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Individual bound and stable vortex–antivortex (V–AV) pairs in type II superconductors have been imaged
using the novel variant of magnetic scanning transmission x-ray microscopy at low temperatures. Hereby
the local stray field induced by an individual superconducting flux line locally polarizes a ferrimagnetic
sensor layer. We are able to visualize and analyze individual V–AV pairs far below the transition
temperature with unprecedented spatial resolution and high contrast. The spontaneous nucleation with a
distance of 90 nm occurs at the domain wall (DW) of the ferrimagnetic layer. From their slight deformed
structure due to attractive magnetic dipolar-coupling we are able to estimate the binding energy. Our new
experimental approach is the first identification of a bound and stable V–AV pair and demonstrates the
potential of the x-ray to address vortices in high Tc thin films and heterostructures.

The topology of inhomogeneities in strongly ordered systems defines a very general field of physics [1].
In particular, in condensed matter physics numerous systems with long-range order exhibit local confined
structures with particular topology such as vortices, which are categorized by their different vorticity [2, 3].
Controlled creation and manipulation of vortices is of utmost importance for realization of
superconducting digital devices [4, 5]. An example is a pair of two one-dimensional superconducting
vortices that have clock-wise and counter clock-wise orientation, respectively. Owing to the strong tendency
to annihilate the occurrence of bound V–AV pairs is extremely rare. The existence of fluctuation induced
V–AV-pairs near the superconducting phase-transition has been theoretically predicted by Kosterlitz and
Thouless for (quasi-) two-dimensional geometries [6]. Experimental evidence for this phenomenon have
been found in numerous systems by resistance measurements [7–9].

In superconductors decorated with micro-patterned ferromagnets, indications of symmetry-induced
coexistence of V and AV have been reported that are generally confined to the sample geometry [10–14]. In
ferromagnetic superconductors exhibiting a complex interplay of ferromagnetism and superconductivity
studies show a pair-like coexistence of vortices and antivortices in a narrow temperature range [15] but
their interaction in these exotic and complex systems remains unexplored.

Over the last decades, real space images of superconducting vortices have been obtained with either
scanning mode based techniques such as SQUID-on-tip microscopy [16], magnetic force microscopy
[17, 18], scanning Hall-probe microscopy [19], microscopy based on nitrogen-vacancies [20] or Lorentz
microscopy [21, 22] with a spatial resolution of less than 100 nm. Spin-polarized scanning tunneling
spectroscopy [23] can provide an even higher resolution [24] if the investigated surfaces are flat enough.
Technologically relevant high-TC superconducting films with a high density of outgrowths with heights of
several 100 nm restrict the resolution of scanning techniques seriously.

In this work, we use magnetic scanning transmission x-ray microscopy that benefits from the strong
dichroic absorption signal (x-ray magnetic circular dichroism, XMCD) at transition metal L edges [25]. For
the stray-field imaging [26–29] we use an yttrium iron garnet (Y3Fe5O12, YIG) lamella cut out of a single
crystal by focused ion beam (FIB). With this method it has become possible to image individual
superconducting vortices with high spatial resolution of 20 nm and excellent contrast. First direct imaging
of bound V–AV pairs stable towards temperatures below Tc and variable external fields has been achieved.
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Figure 1. (a) Cross-sectional sketch of the experimental setup. The thickness of the whole sample stack has to be reduced to
<1 μm to ensure a sufficient transmission of the soft x-rays, which are detected by an APD. (b) Top view onto the sample stack
obtained with SEM. The YIG lamella is glued with titanium stripes on top of the YBCO layer. The orange box marks the region
scanned by the x-rays for high resolution imaging.

The nucleation of these stable V–AV pairs is induced by the out-of-plane (OOP) magnetic stray field
gradient of a DW of about 100 nm width, formed in an adjacent ferrimagnetic lamella mechanically
connected to a superconducting film.

Optimally doped YBa2Cu3O7−δ (YBCO) thin films with a thickness of d = 250 nm in combination with
a 5 nm SrTiO3 (STO) decoupling layer were grown on single-crystalline STO (001) substrates by pulsed
laser deposition.

The YBCO film is nanostructured to 20 × 20 μm2 squares using photolithography and ion-beam
etching with argon ions. Subsequently, a window (40 × 40 μm2) of 300 nm thickness in the substrate has
been prepared by mechanical cutting and FIB milling to ensure sufficient transparency in the soft x-ray
regime [30].

A YIG lamella of ∼250 nm thickness with a lateral size of 9 × 14 μm2 was cut out of a YIG single crystal
using ion-beam milling techniques [25]. The preparation provides extremely thin lamellas of arbitrary
shape while conserving the magnetic properties of the material. The lamellas were mechanically transferred
to the YBCO thin film and fixed using Pt deposition. Owing to the strong inflated L edge in iron garnets, an
additional window (5 × 5 μm2) with a remaining thickness of 100 nm has been cut into the lamella.

The x-ray microscopy measurements are performed at the soft x-ray scanning transmission setup
MAXYMUS located at the synchrotron BESSY II of the Helmholtz Center Berlin. The setup reaches a base
temperature of 25 K and external magnetic fields of up to ±40 mT with an accuracy of 0.2 mT.

The energy of the x-rays has been tuned to the iron L3-edge at an energy of 710 eV providing a maximal
XMCD contrast of 14%. The monochromatized x-ray beam is focused to a 20 nm spot on the sample and
the density distribution as well as the magnetic profile is taken by moving the sample through the scan
region. The transmitted intensity is measured using an x-ray sensitive avalanche photodiode (APD).

Figure 1 shows a cross-sectional sketch of the sample stack system and a corresponding SEM image.
The lamella provides two important innovations compared to prior experimental attempts [27, 28]: (i)

the defined DW of this soft magnetic lamella produces a strong local stray field gradient, (ii) an outstanding
magnetic softness occurs in the DW region. This allows sensing of OOP fields in the mT range such as the
stray field of a vortex in the adjacent superconductor first, the sample stack has been cooled through its
superconducting transition (Tc = 88 K) to a temperature of 26 K in an external magnetic field applied
perpendicular to the film plane. The emerging OOP XMCD contrast corresponds to the normalized
difference I+−I−

I++I−
of the images taken for opposite x-ray helicity I+ and I−. The images in figures 2(c)–(e)

are obtained after field cooling in −1 mT, 0 mT, and 2 mT, in which the accuracy of the field strengths was
measured to 0.2 mT. The results in the orange marked region of figure 1(b), are exemplarily shown in
figure 2 in addition to the density profile I++I−

2 .
Common to all three images is a vertically oriented white line corresponding to a magnetic DW in the

ferrimagnetic layer of about 100 nm width. It separates two extended domains with a magnetization tilted
by 30◦ OOP as quantitatively determined from the corresponding XMCD contrast (turquoise/yellow area).
This magnetization landscape is expected to be induced by mechanical stresses and/or thickness gradients in
the thin lamella.

At the DW two circular-shaped spots (red and blue) appear showing the formation of two local fully
saturated OOP magnetization regions with opposite direction in the YIG lamella. There are no detectable
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Figure 2. (a) Density profile at 710 eV, taken inside the orange box of figure 1(b). (b) Corresponding magnetic profile taken by
subtracting and normalizing two images with different helicity of the x-ray beam. The external field, applied perpendicular to the
sample plane, is tuned to 0 mT, however the finite stray field of the YIG lamella is also present. Subsequently, the superconductor
is field cooled through the superconducting phase transition to a temperature of 26 K. (c)–(e) Area inside the black rectangle
after field cooling in magnetic fields of (c) −1 mT, (d) 0 mT and (e) 2 mT. Two confined spots with full but reversed XMCD
signal appear at the DW (white line) separating two extended magnetic domains tilted by ±30◦ OOP.

inhomogeneities in the density landscape (see polarization averaged STXM image in figure 2(a) and in the
overall magnetization. We observe a clear shift of the position of both the ferrimagnetic DW and the
distinct circular-shaped maxima for different applied fields (see figure 2). The position independent
separation and magnetic contrast, where no correlation with the morphological density profile was
indicated, exclude a microstructural origin of the observed phenomena. Therefore we can explain the
findings to a tightly bound state consisting of a vortex (blue) and an antivortex (red) that is introduced by
the interaction between the two vortices itself as well as the interaction between the individual
vortex/antivortex and the DW.

Knowing that Φ0 = 2 × 10−15 Tm2 and B = nΦ where n is the number of vortices per surface unit, it is
expected that in general about 0.5 vortex

μm2 mT are formed inside a field-cooled superconductor. Therefore, the
probability that a vortex is formed in the vicinity of the DW coincides with the fact that only one V–AV
pair is found along the DW in the field of view of 2 × 5 μm2.

To study the characteristics of this vortex pair in more detail we separate their signal from the
ferrimagnetic domain background. For that purpose, the ferrimagnetic structure is modeled using an
arctangent function with a DW width of dDW = 120 nm as a fitting parameter. The pair appears as two
symmetrically ordered vortices with elliptical shape, (figures 3(a)–(c)) with an individual diameter wx,V ≈
wx,AV ≈ 240 ± 15 nm (FWTM definition). Line profiles in x-direction (figure 3(d)) reveal that both
magnetic features have a maximum XMCD contrast of ±14% corresponding to a full local OOP
polarization of the YIG sensor layer. Along the DW [y-direction; figure 3(e)] the vortex diameter is
compressed to wy ≈ 145 ± 15 nm with a spacing of sy ≈ 90 ± 10 nm between the two vortex cores.

The measured radius wx/2 ≈ 120 ± 8 nm is in good agreement with the London penetration depth
λL ≈ 150 nm in the ab-plane of YBCO. The magnetic flux of a vortex is found by integrating the magnetic
flux density BVortex (x) = φ0

2πλε ∗ BesselK0(x), with the modified Bessel-function of the second kind zero order
BesselK0(x), over the area of the imaged vortices. We find a magnetic flux of 0.90 ± 0.03 φ0 per vortex, in
good accordance with the value of a single magnetic flux quantum. We attribute the slight, but
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Figure 3. (a) Three-dimensional representation of the experimentally observed V–AV-pair. The XMCD contrast is proportional
to the OOP magnetization. The bipolar nature of the V–AV pair can clearly be observed. (b) Background (domain) removed
signal of the vortex (red) and antivortex (blue). (c) Contour line plot of the V–AV pair highlighting the compression of the
V–AV-pair. (d + e) Line profiles are extracted in x-direction (d) and y-direction (e), respectively.

experimentally significant difference of 0.10± 0.03 φ0 to the binding energy of the V–AV pair. Following the
perspective of the reduced magnetic flux, the binding energy of the V–AV pair can be estimated based on
the vortex self-energy EVortex.

The self-energy of a vortex is described within the Ginzburg–Landau (GL) theory for the free enthalpy.
This approach leads to a vortex self-energy in the YBCO film of [31]:

EVortex =

(
φ0

4πλ

)2

∗
(

ln

[
λ

ξ

]
+ 0.5

)
∗ dYBCO.

Hence, the reduced magnetic flux of the vortices in the V–AV pair leads to a reduction of the vortex
self-energy ΔEVortex = 36 ± 10 eV, which can be used as a measure for the binding energy of the V–AV pair.

For a quantitative description of the V–AV pair formation below Tc and the observed state at T = 26 K
the forces acting on the vortices have to be balanced by three dominant forces in our experiment: (i) the
attractive magnetic interaction force Fmag of vortex and antivortex, (ii) the repulsive force FV-DW of the DW
on the vortices and, (iii) the pinning force Fpin in the YBCO film.

The V–AV interaction can be described by a GL ansatz to be

Fmag =
φ2

0dYBCO

2πλ3μ0
∗ BesselK1

(
sy

λ (T)

)
, with λ (T) = λ0

(
1 −

(
T

Tc

)4
)− 1

2

,

with BesselK1 as the modified Bessel-function of the second kind first order and the standard temperature
dependence of the two-fluid model [32].

The repulsive interaction is given by the derivative of the potential energyEpot = −mV · BYIG (x) of a
magnetic dipole in the magnetic flux density BYIG(x) provided by the ferrimagnetic YIG. The magnetic
moment mV of the vortex for a 250 nm YBCO layer corresponds to 8, 6 × 108 Bohr magnetons.

On this basis we calculate the derivative of Epot and find a temperature dependent repulsion of the DW.
Figure 4(a) depicts Fmag (red line) and FV-DW (green line) for the observed V–AV distance sy = 90 nm in the
temperature range from 23 K to Tc. We find an equilibrium of forces at about T = 81 K.

For the explanation of the experimental result obtained at T = 26 K the pinning force on individual
vortices in the YBCO film has to be taken into account. Figure 4(b) compares the difference between Fmag

and FV-DW with the pinning force on individual vortices. The latter is extracted from the temperature
dependent critical current density jc(T ) via

Fpin = jc (T) ∗ φ0∗ dYBCO.
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Figure 4. (a) V–AV attraction Fmag (red line) and DW repulsion FV-DW (green line) forces versus temperature for a V–AV pair
with a distance of d = 90 nm. Equilibrium of forces is found at T = 81 K leading to a bound state. (b) Difference of the
interaction forces |Fmag − FV-DW| (orange line) compared to the individual vortex pinning force Fpin (blue line) in the YBCO film.
Below a ‘freezing zone’ (gray area) at around T = 83 K vortex motion is inhibited.

At temperatures below the equilibrium at T = 81 K the pinning force is always dominant compared to
the interaction forces.

We propose a logic scenario: while cooling the superconductor below Tc vortices of different polarity
nucleate in alignment with the stray field directions of the ferrimagnet. Attractive and repulsive forces
within the system lead to a bound and stable V–AV state with a temperature dependent binding length.
With further reduced temperature the configuration freezes and vortex movement is inhibited by pinning
forces. Thus, the measurement at T = 26 K provides a snap-shot at the pair-forming temperature around
T = 81 K. The required inhomogeneous magnetic field [12, 33–35] is achieved by the adjacent DW of the
ferrimagnetic system.

Our assumption of a bound and stable V–AV pair is underpinned by a theoretical description found in
Laiho et al [36]: DWs can induce the nucleation of straight V–AV structures or superconducting
semi-loops. Cutting and recombination of semi loops are analyzed in detail in reference [37]. Here, the
latter can be excluded due to strong pinning properties and the penetration depth in z-direction being
much larger than the thickness of the YBCO layer. This pair formation process is accounted for in Chaves
et al [38] by the interaction potential in bulk type-II superconductors calculated within the GL theory.

In order to derive the inter-vortex potential, they start from an ansatz with two separate vortices
attracting each other as a function of the distance between them. At a critical value dE, the solution with
well-defined supercurrents around both vortex and antivortex ceases to be the lowest energy state of the
system. In case of thin YBCO films (λL ≈ 150 nm, ξ ≈ 1.6 nm) the stable separation distance dE is ∼0.6 λ

in excellent agreement with our measured V–AV spacing sy ≈ 90 nm (see figure 3(e)).
In conclusion, we were able to directly image individual and stable bound V–AV pairs in a

high-temperature superconducting thin film. A new variant of scanning magnetic soft x-ray microscopy was
used, whereby a spatially decoupled soft YIG layer acts as a sensor layer as well as a source for sufficient and
well defined local magnetic field gradients. The nucleation of the V–AV pair occurs at temperatures close to
Tc and is observed within the DW of the adjacent ferrimagnet. Owing to the attractive magnetic dipole
interaction between V and AV as well as the repulsive force between DW and vortices a highly stable bound
V–AV pair is formed. We present a novel experimental access as a stable ground state of a bound
particle-antiparticle-like system, which—to our knowledge—has never been observed so far. The results
open up a new approach for elucidating vortex physics in type-II superconductors and their interaction
with external magnetic fields. The potential of the STXM method, which allow also an elemental specific
mapping of the sample morphology with high contrast allows to correlate flux pinning to chemical
landscapes which is highly relevant for modern HTc materials with high critical current densities [39]. In
addition, the experimental x-ray based techniques provide a new approach for nm scale stray-field imaging
with high contrast. Using the STXM possibilities for picosecond time resolution and target excitations by
magnetic fields, currents and voltage pulses, even a dynamical access [40] is possible that offers even
extended possibilities compared to results from dynamical SQUID-on-tip microscopy [41]. Hereby, also
V–AV interaction and their interplay with time-dependent external magnetic fields and also spin waves,
created in a dynamically active sensor layer, could be addressed.
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