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Abstract

We derive a light—matter interaction Hamiltonian to describe a quantum system embedded in a
dispersive environment and coupled with the electromagnetic field. We include in this theory the
spatial extension of the system, taken into account through its wavefunction. This enables us to
overcome the divergence problem of the Green tensor propagator that arises from a point-like
approximation of the quantum system. Thus the formalism can be applied to generalize the
expressions for the spontaneous emission rate and the Lamb shift for a quantum system defined by
a spatially extended dipole. In particular, these quantities can be modified by the asymmetry of the
spatial structure of the atomic system as demonstrated in two test-bed examples.

1. Introduction

The interaction of an atomic system with a surrounding photonic bath yields a correction to the atomic
transition energy, referred to as Lamb shift [1], and gives rise to the process of spontaneous emission. The
latter is described in the Markovian limit as an exponential decay [2, 3], while a much more sophisticated
behavior was predicted and verified in non-Markovian regimes [4, 5]. If multiple emitters are present, a
shared photonic bath acts as a carrier of interactions among them and is responsible for collective emission,
such as Casimir effect [6] or Dicke superradiance [7]. For a comprehensive discussion of these and other
effects of quantum vacuum on atomic systems see [8].

The spatial and spectral structure of the photonic bath can be tailored, e.g. with traditional cavities or
nanostructured materials. As a consequence, the effects arising in atomic systems coupled to such tailored
surroundings are modified accordingly [9, 10]. When it comes to spontaneous emission, this phenomenon
has been termed Purcell effect [11—14]. Similarly, the Lamb shift and collective effects can be tailored by
proper engineering of the photonic bath [15, 16]. In the great majority of works studying light—matter
interactions in this context, atomic systems are assumed to be point-like dipoles, without internal structure.
This is usually a well-justified approximation, since the size of the atomic system is much below the
emission wavelength. However, recent advancement in the field of nanophotonic brought into reach nano-
or even picometric cavities [17, 18]. In the conditions of extreme light confinement, the internal structure
of the atomic system might have a considerable impact on its optical response, which might require
extensions of the theory beyond the point-dipole [19-21] or electric-dipole approximations [22]. On the
other hand, spatially extended systems like quantum dots may require such treatment even when embedded
in a photonic environment as simple as a homogeneous and isotropic medium.

Accounting for the internal structure of atomic systems can lead to much more than quantitative
corrections of their optical properties; actually, effects like spatial asymmetry may give rise to appealing new
applications, such as optically-tunable low-frequency radiation sources based on resonantly driven systems
[23-25]. Scenarios exploiting systems with broken inversion symmetry were proposed for light squeezing
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Figure 1. Graphical representation of the total Hamiltonian. In blue, the atomic Va”t, the medium V;} [equation (2)], and the
field Hi [equation (5)] Hamiltonians. The blue blocks are connected by the interaction blocks. Hence Ty, and T, connect the
medium and the atom, respectively, with the field as in equation (4), and VaHHn connects the atom and the medium, as in
equation (3). These six terms appear in equation (1). The medium-assisted field H,, [equation (15)] arises from the terms

V,,L, T, and H} (solid box on the right), and the atomic Hamiltonian becomes H, via the PZW transformation [equation (11)]
(dashed box on the left). H,, interacts with H,, through H;,, as in equation (28). By neglecting the magnetic properties one
obtains H!, [equation (30)], which completes the model investigated.

[26] and lasing [27]. The asymmetry has already been studied in the context of a coherent driving field [28,
29] with a long list of recent experiments which involve quantum piezoelectricity [30], quantum dots [30],
dye molecules [31], spin-echo [32], Ramsey interferometer [33], crystal centers [13, 34], and graphene

[35, 36].

We shall avoid the introduction of ad hoc artificial cutoffs to remove the divergencies that arise, in the
context analyzed in this article, from two distinct effects: the assumption of point-like atoms and the
neglection of the medium granularity, which amounts to disregarding the momentum-dependence of the
dielectric permittivity. Observe that the different nature of these divergences is lost if an artificial cutoff is
introduced. We propose here an approach in which the wavefunctions are consistently incorporated in the
description of the system and in the determination of the decay rates and Lamb shifts. This enables us to
describe in a natural way all effects due to anisotropies and the broken inversion symmetry. Our results will
therefore be valid (and of special interest) in the context of artificial atoms, in which the wavefunctions can
in principle extend beyond medium granularity, therefore providing the essential natural cutoff to the
system. As opposed to artificial cutoffs, this method provides reliable results also for near field.

We shall see how the divergence problem [37, 38], encountered when one evaluates the transition
properties of atomic systems in dispersive media, can be solved naturally. This problem was treated with
many different approaches in other works [39—-42]. We shall exploit the medium-assisted field expressed
through the Green tensor propagator [43, 44], which can be applied also for classical electrodynamics [45],
to account for the properties of the photonic surroundings. These can be modified in presence of a host
medium, which in general could be structured in terms of geometric shape and spectral response. Although
parts of our theory are general, we pay special attention to translationally invariant media.

The article is organized as follows. In section 2, we discuss all the terms of the Hamiltonian; in
particular, we describe the form of the coupling between a system of charges and a medium-assisted field,
representing in a single entity both the electromagnetic field and the medium charges. In section 3, we use
the developed theory to obtain the decay rate and energy shift for an arbitrary bound state, highlighting the
contribution of spatial asymmetry of the eigenstates of the atomic Hamiltonian. In section 4, we apply the
results to two test-beds. Finally, in section 5, we summarize the obtained results and outline future research.

2. Hamiltonian

We start from a first-principle Hamiltonian where positive and negative charges of the atomic system and
the medium are coupled with the electromagnetic field. If the focus is on the atomic dynamics, the system
can be conveniently modeled by coupling the atom to a medium-assisted electromagnetic field, which is
dressed by the interaction with the hosting medium (see figure 1).
Let us consider the Coulomb-gauge Hamiltonian [46, 47], separating the longitudinal and transverse
contributions
H=Vi+vl +vl 4T +To+HE (1)
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Atomic charges will be labelled by roman indices j, k and the charges of the medium by Greek indices i, v.

The terms . Q0 Q
vl — <k n<v

-y , § L 2

Var m 871'60 |r/, 2

8meg = |rj — i -,

represent the internal Coulomb interactions among the charges Q; of the atomic system (placed at positions
rr) and among the charges Q, of the medium (placed at positions r,), respectively. The atom-medium
Coulomb interactions read

I QU
V. = 3

amm 47‘(’602 lri— 1| 3

The kinetic terms )
(p,- - QJA(%‘)) (p, — QA1)
Ty=y ~— 7/ Ty =) o ) 4
Byl 3 <>

contain the minimal coupling between the charges (with canonical momenta p; = —ihV,; and
p, = —ihV,,, and masses m; and m,, respectively) and the transverse part of the field, represented by the

Coulomb gauge vector potential A (purely transverse, V - A = 0). Finally,
1 3 42 1 2
=5 [ dr{ €A (r)+ —[V X A(r)] (5)
2 Ho

is the Hamiltonian of the free field in vacuum. If one considers a neutral atom, the charge density

pu(r) =D Qdlr—r), with Y Q =0, (6)
j i
can be expressed as the divergence of a polarization density p, (r) = —V - Py (r). Here,
1
Putr) =Yg [ A= RIS~ R st R)), )
— " Jo
i

where R is the center-of-mass coordinate [47]. The atomic polarization density allows us to express the
Coulomb interaction terms as follows

Vh= 5 [er(man)’ )
Vi = % / &rpl(r) - Tl(r). 9)

Here, Pgt is the longitudinal part of the polarization, i.e. the only component that determines the atomic
charge density, and IT! is the longitudinal displacement field of the medium, that satisfies

VIl = =) Qué(r—ry). (10)

i

The latter is proportional to the Coulomb field El = —TI! /¢, generated by the medium charges.

2.1. Minimal coupling
We now analyze the coupling between the atom and the electromagnetic field, which is a consequence of the
minimal coupling in the kinetic energy terms in equation (4). For an atom modeled as a point-like dipole, it
is possible to shift from the ‘p - A’ to the ‘r - E’ coupling representation, through the unitary transformation
exp(—iQr - A/h), where the vector potential is computed at the dipole center of mass [47]. The advantage
of this transformation lies in the fact that, in the transformed picture, the canonical momentum of a
particle coincides with its kinetic momentum and it is decoupled from the field variables (a thorough
discussion of the implications of such a feature is given in reference [47]).

In the case of a finite-size dipole, the aforementioned unitary transformation generalizes to the
Power—Zienau—Wolley (PZW) operator [46, 47]:

Upzw = exp (—/darPat(r) A(r)) = exp (—/darP (r) - Al(r)> (11)

3
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The transformation property UpywIT*(r) U;EZW =TI (r) + P.(r) yields two transverse-field terms from
equation (5)

Vim oo [@rEio)s Vi, = = [ dreio . (12)

These contributions are complementary to the ones in equations (8) and (9). The latter, as well as the
transverse part of the atomic polarization density, are instead left unchanged by the transformation.
Although originally IT* = —¢E*, the proportionality is lost after the transformation

() = —eoUpzwE(r) Ul vy — UpzwPar(r)Uj s (13)

which can be shown using equation (10). For a finite-size dipole, the equality between the kinetic and
canonical momenta is not exactly realized in the transformed frame as in the case of a point-like dipole
transformation. The reason is that the transformed kinetic momentum

1
Upzw(pj + QjA(rj))U;ZW =p;+ Qj/ dss(rj — R)B(R + s(r; — R)) (14)
0

acquires an additional term, which generates a direct coupling between the charges and the magnetic field
B. Nevertheless, the difference between the two momenta in the transformed representation is suppressed
with respect to the analogous difference in the Coulomb gauge as the ratio between the atomic size and the
interacting light wavelength. Therefore, if one neglects the interaction with the magnetic field, it can be
consistently assumed that p; coincides with the jth particle kinetic momentum in the transformed
representation.

2.2. Medium-assisted electromagnetic field

The medium-assisted electromagnetic field is an effective model that conveniently describes, under certain
approximations, the combination of the medium and the field degrees of freedom, as pictured in figure 1.
The contributions to the medium-assisted Hamiltonian arise from the terms Vi, T, and Hj in the
Hamiltonian (1), as derived in detail in references [41, 48, 49]. The resulting effective field Hamiltonian,

Hy = /OOO dw / P hiof (r,w) - flr,w), (13

can be expanded in three-component mode operators f(r,w) and f'(r, w), satisfying canonical
commutation relations

[ () ()] = 88 (r = ) 6 (w0~ ),
[fe(rw), fo (rhw')] = [fﬂ (r,w), fi (f”W’)} =0, (16)

with k = 1,2, 3.
The displacement field IT and the vector potential A are related to the field variable f by

IL(r) = / dw/d3 d [—'\/ —el(r w)Gi(r, 1 L wfe(r',w) +Hee. |, (17)
Aj(r) = / do.)/d3 / [Mq(r w)Gk(r,r Wfi(r,w) +Hee.|, (18)
where ¢ is the imaginary part of the dielectric permittivity
e(rw) = er(r,w) + ier(r,w). (19)
We have assumed that the medium is isotropic, hence the permittivity is a scalar. The Green tensor G
appearing in equation (17) is the solution of the equation [46]
2
[8 O — (Vz CZG(T,W)>] Gu(r, v, w) = 0pd(r — 1), (20)

and the term G in equation (18) represents its transverse part, satisfying G, (r, v, w)/dr; = 0G;
(r',r,w)/0r, = 0. In the Coulomb gauge, the properties of the Green tensor and the analytic structure of
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€(r,w) in the complex frequency plane guarantee that the vector potential and the transverse part of the
displacement field satisfy the canonical commutation relations

[Aj(r),Hk(r')] 171(5 (r—7v) = 1ﬁ/ ) (]./ |qfq2[> el (r= ") (21)

For a translationally invariant medium, e(r, w) = €(w), thus the Green tensor depends only on the
coordinate difference, G(r,7,w) = G(r — r’,w), and its Fourier transform

Gir(g,w) = / d’r Gi(r,w)e 17, (22)

reads

. ar\ - S0 — a; 2
Gir(gw) = (51'14 - %) Gulgyw) = —5 441/ 14

lq]> — we(w)/c?’

99k ¢
lq|? we(w)

Glg.w) = %ﬂcﬂm,>:

(23)

Hence, the displacement field reduces to

II;(r) =/ /(2 B [— —\/ el(w)GJk(q,w)fk(q,w)e‘q'+Hc , (24)

where the operators

f(q,w) = /dsrf(r,w)e’i‘”, (25)

satisfy } }
[fi(aw), fl(q )] = @)’ b (w — w)d(q — q). (26)

For a point-like atomic system, singularities may arise in the interaction Hamiltonian due to the fact that
the quantities Gl(r,w) and G (r,w) diverge as r — 0. In fact, while

(27)

ImG( :wzﬁl(w)/ &q 5 — qiar/lal?
(

IrnGk(O w) / 3
2; 3 D welw
) “q| 262( !

(2r)?

is finite and yields a well-defined transverse decay rate [41], Im Gl(r, w) diverges as r — 0, due to the non
integrability of Im G]”k(q, w)  qjqk/|q|*, and a consistent treatment of the longitudinal decay rate requires
momentum regularization.

Techniques based on considering the source enclosed in an artificial cavity [40, 50, 51] have been
developed to cope with such singularities. In the following, we will tackle the divergences of the longitudinal
part with a less artificial approach, by considering the natural finite spatial extent of the atomic
wavefunctions. This will allow us to unambiguously analyze the role of the asymmetry of the atomic states
on the emission process.

2.3. Total Hamiltonian
From the previous parts of this section it follows that

H = Hy + H§), + Hip® + H,. (28)
Here,
m=m+mzzm+—jﬁwm» (29)
]
J
is the atomic Hamiltonian,
1
H = /darPat(r) T(r) = —> Qrj—R)- /dsH(R +5(r; — R)) (30)
€o €o i

represents the interaction of the atomic system with the electric field, and
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_ 1
Hip® :Z {%PJ‘ : /0 dss(rj — R)B(R + s(rj — R))
i

QI ’
+ L {/ dss(rj — R)B(R + s(rj — R))} } (31)
0

ij

stands for the coupling with the magnetic field. The term H,, generally represents the Hamiltonian of the
medium, that can be modeled in different ways, e.g. through the medium-assisted field Hamiltonian (15),
as shown in section 2.2. In the following part of this work we will neglect the magnetic contribution to the
interaction. Now we model the atom of the general theory as an electric dipole of charge Q, with a heavy
positive charge at the fixed position R = 0 and a moving negative charge of coordinate —r and mass m. As a
result, one finds the final form of the interaction Hamiltonian

1
HYY = gr-/o dsTL(—sr), (32)
representing the correct generalization of the ‘r - E Hamiltonian to an extended (non point-like) dipole.

The expression (17) of the displacement field IT in terms of the Green tensor in the Hamiltonian Hidnif’
provides a new accurate and general approach. In the following examples we apply the general theory in the
simple case of a homogeneous medium. However, by exploiting the tensor structure one can consider
various geometries of the host medium, in particular interfaces of different dimensions or photonic
nanostructures. The use of the Green’s tensor leads to a divergent field at the position of the point-like
quantum system. This divergence is usually removed in a somewhat artificial way by introducing virtual
cavities or form factors. Here, the renormalization procedure is based on the physical size and orientation of
the extended system represented with wavefunctions. It allows us to accurately describe the physics of the
system without artefacts. This is one of the main findings of this work, that arises as a connection between
first-principle QED, represented through the canonical commutation relations, and the medium-assisted
field ruled by equation (16).

3. Emission properties of a bound system of charges

According to the results of the previous section, each eigenstate of the internal atomic Hamiltonian is
dressed by the surrounding medium. We now characterize the single-photon emission process and the
Lamb shift of an atomic level in a medium-assisted photonic environment in a translationally invariant
medium.

Consider an atom in an arbitrary environment, i.e. a dispersive medium of any geometry and material.
Let |a) and |b) be two orthogonal eigenstates of the free atomic Hamiltonian H,, characterized by

Hyla) = E,|a), Hy|b) = Ey|b). (33)
The atom—photon interaction is described by the matrix element
M (r,w) = (al HPf (r,0)|b), (34)

which, for a translationally-invariant medium, can be expressed in the Fourier space through

~ o~ 2 ~ l .
./\/lj“b(q,w) = <a|Hflr:ffJT(q,w)|b> = —iC(w)(j—zZ ij(q,w)<a|rk/0 ds e ¥17|D), (35)
k
where
o FLGI(OJ)
Cw=Q 8miey

If we insert the expression of ij in equation (23) and exploit the orthogonality between longitudinal and
transverse projectors, we obtain

3
Talgw) = 3| Mg )|
=1
~ Cw)?
el

|-Fub(q) - 5ah|2
lq)?

[quw)gab(q) + (1= D(ghw)) , 36)
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where d,, = (a|b) = 1if |a) and |b) coincide and 0 otherwise, with

-2

B B q2C2
D(g,w) = ‘1 ) (37)
Far(q) = (ale™"|b) = /dsrw;‘(r)wb(r)e*i’”, (38)
’ e T :
Garla) = 3 |(alr b) (39)

The quantity defined in equation (36) determines both the total decay rate of the state |a) and its energy
shift. The former can be evaluated according to the Fermi golden rule

27 o0 27
=33 /O Qo Peog) T(0) = 25> s) Ta i)

b#a
C ﬂ a 2
- Z (o) w ”))|2 [ ¢ [D<q| war)Ga(@) + (1 — D([gl, o) T DL f;g)' L o)
with E
Wah = u; b) Tub(w):/d3q7;b(q>w)> (41)

and 6(x) being the Heaviside step function. The absence of a contribution from state |a) in the sum over
states in the second equality of equation (40), albeit reasonable, is not a trivial result. Therefore, replacing
equation (36) in the evaluation of the decay rate §,, = 0 and the apparent divergence in the term
proportional to F,y, is regularized by the wavefunctions spatial extension. Note that the two terms in
equation (40) proportional to D(g,w) correspond to the transverse contribution, while the remaining one is
the longitudinal contribution responsible for non-radiative decay, because it is related to the absorption
losses in the dielectric host medium.

In vacuum (e(w) = 1), the decay rate in equation (40) becomes

Q¢ |Fan(gm)?
(vac) __ 2 _
e / d S(n);#a: [gum ) - (42)

where g = wg/c and the integration is over the unit sphere n € S?. Note that in the point-dipole limit the
quantity F,; tends to d,5. In this way, we recover the familiar Weisskopf—Wigner result [52].
The frequency shifts of the atomic levels should be determined using equations (36)—(41), through

b= yopf w2, (43)
0

with P [ denoting principal value integration. For a = b the function 7, contains the state-independent,
non-integrable term
0a,C(w)?|q|*(1 = D(|ql,w)) ~ |q| > as |q] — oo, (44)

which provides a divergent contribution to T,,(w). However, this contribution is also independent of the
state, representing therefore the effect of a uniform energy shift. Physical quantities such as the perturbed
transition frequency

Dab = Wap + Da = Dy = way + %P/ dw {T”“(w) ~ Tulw)
0

w

+ 2wy zab(w)z T Z (wTuc(w) _ Tbc(w)> (45)

Wiy cEab — Wac W — Whe

are thus independent of the divergent term given in (44). Indeed, notice that, in the time domain the
low-energy behavior of the dielectric permittivity is

ew)=1+ /OO dex(t) + iw/oo dt tx(t) + O(w?), (46)
0 0

where x(t) is the medium susceptibility with finite moments. This implies that T,,(w) ~ w close to the
origin, and therefore the integration of the term (T,, — T},)/w in equation (45) is well defined.
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3.1. Asymmetric two-level atom

The parity asymmetry of the atomic Hamiltonian eigenstates, reflected by the presence of nonvanishing
expectation values of one or more components of r, affects the state-dependent quantities F,; and G,
which appear in the expression of T,;(w) and determine the decay rate I', and the energy shift A,. Ina
two-level atomic system, the three components of the Hermitian position operator r can be represented by
spin operators [52, 53]

r=pl+ o, + ryo;, ox = |a)(b|] + |b){al, o, = |a){a| — |b){b| (47)
acting on the two-dimensional space spanned by |a), |b), with

(alr|a) + (b|r|b)

pP="—""">5 > (48)
5 k) ) o
rap = (a|r|b) = (b|r|a). (50)

In the two-level case, the off-diagonal matrix element (50) can be made real and non-negative by absorbing
a phase factor in the definition of one of the states.
The functions that determine the decay rate from |a) to |b) read

Fur(q) = —ie 1Pq - ry sinc(A(q)),
2

1
Gan(q) = ’Vq {q Tap / ds sinc(sA(q))e‘“q“’] (51)
0

with sinc(x) = sin(x)/x and A(q) = \/(q rap)? + (g 0)%

From these results, one can observe that the physical quantities computed from G, and from the square
modulus of F,;, are invariant with respect to the inversions p — —p and § — —9, but both depend on
diagonal entries p and & which play the role of the asymmetric contributions.

To identify the lowest-order contributions to the decay rate, let us perform a small-q expansion of the
functions appearing in the expression (36) of 7, for a # b, namely

Fu@P _ (a-ra) (1 @ral (g ‘”2), (52)
Ll Ll 6
and
of, @) @-8?  (q:-p)
Gav(q) ~ [ra| (1 T3 T T )
2(g - 1) . -0)6
+ Wfrb) + (g tap)tay ((‘1 zp)p -4 9 : ) ’ 59

While the first-order contributions are regular, the second-order approximation in q of the functions in
equations (52) and (53) yield divergent integrals, that should be regularized by a cutoff A4, roughly
corresponding to the inverse spatial size of the involved wavefunctions, that can range from 1 to 100 nm
according to the considered system. Clearly, this cutoff is not needed if one uses the expressions in
equation (51), that contain all orders in q. Based on the approximations (52) and (53), one can estimate
that the corrections entailed by an asymmetry of the states |a) and |b) are of order (Ag|r|)* and (Ag|res|)*.
Notice that the asymmetry corrections compete with terms of order (A4|ra|)?, representing the first
corrections to the point-dipole result, and are not characterized by a definite sign.

4. Test beds

In this section, we apply the theory to two systems: a hydrogen atom in a static electric field and an
asymmetric quantum well (QW). We shall focus on the dependence of spontaneous emission on their
spatial asymmetry and on the embedding in an absorptive medium.

4.1. Hydrogen atom in a static electric field
The first example we consider is a hydrogen atom embedded in a homogeneous medium. The asymmetry of
this system is related to the presence of a static electric field £, whose polarization defines the quantization
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Figure 2. Energies of hydrogen atom eigenstates as functions of a static electric field. Labels, in the spectroscopic notation, are
referred to the dominant contribution for £ — 0. As the field strength increases, the label states mixed with orthogonal
Clebsch—Gordan states (see figure 3). Each line corresponds to a pair of states with fixed |m;|.

axis. The asymmetry can be classically explained by a shift of the electronic cloud with respect to the
nucleus. As a result, the eigenstates of the system perturbed by the field correspond to superpositions of
wavefunctions
[E)) =Y butms () [thuim) @ [ xs) (54)
nlms
of a bare hydrogen atom, where the orbital wavefunction |1,,,,) is characterized by the principal (1),
angular (/) and magnetic (m) quantum numbers, and | ;) represent the spin up (down) state for s = +

(s = —). Equivalently, the same state can be decomposed in the Clebsch—Gordan basis
[W(E)) = Y cuim; (€) |ty (55)
nljm;

with j the total angular momentum and m; its projection on the third axis. Clebsch—Gordan states
corresponding to n = 1,2, on which the following analysis will be focused, read

[#1011) = [¥100) @ [X4)>
101 51) = [¥100) @ [X-)
|P2011) = [Y200) ® [x4)>
9201 51) = [th200) @ |X-),

|¢21%%> = \/g|¢211> ® ‘X—> - \/g'l/}210> ® ‘X+>>
2 1
\¢21%%1> = _\/g|¢211> ® |x+) + \/2|¢21o> ® |x-)

|}, §> [¥211) @ |x+)>

|¢21% \/7|¢211 ® |x-) \/71/1210 ® |X4)>
1 2
|P2351) = \/;Wzl—ﬁ ® |x+) + \/;|¢210> ® |x-)

o3 1332 3) = [Ya1-1) @ |x-). (56)

Notice that states \qﬁnojmj) and |gz5n1jm].> correspond, in the spectroscopic notation, to NSjm; and NPjm;>
respectively. In our analysis we will adapt the discussion from reference [54] to the case of electric fields
weak enough to see its gradual influence on the eigenstates. As a consequence, the expansion coefficients
depend on the applied field as suggested above in equations (54) and (55). This result is achieved if the
corrections induced by the field are small with respect to the fine structure, and comparable with the Lamb
shift. In the opposite case of fields strong enough to overcome the fine structure, the eigenstates are fixed
and only their energies still depend on the field.

We will now identify the eigenstates in the weak-field regime, and discuss the evaluation of the
transition rate between a selected pair of these eigenstates. As anticipated, we restrict the analysis to the
n = 1,2 manifolds and neglect the small impact of states with n > 2. If one neglects fine-structure splitting
and Lamb shift, the eigenenergies of the n = 1 and n = 2 sectors can be set to

3
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N\»—-
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Figure 3. Expansion coefficients of the lowest-excited states (red line in figure 2) in terms of Clebsch—Gordan states [see
equation (55)]. The dots correspond to numerical solutions for selected values of field £. The solid line is a third-order
polynomial fit. The red line corresponds to the sum of squares of the three coefficients shown in the figure in blue, orange and
green. The sum differs from 1 by less than 0.0005 for the studied range of fields.

€ = —13.6 (1 — 2%) eV = —10.2eV and ¢; = 0. The Hamiltonian Hy, restricted to the sector spanned by
the Clebsch—Gordan basis, ordered as above, is diagonal in the absence of the field, while, in the general
case, it reads

€1 0 0 0 —b1V 0 0 b2V 0 0
0 €1 0 0 0 b] v 0 0 b2V 0
0 0 A 0 V3V 0 0 VeV o 0
0 0 0 AL 0 —V3V 0 0 V6V o
by 0 V3V 0 0 0 0 0 0 0
HO =

0 HY 0 —/3V o0 0 0 0 0 0
0 0 0 0 0 0 Ap 0 0 0
LY 0 VeV 0 0 0 0 Ax O 0
0 bV 0 NG 0 0 0 0 Ap 0

0 0 0 0 0 0 0 0 0 Ags

Here Aps = 44 peV and AL = 4.4 ueV represent respectively the fine structure splitting and the Lamb shift
for hydrogen, and V = Eeay, with e the elementary charge and a, the Bohr radius. The constants

b = % \/g and b, = 2° \/g and other off-diagonal elements can be evaluated through an explicit

243
calculation of the corrections —Ee(¢1ojum, \z\qﬁﬂj/,mj, ).

Diagonalizing the above Hamiltonian, we find the eigenstates of the system. Our first observation is that
the eigenstates originating at the n = 1 manifold are barely distorted by the field, and their energy is shifted
by a correction of the order of peV. In the following analysis we neglect these corrections, both in the
eigenstate and in its energy. The dependence of eigenenergies of the n = 2 manifold on the field is shown in
figure 2, and again the influence of states from the #n = 1 manifold is negligible. For this reason, from now
on we consider the Hamiltonian (57) with by = b, = 0.

From figure 2 it is clear that the pair of lowest-excited states corresponds to the red line and simplifies to
the states 2p T —— in the absence of the field. The explicit expansion of these eigenstates in terms of
Clebsch—Gordan states and in function of the field is cambersome. Instead, we find the expansion
coefficients numerically and fit them with third-order polynomial functions of £ (figure 3). For positive &,
the expansion coefficients are

|w]e,mj> = CZl%mj|¢21%mj> + CZO%mj|¢20%mj> + Czlgmj‘¢21%mj>’ (withm; = £1/2)

2 3
i (E) R 1 =128 X 107 € —2.20 x 10“0(3) E7+3.49 x 10‘15<E) e
2mj eV eV eV

m m \ 2 m\ 3
E)r~ —220%x107°—=E+2.17 x 10—10(—) E*+5.10 x 10“6<—) &l
“ogm; (&) vt Y + eV
R - -1 2)2 2 _ —16(2)3 3
oty () % 119 X 10728 4658 x 107 () & =763 x 107°( ) € (57)

where the subscript ‘le’ stands for ‘lowest-excited’. With the third-order expansion, the state is normalized
to 1 with error smaller than 0.05% for £ < 35 keV m™.

There are four possible transitions between a doubly-degenerate excited and a doubly-degenerate
ground state. We now select two example transitions among them, namely (i) the transition between the

10



10P Publishing New J. Phys. 22 (2020) 123047 G Scala et al

@ -1 1 ®) -1y )
0.9
=15 095 13
S o
= =t 0.8
s} o .
= -2 0.9 :
0.7
2.5

& [V/m] x10%

2
|C210|2
0.2 0.4
0.1 |C200|2 0.2 2
100 x [c21_1|
0 > 5 : 0
0 1 2 3 0 1 2 3
&€ [V/m] x10% &€ [V/m] x10*

Figure 4. Panels (a) and (b): spontaneous emission rates from the lowest excited state [¢,) [equation (58)] to the ground state
corresponding to spin down (a) or up (b), of a hydrogen atom embedded in a medium with permittivity e = 2.411 + i¢; and
subject to a static electric field £ oriented along the quantization axis. The emission rate is normalized to the value at a vanishing
electric field and ¢; = 3.2 x 107>, Panels (c) and (d): squared expansion coefficients of the state |+),) in terms of bare hydrogen
eigenstates. Please see the notation in equation (58).

excited and ground states with m; = —%
ta) = W’le, mj:—%> = b200—71(5)|1/;200> ® [x-) + b210-71(5)|1/1210> ® [x-)
+ bzll%(5)|¢211> ® |x4) + bzl_l%(g)h/}nﬂ) ® |xX+)» (58)
|1/’b> = |¢10%—71> = |1/’100> ® [x-)» (59)
with
brpo 5t (€) = 121 (E) (60)
1 2
bzlo%(‘g) = 5621%%(5) + 5621%%1(8) (61)
2
by (6) = _\/;ZI%_TI(& (62)
1
b2171%(5) = 5%1%-71(5) (63)

and (ii) the transition between the same 1), and ¥}, = ¢,,11 = 190X+ Please note that, with the
approximations described above, the ground state always has a fixed spin, while the excited state has
contributions from both spin directions. In each case, the spin-changing transition elements vanish
identically.

As the host medium, we consider a glass with the real part of the permittivity eg = 2.411 [58]. The
imaginary part of glass permittivity ¢ is physically negligible. For demonstration purposes, we will consider
the rather broad range ¢; € (107%,1071).

We now evaluate I', applying the theory developed in section 3 and leading to equation (40). The
spontaneous emission rates for both transitions are displayed as functions of the external field £ and the
imaginary part of the permittivity ¢; in figures 4(a) and (b). As the asymmetry grows the transition rate is
reduced in both cases, which is due to the increasing contribution of the ‘dark’ component 1),

[figures 4(c) and (d)]: a transition between |1),o,) and [t,4,) is electric-dipole forbidden. We observe that
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the emission weakly depends on the absorption coefficient and slightly drops for larger values of the
latter.

We remark that, albeit these results have been obtained under the assumption of a homogeneous
medium, which does not fully describe the physics of a system as small as a hydrogen atom, our analysis
captures crucial information on the trends of the relevant physical quantities.

4.2. Asymmetric quantum well
We evaluate here the decay rate for a semiconductor QW. We consider the case of a symmetric and an
asymmetric QW embedded in the same surrounding material.

The considered QW consists of aluminium indium arsenide with different molar fractions (Al In;_,As
and Al,In;_,As) and gallium indium arsenide (Ga,In;_,As), with x = 0.46, y = 0.48,z = 0.47, respectively.
The well has a finite length a. The effective mass in the three regions is m = 0.043m,., m = 0.045m, and
m = 0.078m,, respectively, where 1, is the electron mass. By varying the molar fractions it is possible to
modify the height of potential barriers Vi /z on the left/right side of the QW, and consequently confine the
electron along the x-direction with a potential [55]

Vi forx < —a/2
V(x)=40 for —a/2<x<a/2 (64)
Vr for x > a/2.

Motion along the transverse (y, z) directions is loosely bound; for simplicity, we will assume a weak
harmonic confinement along those directions. The asymmetry of the system is related to the nonvanishing
value of Vg — V1 along the x-axis. In GalnAs, Vg = 520 meV and V|, can be tuned with a sensitivity of

3 meV [56, 57]. The energy spectrum is determined by the following equation

2mE : E . E
a\/ —— = nm — arcsin 4/ — — arcsin 4 | —, (65)
h? Vi Vr

where n = 1,2 correspond to the ground and the excited state, respectively. By tuning V1, one can set the
energy gap between the two lowest levels. We set the QW width a to ensure the absence of a third bound
level, as shown in figure 5, and approximate our dynamics with the one of a two-level system. Typically, a
can be controlled with a precision of half a constant lattice 0.3 nm [56]. The wavefunctions 1,,,
corresponding to the energy eigenvalues E,, with n > 1, are given by

sin(5n)e““L(x+%) forx < —g

U, (x) = ¢ 4 sin(B,(x + g) +4,) for — g <x< 4 (66)

a
2
. —a (x—ﬂ) a
sin(aB, + d,)e “"RY"2)  forx > >

where ar(ur) = y/2m (VR(L) — En)/h, Bn = +/2mE, /h, 6, = arccot (anL/ﬁn) and ¢, is a normalization
constant.

The structure of the QW entails a trade-off between its width and the resonance wavelength A (see
figure 6) corresponding to the energy gap. The larger the width a, the larger the resonant wavelength, but
the complex part of the permittivity becomes drastically smaller. This yields a medium that is practically
transparent. For GalnAs, the relative permittivity is given by eg = 11.638 and ¢; = 0.024 082 at the
resonance energy gap of 161.917 meV determined by Vi, = 430 meV.

We consider the spontaneous transition between two states a and b, characterized by the wavefunctions

Pt )

e 40? e

G =0 ) = () m

where the Gaussian part in the (y, z) variables is related to the weak harmonic transverse confinement. Since
the transverse wavefunction is the same for a and b, the matrix elements of the dipole moment only have

components along x:
Xaa Xap) __ (0.007 0.213
¢ (x,,,, x;,b) - <0.213 0.0153) e (68)
with e = 1.60 x 10~'? C the electron charge and ay = 5.29 x 10~!! m the Bohr radius.

Unlike the case of the hydrogen atom, discussed in section 4.1, here both functions are characterized by
a finite dipole moment. In order to highlight the specific effects of the average dipole moment of the two

(67)
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0 100 200 300 400
E [meV]

Figure 5. Graphical representation of equation (65). The dashed line represents the function g(E) = a+/2mE/h? [left-hand side
of equation (65)], while the equally spaced solid lines represent nm — f(E), where f(E) = arcsin \/E/Vy + arcsin \/E/Vy
[right-hand side of equation (65)], for n = 1, 2, 3. The two intersections determine the eigenvalues E; and E,. In this graph, the
choice of the potentials V| and Vx maximizes the width a while keeping the number of bound energy levels equal to 2.

60f 9

L n L n L 1 L L 1 L 1 L L " ] —
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Figure 6. Resonant wavelength A\ = 2whc/(E, — E;) corresponding to the excitation energy from the ground state to the first
excited state of the potential 64, as a function of the width of the QW for V} = Vi = 430 meV.

states [see equation (48)], we will consider an approximation in which the wavefunctions (66) are replaced
by harmonic oscillator eigenfunctions, both characterized by the same permanent dipole moment

1= exaq = expp. The frequency wy, of the harmonic oscillator is fixed in such a way that Awp, matches the
excitation energy from the ground state to the first excited state of the QW. The permanent dipole p for the
harmonic oscillator is obtained by shifting its wavefunctions along the x-axis such that ;1 = 0.0153ea,.

Hence,
_ (atage)? _ (etd)?

10} 40}
\Ill(—x):i, o X Xae
v/ 2mo? Ox  \/2mo2

with 02 = h/ (2mwn,). We obtain the decay rates I'(d = —0.0153ea) = 3.29708 x 10" s! and

I'(d =0) =3.29773 x 10 s7!, yielding a 0.02% increase of the asymmetric case compared to the
symmetric one, of the same order of the ratio d/(eay) [see equations (52) and (53) and comments thereto].
In figure 7, we show the results for the spontaneous emission rate with varying d and e, at fixed

er = 11.638 of gallium indium arsenide [59]. In vacuum (e — 1), the relative contribution of the
asymmetry to the total decay rate becomes less relevant. Furthermore, to highlight the specific effect of a
finite dipole moment, we show in figure 8 the ratio between the value of the decay rate as a function of d
and its value for d = 0, corresponding to a fixed €.

(69)
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Figure7. Ratio of the spontaneous emission rate I" over the symmetric and non dispersive one I'(0, 0), as a function of d/a, and
€ and at fixed eg = 11.638. The red dots represent the values of I" mentioned in the text for the approximated QW at ¢; = 0.024
withd = 0 and d = —0.0153ea,.
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Figure 8. The ratio of the decay rate I'(d/ay, €1) /T'(0, ;) as a function of d/ay show the variation of the asymmetry for different
dispersion media with ¢, = 0.001 (solid line), ¢; = 2 (dashed line) and ¢; = 2.75 (dotted line).

5. Conclusions

We have expressed a light—matter interaction Hamiltonian in terms of the Green tensor propagator, in a
novel approach that avoids the usual divergence related to the approximation of a point-like atomic
quantum system. The divergence was lifted via the inclusion of the wavefunctions, providing in this way a
natural cutoff for the system investigated. This enabled us to study the dynamics of a charged system
coupled to a medium-assisted electric field, beyond the point-dipole approximation, highlighting the role
played by the finite size of the system, the dispersion and absorption by the medium and the spatial
asymmetries. The analysis focused on the determination of the decay rates and energy shifts of the bound
states of the ‘atomic’ system, which have been obtained under general assumptions. The most important
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among these assumptions is the hypothesis of homogeneous and isotropic media. We also discussed how to
extend the theory to more general situations.

The obtained results were applied to two test-beds: a microscopic one, represented by a hydrogen atom
subject to a uniform electric field, and a mesoscopic one, consisting of a quasi-electron in a semiconductor
QW. In both cases, we have obtained the decay rates as functions of the asymmetry of the system and the
absorption of the medium, showing that asymmetry can yield small but detectable deviations with respect
to the symmetric case.

Future research will be devoted to a thorough treatment of medium inhomogeneity and anisotropy and,
in particular, to the inclusion of effects due to the medium granularity, which implies a further length scale
and momentum cutoff, competing with those related to the atomic system size.
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