qubit gate to a sequence of single-qubit operations. Required operations are projective
measurement of a qubit in Pauli basis, and π/2 rotation around x, y, and z axes. The required
number of sampling to get an expectation value of a target observable within an error of ε is
roughly O(9k/ε2), where k is the number of ‘cuts’ performed. The proposed technique enables to
perform ‘virtual’ gates between a distant pair of qubits, where there is no direct interaction and
thus a number of swap gates are inevitable otherwise. It can also be utilized to improve the
simulation of a large quantum computer with a small-sized quantum device, which is an idea put
forward by Peng et al (2019 arXiv:1904.00102). This work can enhance the connectivity of qubits
on near-term, noisy quantum computers.

1. Introduction

Quantum computers have attracted much attention recently, mainly due to the rapid development of actual
hardware [1–3]. The quantum computer that is to appear shortly is called noisy intermediate scale
quantum devices, or in short, NISQ devices [4]. We expect NISQ devices to have ∼100 of qubits with
non-negligible noise in the near future. Such devices are believed to be not simulatable by classical
computers when the control precision of the qubits is sufficiently high [5–8]. In this sense, NISQ devices
have computational power that exceeds classical computers. Many researchers are actively developing ways
to exploit their power for practical applications [9–15]. However, we still suffer from the limited number of
qubits available on actual devices and the limited depth of circuits that can be run while maintaining the
resultant quantum state meaningful.

If techniques to decompose a quantum circuit to smaller ones are developed, they can extend the
applicability of such devices. Smaller quantum circuits may refer to ones with the smaller number of qubits
or gates. Peng et al recently proposed a clustering approach based on a tensor network representation of a
quantum circuit [16], which greatly progressed the technical development. They showed that we can ‘cut’
an identity gate, by sampling measure-and-prepare channels on a qubit according to a certain
quasi-probability distribution. In reference [17], we proposed methods to construct quantum circuits
equivalent to the Hadamard test, which successfully reduces the depth of certain quantum circuits. These
techniques share a same idea in that they reconstruct a result of a coherent quantum operation from certain
incoherent operations by combining the results obtained from them.

An approach which has the same flavor as the above have been utilized in the context of
memory-efficient classical simulation of quantum circuits. Since the direct simulation of a quantum circuit
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with over 50 qubits breaks down due to the need of storing 250 complex numbers in memory, the classical
simulator must decompose the given quantum circuit to smaller ones, especially in the number of qubits.
References [18, 19] have provided one way for such decomposition, which ‘cuts’ controlled-Z gates by
separately simulating two cases where the control qubit is |0〉 or |1〉 and then combining them, and they
performed classical simulation of over 50-qubit quantum circuits. A similar technique has been utilized by
Bravyi et al in reference [20] to remove a relatively small number of qubits from a large quantum circuit by
replacing the qubits with a classical simulator. Their approach can be viewed as ‘space-like’ cut rather
than the ‘time-like’ cut proposed by Peng et al [16]. However, their techniques are intended to run on a
classical computer and cannot be utilized for simulating a large quantum circuit with a small quantum
computer.

In this work, we present a technique to perform ‘space-like’ cut on a quantum computer. More
specifically, we present a way to decompose a controlled gate into a sequence of single-qubit operations
which consists of projective measurements of Pauli X, Y, and Z operators, and single-qubit rotations around
x, y, and z-axes. We note that our method does not generate any entanglement between the qubits as it is
impossible to do so with such single-qubit operations. Our method only ‘simulates’ effects of entanglement
using classical post-processing and sampling. More concretely, although entangling gates cannot be
performed with local operations and classical communications in single-shot experiments as widely known
[21], we show that it is possible to perform a computational task of evaluating expectation values of the
output of entangling circuits by sampling certain sets of gates and applying classical post-processing. The
overhead required for our proposed technique, which scales exponentially to the number of decomposition
performed, gives a characterization of the entangling gates from a computational viewpoint, which is
different from the existing theories of entanglement quantification in e.g. [22].

The method proposed here can be considered as a generalization of our previous work [17] and a
variant of the quantum circuit decomposition presented in reference [16]. It can also be viewed as a fully
quantum version of the technique utilized in efficient classical simulation schemes [18–20]. In some cases,
our method provides a better scaling against reference [16] when simulating a large quantum circuit with
smaller ones. The proposed technique is also useful when we want to apply two-qubit gates between a
distant pair of qubits, which otherwise would require many swap operations to perform. This work extends
the applicability of NISQ devices whose circuit depth and connectivity are limited.

2. Gate decomposition

2.1. Tensor network representation of quantum circuits
Quantum computation is completely specified with a quantum circuit, U, an initial state with its density
matrix representation, ρ, and an observable, O, measured at the output. Given U, ρ, and O, any quantum
computation can be represented by a tensor network [23–25]. We define the tensor representation of U, ρ,
and O in the following manner.

Suppose that our quantum computer has n qubits. We define a complete set of basis in the space of
2 × 2 complex matrix and its dual as {|ei〉〉}4

i=1 and {〈〈ei|}4
i=1 respectively, and assume orthonormality

under the trace inner product; 〈〈ei|ej〉〉 = δij. We use the trace inner product, that is, for matrices A and B,
〈〈A|B〉〉 = Tr(A†B). A density matrix ρ can be decomposed into the sum of |ej1〉〉 ⊗ |ej2〉〉 ⊗ · · · ⊗ |ejn〉〉 =
|ej1 ej2 . . . ejn〉〉 as

|ρ〉〉 =
∑

j1,...,jn

ρj|ej1 ej2 . . . ejn〉〉, (1)

where j = (j1, j2, . . . , jn). We refer to the elements ρj = 〈〈ej1 ej2 . . . ejn |ρ〉〉 as the tensor representation of ρ. An
observable O can also be decomposed into the same form. Note that we can naturally assume tensor
representations of observables and density matrices consist of real numbers because they are always
Hermitian and we can choose the basis {|ei〉〉}4

i=1 as Hermitian, e.g. we can use the Pauli matrices
{I, X, Y, Z} as the basis. Therefore, we assume ρi and Oi are real henceforth. The quantum circuit, U,
transforms ρ into UρU†. We define a corresponding superoperator S(U) whose action is defined by
S(U)ρ = UρU†. Superoperator can be decomposed as,

S(U) =
∑

j1,...,jn

∑
k1,...,kn

S(U)j,k|ej1 . . . ejn〉〉〈〈ek1 . . . ekn |. (2)

Note that this decomposition is not limited to superoperators of unitary matrices, but also is applicable for
any linear operator that acts on a density matrix. We call S(U)j,k = 〈〈ej1 . . . ejn |S(U)|ek1 . . . ekn〉〉 tensor
representation of S(U). When we use the Pauli operators as basis set, S(U)j,k is referred as Pauli transfer
matrix.
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Figure 1. Decomposition of (a) a non-local gate and (b) a non-local non-destructive measurement into a sequence of local
operations. A1 and A2 are operators such that A2

1 = I and A2
2 = I.

Quantum computation ends with measuring the observable O. This output can be written down as,

〈〈O|S(U)|ρ〉〉 = Tr(OUρU†) (3)

=
∑

j1,...,jn

∑
k1,...,kn

OjS(U)j,kρk, (4)

In many cases, U is a product of elementary gates {Ui}L
i=1, that is, U = UL . . .U1. The tensor representation

of the overall gate, S(U), is also a product of S(Ui); S(U) = S(UL) . . .S(U1). An important note is that as
long as the tensor representation of each element is unchanged, the result of the overall computation is also
unchanged. If S(U) can be represented by a sum of some simple operations as S(U) =

∑
iciS(Vi) with

coefficients {ci}, the expectation value of an observable O can be computed with the following equality,

〈〈O|S(U)|ρ〉〉 =
∑

i

ci〈〈O|S(Vi)|ρ〉〉. (5)

Note that ci can, in general, depend on the state |ρ〉〉. We use this scheme to perform the ‘decomposition’ of
a circuit in this work.

It is noteworthy that as we perform decompositions of a superoperator rather than an operator such as
U itself, the method becomes friendly for a realistic quantum device. A direct decomposition of U into
some simple operators {Vi}, i.e. U =

∑
i ciVi, can also be utilized for the same task; however, as expectation

values are calculated as 〈0|U†OU|0〉 where |0〉 is an initial state, this approach requires us to evaluate∑
i,jcic∗j 〈0|V

†
j OVi|0〉 which are rather hard for the NISQ devices. This fact demonstrates the advantage of

using the above formalism. The tensor network representation of the superoperator formalism allows us to
graphically understand the decompositions.

2.2. Virtual two-qubit gate
We can show the following, which can then be utilized to decompose any two-qubit gate into a sequence of
single-qubit operations.

Lemma 1. For operators A1 and A2 such that A2
1 = I and A2

2 = I,

S(eiθA1⊗A2 ) = cos2 θS(I ⊗ I) + sin2 θS(A1 ⊗ A2)

+
1

8
cos θ sin θ

∑
(α1,α2)∈{±1}2

α1α2 [S((I + α1A1) ⊗ (I + iα2A2))

+ S((I + iα1A1) ⊗ (I + α2A2))] (6)

To prove this, we can directly check the tensor representation of both hand side is equivalent. For
detailed calculation, see appendix A1. This theorem is schematically depicted in figure 1(a). Notice that the
operation that is proportional to I ± A and I ± iA for A ∈ {X, Y, Z} can respectively be performed by a
projective measurement and a single-qubit rotation.

The correspondence with a single-qubit rotation is clear from the formula, e±iπA/4 = 1√
2
(I ± iA), which

is the rotation of angle π/2 around the A axis. Let MA be the projective measurement on the A basis
(A ∈ {X, Y, Z}), that is, MA acts on a density matrix ρ as,

MAρ =
1

Tr
(
ρ I+αA

2

) ( I + αA

2

)
ρ

(
I + αA

2

)
, (7)

3



New J. Phys. 23 (2021) 023021 K Mitarai and K Fujii

Figure 2. Decomposition of controlled-Z gate into a sequence of single-qubit operations.

depending on the result of the measurement α ∈ {1,−1}. This is equivalent to S(I ± A) up to the factor of
4 Tr

(
ρ I+αA

2

)
, that is,

S(I + αA) = 4 Tr

(
ρ

I + αA

2

)
MA,α, (8)

where MA,α is a measurement operation postselected with the measurement outcome α. Tr
(
ρ I+αA

2

)
is the

probability of getting the result α by measuring ρ on the A basis. Lemma 1 with this fact implies that the
gate eiθA1⊗A2 can be decomposed, in a sense of equation (5), into a sum of I ⊗ I, A1 ⊗ A2, MA1 ⊗ e±iπA2/4,
and e±iπA1/4 ⊗MA2 , which can be stated as lemma below. Notably, this technique can be applied for any θ,
which enables us to perform continuous two-qubit gates.

Lemma 2. A quantum gate eiθA1⊗A2 with operators A1 and A2 such that A2
1 = I and A2

2 = I can be decomposed
into six single-qubit operations. For any quantum state |ρ〉〉, to achieve the error ε of the decomposition with
respect to the trace distance with probability at least 1 − δ, the required number of circuit runs is
O(log(1/δ)/ε2).

The detailed proof is given in appendix B. Intuitively, since the error comes from the probabilistic part
of the decomposition, that is the renormalization factor in equation (8) Tr

(
ρ I+αA

2

)
, if we want to estimate

Tr
(
ρ I+αA

2

)
within error ε, O(1/ε2) repetition would suffice.

Let us finally mention the case of the controlled-Z gate, which we denote by CZ. CZ can be decomposed
into

CZ = eiπI⊗Z/4 eiπZ⊗I/4 e−iπZ⊗Z/4, (9)

ignoring the global phase. This means we can decompose a CZ gate using lemma 2. The decomposition is
shown in figure 2. Similar decompositions can be performed on some basic two-qubit gates such as CNOT.
Endo et al [26] also provides such decomposition (reference [26], appendix B). However, our protocol
above is slightly advantageous in that the number of single-qubit operations required is six compared to
theirs which requires nine of them.

2.3. Virtual non-destructive measurement of two-qubit operators
In the previous subsection, we showed that any two-qubit rotation can be decomposed into a sum of
single-qubit operations. Here, we extend the strategy to construct virtual non-destructive measurement of
two-qubit operators. Similar to the previous section, we can show the following. This theorem is
schematically shown in figure 1(b).

Lemma 3. For operators A1 and A2 such that A2
1 = I and A2

2 = I,

S(I + A1 ⊗ A2) = S(I ⊗ I) + S(A1 ⊗ A2) +
1

8

∑
(α1,α2)∈{±1}2

α1α2 [S((I + α1A1) ⊗ (I + α2A2))

− S((I + iα1A1) ⊗ (I + iα2A2))] . (10)

This can also be shown by the direct calculation of both hand side. See appendix A2 for detailed calculation.
The above lemma can be utilized to show the following.

Lemma 4. A non-local projection I+A1⊗A2
2 with operators A1 and A2 such that A2

1 = 1 and A2
2 = 2 can be

decomposed into six single-qubit operations. For any quantum state |ρ〉〉, to achieve the error ε of the
decomposition with respect to the trace distance with probability at least 1 − δ, the required number of circuit
runs is O(log(1/δ)/ε2).

This can be shown with exactly the same approach taken to prove lemma 2, which is provided in
appendix B.

4
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Figure 3. Time-like cut employed in reference [16].

Figure 4. Two decomposition approach compared in main text. The top-right approach is the presented, and the bottom-right
approach is of reference [16].

3. Application

3.1. Simulation of large quantum circuits
The idea of simulating a large quantum circuit by a small quantum computer has been put forward in
reference [16]. Peng et al utilized the equivalence shown in figure 3. In the figure,

O1 = I,ρ1 = |0〉〈0|, c1 = +1/2,

O2 = I,ρ2 = |1〉〈1|, c2 = +1/2,

O3 = X,ρ3 = |+〉〈+|, c3 = +1/2,

O4 = X,ρ4 = |−〉〈−|, c4 = −1/2,

O5 = Y ,ρ5 = |+ i〉〈+i|, c5 = +1/2,

O6 = Y ,ρ6 = | − i〉〈−i|, c6 = −1/2,

O7 = Z,ρ7 = |0〉〈0|, c7 = +1/2,

O8 = Z,ρ5 = |1〉〈1|, c8 = −1/2,

(11)

where |±〉 = (|0〉 ± |1〉)/
√

2 and | ± i〉 = (|0〉 ± i|1〉)/
√

2. The symbols � and � denotes the measurement
of a certain observable and the preparation of a certain state, respectively. Contrasting this technique and
ours, we refer to the former and the latter as ‘time-like’ and ‘space-like’ cut, respectively. More concretely,
a time-like cut of a quantum channel can be defined as a decomposition of the channel in the sense of
equation (5) using measure-and-prepare channels only. In contrast, a space-like cut of a non-local quantum
channel is a decomposition of the channel using local quantum channels only.

The decomposition presented in the previous section can also be used in this direction. Let us compare
the scaling of cost of our decomposition scheme and that of Peng et al by a simple example. We consider the
case where we have an n-qubit quantum computer to simulate a 2n-qubit quantum circuit of figure 4,
which has only one CZ gate between n-qubit ‘cluster’. The task is to estimate the expectation value of a final
observable Of by measuring it in the computational basis. To simplify the discussion, we assume Of is a
string of Pauli Z’s.

Let v be a desired variance of the estimation of the expectation value of Of. We can show a naive
algorithm, which runs the equal number of circuits for each terms appearing in the decomposition, to
perform the decomposition with time-like cuts, in the worst case, requires 2048/v runs of n-qubit circuit,

5
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Figure 5. Schematic illustration of performing the space-like cut and the time-like cut simultaneously.

Figure 6. Decomposition of distant two-qubit gate on a square lattice. Each vertex of the graph represents a qubit and the edge
represents the connectivity of the qubits. S is the set of pairs of single-qubit operations which appears in the formula in lemma 1,
and cs is the corresponding coefficient for each pair.

while the space-like cut approach takes 15
2v runs. The analysis of this simple example is given in appendix D.

Although the analysis given here is based on a naive algorithm and there are possibilities to improve it, this
analysis somewhat shows the enhancement provided by our space-like cut protocol.

General case.
We can consider a general case where we perform the time-like and space-like cuts simultaneously to make
a given m-qubit quantum circuit runnable on an n-qubit quantum computer. Let the number of time-like
and space-like cuts be Mt and Ms, respectively. See figure 5 for a schematic illustration. For space-like cuts,
we assume they are performed only on CZ gates. The input state ρ is initialized in |0〉〈0|⊗m and Of is an
output (diagonal) observable calculated from some output function f : {0, 1}m → [−1, 1]. Our task here is
to estimate the expectation E[f (y)] for a random bitstring y ∈ {0, 1}m sampled from the original circuit.
This model is adopted from reference [16] which originates in reference [20]. With this definition, we can
get the following.

Theorem 5. The number of n-qubit circuit runs required to estimate E[f (y)] within accuracy ε with some high

probability 1 − δ is O
(

9Ms 16Mt

ε2 log
(

1
2δ

))
.

This implies that the decomposition of the circuit should be performed to minimize 9Ms 16Mt . A detailed
proof is given in appendix E, however, the above can roughly be explained as follows. At each space-like cut,
we get six different sets of single-qubit operations, so Ms cuts induce 6Ms terms. Likewise, Mt time-like cuts
induce 8Mt terms, which makes the total number of circuits in decomposition 6Ms 8Mt . With this
decomposition, we can take a Monte-Carlo approach to estimate the sum, that is, we randomly choose
circuits to run and average them. Hoeffding’s inequality can be used to bound the error of such protocol,
which states that if a magnitude of a random variable is always bounded by some constant a, then O(a2/ε2)

samples would suffice to obtain an accuracy of ε. In this case, we are to estimate E[f (y)] =
∑6Ms 8Mt

i=1

ci〈〈Of |S(Vi)|ρ〉〉 with i randomly drawn from {1, . . . , 6Ms 8Mt} and |ci| = 1/2Ms+Mt , that is, E[f (y)] is
estimated by Ei[6Ms 8Mt ci〈〈Of |S(Vi)|ρ〉〉]. The magnitude of random variable 6Ms 8Mt ci〈〈Of |S(Vi)|ρ〉〉 is
roughly 3Ms 4Mt , thus we can apply the Hoeffding bound to get the result.

3.2. Distant two-qubit gates
The theorem introduced above can be utilized to ‘virtually’ perform a two-qubit gate between qubits at
distance. Figure 6 shows an example of such a virtual two-qubit gate. Notice that this protocol works

6
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irrespective of the distance between the qubits. Many swap gates are otherwise necessary for performing
such gates, which makes them impractical on NISQ devices due to the non-negligible amount of
decoherence and gate error of such devices.

This protocol might be useful for the variational algorithms such as the variational quantum eigensolver
(VQE) [9] and the quantum approximate optimization algorithms (QAOA) [12]. Here, we describe an
example in the QAOA. In the QAOA, we seek to find a ground state of a Hamiltonian H on n-qubit which is
a sum of Pauli Z’s and its products. For example, a Hamiltonian may have the form of,

H =
∑

ij

JijZiZj. (12)

The QAOA tries to solve the problem by converting it to an optimization problem of a continuous variable
β and γ . The optimization of β and γ are performed so as to minimize the function,

〈H(β,γ)〉 = 〈+|⊗nU†(β,γ)HU(β,γ)|+〉⊗n, (13)

where,

U(β,γ) = e
iβp

∑

i
Xi

eiγpH . . . eiγ2H e
iβ1

∑

i
Xi

eiγ1H . (14)

This algorithm has been experimentally demonstrated [13] with the connectivity of the target Hamiltonian
being equivalent to the connectivity of the actual device.

The equivalence of the connectivity is almost necessary from the requirement to perform eiγH. This
requirement can somewhat be relaxed by our protocol which enables qubits to virtually interact irrespective
of the distance between them. Let us now assume that an available device has a square-lattice connectivity
of figure 6, and a Hamiltonian of the QAOA which we aim to solve has an interaction between one pair of
qubits that is not included in the hardware connectivity graph. In this case, to execute the QAOA circuit
(equation (14)), we can use our space-like technique p times to virtually apply the unitary. The scaling of
the cost can be bounded by setting Mt = 0 and Ms = p in theorem 5 which gives us a scaling of
9pε−2 log[1/(2δ)]. The time-like cut approach of Peng et al [16] can also be utilized in this direction.
However, as this approach would require 4 cuts per gate, the cost scaling is bounded by 164pε−2 log[1/(2δ)]
by setting Mt = 4p and Ms = 0 in theorem 5. This demonstrates an advantage, albeit in this special settings,
of our technique over the previous result.

In the context of the VQE, which is also an algorithm to find a ground state of a Hamiltonian but mainly
targets a concrete physical system such as molecules, it has been proposed to use the same kind of quantum
circuits as the QAOA [27, 28]. Our result may also be applicable in constructing such circuits.

4. Discussion and conclusion

We described a technique to decompose a non-local operations into a sequence of local operations. As the
single-qubit operations are generally more accurate on NISQ devices, the proposed technique can be used
to enhance their capability. We believe intrinsic noise on single-qubit operations can be compensated by
recent sophisticated error mitigation techniques [26]. In particular, our technique of the space-like cut of
two-qubit gates can improve the simulation of a large quantum circuit with a small quantum computer in
some cases. It would be interesting to investigate the best strategy to perform ‘cuts’ to reduce the number of
qubits compatible with an available device. Also, the algorithm we have given to bound the cost scaling is
rather straight forward and we believe it can be improved with a more sophisticated strategy.

The proposed algorithm can also be compared to the classical simulation strategy that splits a large
circuit by decomposing two-qubit gates. For example, a controlled-NOT gate can be splitted using a tensor
network based technique [29]. However, such techniques generally does not focus on decompositions of
S(U) considered in this work but rather the two-qubit unitary U itself, which takes makes them difficult to
be used on NISQ devices as equation (5) cannot be utilized anymore.

Our technique can induce an entanglement-like effect without performing any two-qubit gate with the
cost mentioned in lemmas 2 and 4. This connects this work to areas like quantum communication. This
‘virtual’ entanglement creation could be done with the time-like cut proposed by Peng et al, but our work
lowered the cost to perform the task. It is interesting to know whether ours is the optimal protocol or there
is a more efficient way.

To summarize, our technique allows qubits to virtually interact irrespective of physical distances
between them. The result is useful for applying a two-qubit gate to a distant pair of qubits. In particular,

7
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when applied to the NISQ devices, this may be employed to enhance the power of them. Future direction
can be to explore if we can lower the resource to perform such virtual operations.
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Appendix A. Proof of lemmas 1 and 3

A tensor representation of S((I + α1A1) ⊗ (I + α2A2)) on a set of basis {|eiej〉〉}4
i,j=1 is as follows.

〈〈eiej|S(I + α1A1) ⊗ (I + α2A2)|ekel〉〉

= Tr
(

ei ⊗ ej(I + α1A1) ⊗ (I + α2A2)ek ⊗ el(I + α∗
1A1) ⊗ (I + α∗

2A2)
)

= Tr
(

ei ⊗ ej ek ⊗ el

)
+ α1 Tr

(
ei ⊗ ej(A1 ⊗ I)ek ⊗ el

)
+ α∗

1 Tr
(
ek ⊗ el(A1 ⊗ I)ei ⊗ ej

)
+ α2 Tr

(
ei ⊗ ej(I ⊗ A2)ek ⊗ el

)
+ α∗

2 Tr
(
ek ⊗ el(I ⊗ A2)ei ⊗ ej

)
+ α1α2 Tr

(
ei ⊗ ej(A1 ⊗ A2)ek ⊗ el

)
+ α∗

1α
∗
2 Tr

(
ek ⊗ el(A1 ⊗ A2)ei ⊗ ej

)
+ α1α

∗
2 Tr

(
ei ⊗ ej(A1 ⊗ I)ek ⊗ el(I ⊗ A2)

)
+ α∗

1α2 Tr
(
ei ⊗ ej(I ⊗ A2)ek ⊗ el(A1 ⊗ I)

)
+ α1 Tr

(
ei ⊗ ej(A1 ⊗ A2)ek ⊗ el(I ⊗ A2)

)
+ α∗

1 Tr
(
ei ⊗ ej(I ⊗ A2)ek ⊗ el(A1 ⊗ A2)

)
+ α2 Tr

(
ei ⊗ ej(A1 ⊗ A2)ek ⊗ el(A1 ⊗ I)

)
+ α∗

2 Tr
(
ei ⊗ ej(A1 ⊗ I)ek ⊗ el(A1 ⊗ A2)

)
+ Tr

(
ei ⊗ ej(A1 ⊗ A2)ek ⊗ el(A1 ⊗ I)

)
+ Tr

(
ei ⊗ ej(A1 ⊗ I)ek ⊗ el(A1 ⊗ A2)

)
+ Tr

(
ei ⊗ ej(A1 ⊗ A2)ek ⊗ el(A1 ⊗ A2)

)
. (A1)

Let,

{α1,α2}ij,kl :=S((I + α1A1) ⊗ (I + α2A2))ij,kl, (A2)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,ijkl

a2,ijkl

a3,ijkl

a4,ijkl

a5,ijkl

a6,ijkl

a7,ijkl

a8,ijkl

a9,ijkl

a10,ijkl

a11,ijkl

a12,ijkl

a13,ijkl

a14,ijkl

a15,ijkl

a16,ijkl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tr
(
ei ⊗ ej ek ⊗ el

)
Tr

(
ei ⊗ ej(A1 ⊗ I)ek ⊗ el

)
Tr

(
ek ⊗ el(A1 ⊗ I)ei ⊗ ej

)
Tr

(
ei ⊗ ej(I ⊗ A2)ek ⊗ el

)
Tr

(
ek ⊗ el(I ⊗ A2)ei ⊗ ej

)
Tr

(
ei ⊗ ej(A1 ⊗ A2)ek ⊗ el

)
Tr

(
ek ⊗ el(A1 ⊗ A2)ei ⊗ ej

)(
ei ⊗ ej(A1 ⊗ I)ek ⊗ el(I ⊗ A2)

)(
ei ⊗ ej(I ⊗ A2)ek ⊗ el(A1 ⊗ I)

)(
ei ⊗ ej(A1 ⊗ A2)ek ⊗ el(I ⊗ A2)

)(
ei ⊗ ej(I ⊗ A2)ek ⊗ el(A1 ⊗ A2)

)(
ei ⊗ ej(A1 ⊗ A2)ek ⊗ el(A1 ⊗ I)

)(
ei ⊗ ej(A1 ⊗ I)ek ⊗ el(A1 ⊗ A2)

)(
ei ⊗ ej(A1 ⊗ I)ek ⊗ el(A1 ⊗ I)

)(
ei ⊗ ej(I ⊗ A2)ek ⊗ el(I ⊗ A2)

)(
ei ⊗ ej(A1 ⊗ A2)ek ⊗ el(A1 ⊗ A2)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

The relation can be summarized in matrix form,

8
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{+1,+1}ij,kl

{+1,+i}ij,kl

{+1,−1}ij,kl

{+1,−i}ij,kl

{+i,+1}ij,kl

{+i,+i}ij,kl

{+i,−1}ij,kl

{+i,−i}ij,kl

{−1,+1}ij,kl

{−1,+i}ij,kl

{−1,−1}ij,kl

{−1,−i}ij,kl

{−i,+1}ij,kl

{−i,+i}ij,kl

{−i, −1}ij,kl

{−i,−i}ij,kl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 i −i i −i −i i 1 1 i −i 1 1 1

1 1 1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 1 1 1

1 1 1 −i i −i i i −i 1 1 −i i 1 1 1

1 i −i 1 1 i −i i −i i −i 1 1 1 1 1

1 i −i i −i −1 −1 1 1 i −i i −i 1 1 1

1 i −i −1 −1 −i i −i i i −i −1 −1 1 1 1

1 i −i −i i 1 1 −1 −1 i −i −i i 1 1 1

1 −1 −1 1 1 −1 −1 −1 −1 −1 −1 1 1 1 1 1

1 −1 −1 i −i −i i i −i −1 −1 i −i 1 1 1

1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1

1 −1 −1 −i i i −i −i i −1 −1 −i i 1 1 1

1 −i i 1 1 −i i −i i −i i 1 1 1 1 1

1 −i i i −i 1 1 −1 −1 −i i i −i 1 1 1

1 −i i −1 −1 i −i i −i −i i −1 −1 1 1 1

1 −i i −i i −1 −1 1 1 −i i −i i 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A4)

A.1. Proof of lemma 1
Tensor representation of S(eiθA1⊗A2 ) is,

〈〈eiej|S(eiθA1⊗A2 )|ekel〉〉 = 〈〈eiej|S(cos θ + i sin θA1 ⊗ A2)|ekel〉〉

= Tr
(
ei ⊗ ej(cos θI + i sin θA1 ⊗ A2)ek ⊗ el(cos θI − i sin θA1 ⊗ A2)

)
= cos2 θa1,ijkl + i sin θ cos θ

(
a6,ijkl − a7,ijkl

)
+ sin2 θa16,ijkl. (A5)

Observe that,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{+1,+i} − {+1,−i}
= 2i(a4 − a5) + 2i(a6 − a7) − 2i(a8 − a9) + 2i(a12 − a13),

{−1,+i} − {−1,−i}
= 2i(a4 − a5) − 2i(a6 − a7) + 2i(a8 − a9) + 2i(a12 − a13),

{+i,+1} − {−i,+1}
= 2i(a2 − a3) + 2i(a6 − a7) + 2i(a8 − a9) + 2i(a12 − a13),

{+i,−1} − {−i,−1}
= 2i(a2 − a3) − 2i(a6 − a7) − 2i(a8 − a9) + 2i(a12 − a13),

(A6)

where we abbreviated the subscripts ijkl. We can solve the above for i(a6 − a7), and obtain

8i(a6 − a7) = {+1,+i} − {+1,−i} − {−1,+i}+ {−1,−i}

+ {+i,+1} − {−i,+1} − {+i,−1}+ {−i,−1} (A7)

=
∑

α∈{±1}2

α1α2 [S((I + α1A1) ⊗ (I + iα2A2)) + S((I + iα1A1) ⊗ i(I + α2A2))] . (A8)

Combining this with equation (A5) completes the proof.

A.2. Proof of lemma 3
We first write down the tensor representation of the projective measurement, I + βA1 ⊗ A2 for β = ±1.

〈〈eiej|S(I + βA1 ⊗ A2)|ekel〉〉 = Tr
(
ei ⊗ ej(I + βA1 ⊗ A2)ek ⊗ el(I + βA1 ⊗ A2)

)
= a1,ijkl + β

(
a6,ijkl + a7,ijkl

)
+ a16,ijkl (A9)

9
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Similarly to the previous proof, observe that,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{+1,+1} − {+1,−1}
= 2(a4 + a5) + 2(a6 + a7) + 2(a8 + a9) + 2(a12 + a13),

{−1,+1} − {−1,−1}
= 2(a4 + a5) − 2(a6 + a7) − 2(a8 + a9) + 2(a12 + a13),

{+i,+i} − {+i,−i}
= 2i(a4 − a5) − 2(a6 + a7) + 2(a8 + a9) + 2i(a12 − a13),

{−i,+i} − {−i,−i}
= 2i(a4 − a5) + 2(a6 + a7) − 2(a8 + a9) + 2i(a12 − a13),

(A10)

We can solve the above for i(a6 + a7), and obtain,

8(a6 + a7) = {+1,+1} − {+1,−1} − {−1,+1}+ {−1,−1}

− {+i,+i}+ {+i,−i}+ {−i,+i} − {−i,−i} (A11)

=
∑

α∈{±1}2

α1α2 [S((I + α1A1) ⊗ (I + α2A2)) − S((I + iα1A1) ⊗ (I + iα2A2))] . (A12)

A.3. Relation with reference [20]
Bravyi et al has considered to remove k qubits in a given n + k-qubit circuit at the cost of O(kd2k) classical
computation, where d defined to be proportional to the number of gates applied to the k-qubit system. The
technique utilized in their work, in particular, figure 2 in reference [20] can also provide a derivation to the
above lemmas when combined with our recent technique developed in reference [28].

Appendix B. Proof of lemma 2

Suppose that we are applying S(eiθA1⊗A2 ) to some state ρ and want to decompose the gate. We name each
operation in the decomposition as,

Φ1,β = S(I ⊗ I),

Φ2,β = S(A1 ⊗ A2),

Φ3,β = βMA1,β ⊗ S(eiπA2/4),

Φ4,β = βMA1,β ⊗ S(e−iπA2/4),

Φ5,β = βS(eiπA1/4) ⊗MA2,β ,

Φ6,β = βS(e−iπA1/4) ⊗MA2,β. (B1)

which is not physical when β3,4,5,6 = −1 but achievable with classical post processing. MAi,β is a
postselective measurement operation, which has been introduced in the main text. For convenience, we
define coefficients {ci}6

i=1 as

c1 = cos2 θ,

c2 = sin2 θ,

c3 = −c4 = c5 = −c6 = cos θ sin θ, (B2)

Then,

S(eiθA1⊗A2 )|ρ〉〉 (B3)

=

⎡
⎣c1Φ1,β + c2Φ2,β (B4)

∑
β∈{1,−1}

Tr

(
ρ

I + βA1

2

)
(c3Φ3,β + c4Φ4,β) (B5)

10
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∑
β∈{1,−1}

Tr

(
ρ

I + βA2

2

)
(c5Φ5,β + c6Φ6,β)

⎤
⎦ |ρ〉〉 (B6)

We take a naive algorithm to bound the error of the decomposition. We define a probabilistic map below

Φ1 = S(I ⊗ I),

Φ2 = S(A1 ⊗ A2),

Φ3 = M′
A1

⊗ S(eiπA2/4),

Φ4 = M′
A1

⊗ S(e−iπA2/4),

Φ5 = S(eiπA1/4) ⊗M′
A2

,

Φ6 = S(e−iπA1/4) ⊗M′
A2

, (B7)

where M′
Ai

acts on a state ρ probabilistically as,

M′
Ai

(ρ) → bMAi,b(ρ) (B8)

where b is a random variable with probability distribution p(b = ±1) = Tr
(
ρ I±Ai

2

)
. Again, when b = −1

this map is non-physical but can be realized with classical post processing. Φi becomes Φi,b with probability
Tr

(
ρ I±Ai

2

)
, and therefore,

E[Φi] = Tr

(
ρ

I + A1

2

)
Φi,+1 + Tr

(
ρ

I − A1

2

)
Φi,−1 (B9)

for i = 3, 4. A similar equality holds for i = 5, 6. This yields,

S(eiθA1⊗A2 )|ρ〉〉 =
6∑

i=1

ciE[Φi|ρ〉〉] (B10)

Suppose that we take N samples for each i = 1, . . . , 6 to estimate E[Φi|ρ〉〉]. The i = 1, 2 cases are not
probabilistic and hence do not introduce error. We are left to consider the error induced by i = 3, 4, 5, 6. In
this case, we can estimate |μi〉〉 = E[Φi|ρ〉〉] by

|μ̄i〉〉 =
1

N

N∑
j=1

Φi,bij |ρ〉〉, (B11)

where {bij}N
j=1 are samples drawn from the distribution which is identical to the above mentioned b. Now

the difference between the true state S(eiθA1⊗A2 )|ρ〉〉 and the estimated
∑6

i=1 ci|μ̄i〉〉 is,

S(eiθA1⊗A2 )|ρ〉〉 −
6∑

i=1

ci|μ̄i〉〉 =

⎛
⎝Tr

(
ρ

I + A1

2

)
− 1

2N

N∑
j=1

(b3j + 1)

⎞
⎠ c3Φ3,+1|ρ〉〉

+

⎛
⎝Tr

(
ρ

I − A1

2

)
− 1

2N

N∑
j=1

(1 − b3j)

⎞
⎠ c3Φ3,−1|ρ〉〉

+

⎛
⎝Tr

(
ρ

I + A1

2

)
− 1

2N

N∑
j=1

(b4j + 1)

⎞
⎠ c4Φ4,+1|ρ〉〉

+

⎛
⎝Tr

(
ρ

I − A1

2

)
− 1

2N

N∑
j=1

(1 − b4j)

⎞
⎠ c4Φ4,+1|ρ〉〉

+

⎛
⎝Tr

(
ρ

I + A2

2

)
− 1

2N

N∑
j=1

(b5j + 1)

⎞
⎠ c5Φ5,+1|ρ〉〉

+

⎛
⎝Tr

(
ρ

I − A2

2

)
− 1

2N

N∑
j=1

(1 − b5j)

⎞
⎠ c5Φ5,−1|ρ〉〉

11
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+

⎛
⎝Tr

(
ρ

I + A2

2

)
− 1

2N

N∑
j=1

(b6j + 1)

⎞
⎠ c6Φ6,+1|ρ〉〉

+

⎛
⎝Tr

(
ρ

I − A2

2

)
− 1

2N

N∑
j=1

(1 − b5j)

⎞
⎠ c6Φ6,−1|ρ〉〉. (B12)

1±bij

2 is a Bernouilli random variable with the expectation I±A1
2 and I±A2

2 respectively for i = 3, 4 and

i = 5, 6. This means that, for example, the difference between 1
2N

∑N
j=1 (b3j + 1) and I+A1

2 is bounded by

ε > 0, that is,
∣∣∣ 1

2N

∑N
j=1 (b3j + 1) − Tr

[
ρ I+A1

2

]∣∣∣ � ε with probability at most 1 − exp(−2ε2N) from

Hoeffding’s inequality. The same bound holds for every term in equation (B12). Noting that if∣∣∣ 1
2N

∑N
j=1 (b3j + 1) − Tr

[
ρ I+A1

2

]∣∣∣ � ε holds,
∣∣∣ 1

2N

∑N
j=1 (1 − b3j) − Tr

[
ρ I−A1

2

]∣∣∣ � ε also holds, the

probability that at least one of the differences in equation (B12) is larger than ε is at most 4 exp(−2ε2N), by
union bound. Therefore, with probability at least 1–4 exp(−2ε2N),

∥∥∥∥∥S(eiθA1⊗A2 )|ρ〉〉 −
6∑

i=1

ci|μ̄i〉〉
∥∥∥∥∥ � ε

∥∥∥∥∥∥
6∑

i=3

∑
β∈{1,−1}

ciΦi,β|ρ〉〉

∥∥∥∥∥∥
� ε

6∑
i=3

∑
β∈{1,−1}

‖ciΦi,β|ρ〉〉‖ , (B13)

holds for any norm ‖ · ‖. The second inequality follows from the triangle inequality. Considering the trace
norm ‖ · ‖1, which gives ‖Φi,β|ρ‖1 = 1, and taking |ci| � 1 into account, we get∥∥S(eiθA1⊗A2 )|ρ〉〉 − |μ̄i〉〉

∥∥ � 8ε. (B14)

With this, we conclude that, given the desired error 1/ε and a probability 1 − δ by which we wish to
lower-bound the probability of getting the error larger than ε, we can take N = − 32

ε2 ln(1 − δ).

Appendix C. Time-like cut for identity channel

The time-like cut approach proposed in reference [16] can be derived in the following manner. Let us
consider an identity channel Ia on the ath qubit. It can be expanded as,

Ia =

3∑
ia=0

3∑
ja=0

|eia〉〉〈〈eja |〈〈eia |Ia|eja〉〉. (C1)

Since we assumed |ei〉〉 are orthonormal to each other and I|ρ〉〉 = |ρ〉〉 for any ρ,

Ia =
3∑

ia=0

|eia〉〉〈〈eia | (C2)

If we apply this to a n-qubit density matrix |ρ〉〉 =
∑

j1,...,jn
ρj|ej1 ej2 . . . ejn〉〉 in this form, we see,

I|ρ〉〉 =
3∑

ia=0

|eia〉〉〈〈eia |ρ〉〉 (C3)

=

3∑
ia=0

Tra(eiaρ) ⊗ |eia〉〉. (C4)

Choosing |ej1〉〉 to be Pauli matrices {I, X, Y , Z}/
√

2, we conclude,

I|ρ〉〉 = 1

2

∑
A∈{I,X,Y ,Z}

Tra(Aaρ) ⊗ Aa. (C5)

This equation implies that we can first measure expectation values of X, Y, Z at the ath qubit and then
re-input each eigenstates.

12
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Appendix D. Analysis of the simple example given in section 3.1

D.1. Cost of time-like cut
First, we consider the ‘time-like’ cut approach. Let us name two-qubit on which the CZ gate acts a and b,
and let σa and σb be their 1-qubit reduced density matrices after the gate U1 ⊗ V1.

We assume,

• One n-qubit device is available.

• Qubits that are measured in the basis of an observable Oi can be reused to prepare the input state ρj.

We take the following naive approach to estimate 〈Of〉. First, divide the allowed number of circuit runs
N into N/2 to run the divided circuit for equal times. N/2 runs are further divided into N/128 runs to run
the circuit with Oi and ρj for i, j ∈ {1, 2, . . . , 8}2 [30]. With each N/128 runs with a pair (Oi, ρj), we
estimate the value of the tensor network below. Since we assumed Of is a tensor product of Pauli Z’s and Oi

is drawn from I, X, Y, Z, from each run we obtain a measurement result oij,r = ±1, where r is the index to

distinguish the runs. Using oij,r, we estimate the above tensor network by õij =
1

N/128

∑N/128
r=1 oij,r . Since oij,r is

a random variable which takes {+1,−1}, this estimator õij approximately follows a normal distribution
with an expectation E[oij] and a variance 1

N/128 (1 − E[oij]2) � 1
N/128 , for sufficiently large N. Therefore,

with N/128 runs of a quantum circuit, we can estimate the value of the above tensor network with the
variance 128

N at most. We can obtain the same result for the other cluster.
For each i, j, k, l, the tensor in the sum of figure 4 is estimated by the product of the above estimators

because the measurement result is independent on each cluster. The variance of each tensor network can be
evaluated because they are a product of two random variables approximately drawn from normal
distribution with variance at most 128

N , and it is at most 64
N . We have that cijkl ∈ {±1/24}. This reduces the

variance of each term in the summation to 1/(2N). However, when we take the sum since each term can be
approximated by a normal distribution with the variance at most 1/(2N) and we take summation of
84 = 4096 terms, the result has the variance at most 2048/N.

D.2. Cost of space-like cut
For the space-like cut, we divide the allowed number of circuit runs, N, to N/6 [31]. First, we run eight
circuits that do not involve the measurement in the middle and obtain estimators for these four tensor
network. Each of the estimators has the variance at most 6/N. Let us now move on to the circuits with the
measurement. For arbitrary density matrix ρ′, the Z measurement produces the density matrix(

I+α
2

)
ρ′
(

I+α
2

)
/pα with probability pα. Therefore, to obtain the above decomposition, we need to know the

normalization factor pα. With N/6 circuit runs, pα is estimated to the variance pα(1 − pα)/(N/6) which is
at most 6/(4N) = 3/(2N). Note that when N is large, the distribution of the estimator p̃α can be thought of
as a normal distribution. Conditioned on α, we construct an estimator of Of. Since α is obtained with
probability pα, for each α we have pαN/6 samples to estimate Of. Therefore, for each α, the estimator of Of

has the variance of 6/pαN. Since the estimator of the tensor network is the product of the estimators of
conditioned Of and pα, its variance is 6

N
1

pα+1/[pα(1−pα)] �
3

2N . Each pair of the tensor network in figure 2 is
multiplied together, and if we perform this with the estimators obtained above, the variance of each term is
at most 3

N . We further multiply each term with ±1/2, then the variance is reduced to 3
4N . Finally, the

summation of 10 such term leads to the variance of 15
2N .

Appendix E. Proof of theorem 5

We follow the approach taken in reference [16]. The task here is to perform the decomposition of m-qubit
circuit like the one shown in figure 5 so that the original quantum circuit can be approximated with an
n-qubit quantum computer, where the input state ρ is initialized in |0〉〈0|⊗m and Of is an output (diagonal)
observable calculated from some output function f : {0, 1}m → [−1, 1]. We want to estimate Ey[f (y)] for
n-bit measurement outcomes y to some accuracy ε > 0 with some high probability 1 − δ.

Let the number of space-like cuts and time-like cuts performed in the decomposition be Ms and Mt

respectively. We assume the space-like cuts are performed only on CZ gates. We redefine the probabilistic
map Φ′

i that is used to decompose S(eiθA⊗B) as,

Φ′
1 = S(I ⊗ I),

Φ′
2 = S(A ⊗ B),

Φ′
3 = MA ⊗ S(eiπB/4),
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Φ′
4 = MA ⊗ S(e−iπB/4),

Φ′
5 = S(eiπA/4) ⊗MB,

Φ′
6 = S(e−iπA/4) ⊗MB, (E1)

where MA and MB and the projective measurement of A and B. Let sk ∈ {1, . . . , 6} be an index of the
above probabilistic map Φ′

sk
applied to the kth space-like cut k ∈ {1, . . . , Ms} and tl be an index of an

observable-state pair (Otl , ρtl ) in equation (11) applied to the lth time-like cut l ∈ {1, . . . , Mt}. The
coefficients associated with a space-like cut (equation (B2)) and a time-like cut (equation (11)) are
redefined as cspace

sk and ctime
tl

, respectively. With one set of indices, s = {sk}Ms
k=1 ∈ {1, . . . , 6}Ms and t =

{tk}Mt
k=1 ∈ {1, . . . , 8}Mt , we can define a corresponding quantum circuit which is induced by replacing every

cut two-qubit gate by Φ′
sk

and every cut qubit line by the measurement of Otl and the preparation of ρtl .
When we run this circuit on n-qubit quantum device, we get the measurement outcomes at each cut,

which is a string of ±1 from Φ′
sk

and the measurement of Otl , and the ones at the output qubit which is a
bitstring of length n. Let such outcomes from the kth space-like cut, the lth time-like cut and the output
qubits be bspace

sk ∈ {+1,−1}, btime
tl

∈ {+1,−1} and y(s,t) ∈ {0, 1}n, respectively. Since sk = 1, 2 does not

involve measurement, we define bspace
1 = bspace

2 = 1. With the definition above and the equality for
performing the decomposition (equations (B10) and (11), figures 1 and 3), notice that,

Ey[f (y)] =
∑

s∈{1,...,6}Ms

∑
t∈{1,...,8}Mt

Ms∏
k=1

csk

Mt∏
l=1

ctlE({b
space
sk

},{btime
tl

},y(s,t))

[
Ms∏

k=1

bspace
sk

Mt∏
l=1

btime
tl

f (y(s,t))

]
, (E2)

where the expectation on the right-hand side is defined over a distribution of {bspace
sk }, {btime

tl
} and y(s,t) for a

quantum circuit induced by a given set of indices (s, t).
We can take a Monte-Carlo approach to estimate the sum of the right-hand side of equation (E2). If we

sample s and t from a uniform distribution on {1, . . . , 6}Ms and {1, . . . , 8}Mt respectively, equation (E2) can
be rewritten as,

Ey[f (y)] = E(s,t,{b
space
sk

},{btime
tl

},y(s,t))

[
6Ms 8Mt

Ms∏
k=1

csk
bspace

sk

Mt∏
l=1

ctl b
time
tl

f (y(s,t))

]
, (E3)

Let us define a random variable

X(s,t) = 6Ms 8Mt

Ms∏
k=1

csk
bspace

sk

Mt∏
l=1

ctl b
time
tl

f (y(s,t)). (E4)

Let (s(i), t(i))N
i=1 be N randomly sampled (s, t) pair. Then, Ey[f (y)] can be estimated by 1

N

∑N
i=1 X(s(i),t(i)). We

will use the Hoeffding’s inequality to bound the error of this Monte-Carlo approach. The magnitude of
X(s,t) is bounded by, ∣∣∣∣∣6Ms 8Mt

Ms∏
k=1

csk
bspace

sk

Mt∏
l=1

ctl

Ms∏
k=1

btime
tl

f (y(s,t))

∣∣∣∣∣ � 3Ms 4Mt , (E5)

because |ctl | = 1/2, |f(y(s,t))| � 1, |bspace
sk | = 1, |btime

tl
| = 1, and |csk

| = 1/2 which follows from the
assumption that the space-like cuts are performed only on CZ gates. With the above bound of the
magnitude, the Hoeffding’s inequality guarantees that,

Pr

[∣∣∣∣∣ 1

N

N∑
i=1

X(s(i) ,t(i)) − Ey[f (y)]

∣∣∣∣∣ � ε

]
(E6)

� 1 − 2 exp

(
− Nε2

2 · 9Ms · 16Mt

)
. (E7)

Therefore, for given ε and the probability 1 − δ to which we want to bound the probability of getting an

error larger than ε, we take N = 2·9Ms ·16Mt

ε2 ln
(

1
2δ

)
.

ORCID iDs

Kosuke Mitarai https://orcid.org/0000-0002-9056-316X

14

https://orcid.org/0000-0002-9056-316X
https://orcid.org/0000-0002-9056-316X


New J. Phys. 23 (2021) 023021 K Mitarai and K Fujii

References

[1] Barends R et al 2014 Nature 508 500
[2] Bernien H et al 2017 Nature 551 579
[3] Wright K et al 2019 arXiv:1903.08181
[4] Preskill J 2018 Quantum 2 79
[5] Harrow A W and Montanaro A 2017 Nature 549 203
[6] Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M and Neven H 2018 Nat. Phys.

14 595
[7] Neill C et al 2018 Science 360 195
[8] Bravyi S, Gosset D and König R 2018 Science 362 308
[9] Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love P J, Aspuru-Guzik A and O’Brien J L 2014 Nat. Commun. 5 4213

[10] Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M and Gambetta J M 2017 Nature 549 242
[11] Nam Y et al 2019 arXiv:1902.10171
[12] Farhi E, Goldstone J and Gutmann S 2014 arXiv:1411.4028
[13] Otterbach J S et al 2017 arXiv:1712.05771
[14] Mitarai K, Negoro M, Kitagawa M and Fujii K 2018 Phys. Rev. A 98 032309
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