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Abstract
In this paper we present an alternative G0W0-BSE procedure, suitable for calculation of the
quasi-particle and optical properties in 2D semiconductors. The method completely excludes the
spurious Coulomb interaction with 2D crystal replicas. The calculated band gap energies of
hexagonal boron nitride (hBN), MoS2 and MoTe2 monolayers are in good agreement with other
theoretical results. The 2D Bethe–Salpeter equation is derived and reduced to a 2D-hydrogen
Schrödinger equation in which enter the G0W0 band gap, DFT effective masses, and RPA screened
Coulomb interaction. This formulation is applied to the problems of determining exciton binding
energies and estimating the quasiparticle band gap in hBN, as well as in some transition-metal
dichalcogenides. A semiclassical procedure is used in the limit of high polarizability λ in order to
obtain the analytical expression for exciton binding energies.

1. Introduction

For the last decade, the condensed matter physics has been dominated by the experimental and theoretical
investigations of two-dimensional materials. One class of such materials are the direct gap two-dimensional
insulators. The best known examples are monolayers (ML) of the members of transition-metal
dichalcogenides (TMDs) [1, 2] and the hexagonal boron nitride (hBN) monolayer. Many interesting
phenomena are attributed to TMDs and hBN. Heterostructures with hBN improve graphene transport
properties, enhancing its application in electronics [3, 4]. By applying uniaxial or biaxial strain, the optical
properties of single-layer TMDs can be tuned [5, 6]. Single-layer TMD (MoS2 or WS2) transistors are
synthesized and tested for application in digital electronics [7–9]. Finally, TMDs can be potentially applied
in optoelectronics as photodetectors [10] or as photodiodes and photovoltaic devices [11–13].

Although hBN and TMDs appear as simple honeycomb crystals with just two or three atoms per unit
cell, theoretical calculations of their electronic structures and optical properties tend to be complex.
Specifically, the very inefficient screening causes the long-range Coulomb correlations to prevail and the
DFT methodology systematically fails in estimating the single particle band gap. In addition, the strong
(weakly screened) Coulomb interaction gives rise to excitons with large binding energies.

The well-established ab initio methodology which includes quasiparticle corrections (GW method) and
solving the Bethe–Salpeter equation (BSE, the so-called GW-BSE method) is capable of giving a very
accurate single particle band gap, excitonic binding energies, and oscillator strengths [14–20]. The
semi-analytic study of optical properties in hBN/substrate systems in the framework of Bethe–Salpeter and
Wannier–Keldysh approach were done in reference [21]. The authors provided very extensive investigation
of excitons, exciton-polaritons, absorption and spontaneous radiative decay of excitons in hBN on SiO2 or
graphite surfaces. The authors also presented the analytic expressions for hBN/surface absorption spectra
and quasi-particle corrections of hBN/surface band gaps. They suggested how their semi-analytic approach
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can be generalised to various TMDs. Moreover, in reference [22] the authors study how the proximity
effects, due to the presence of a ferromagnetic cobalt thin film, modify the excitonic properties and optical
conductivity in MoS2.

The extended calculations of the quasiparticle and exciton properties in hBN-ML followed by the ab
initio parameterized TBA are also provided [23]. However, the GW-BSE method is computationally heavy
and time consuming. Therefore, it is useful to have simpler complementary numerical tools that allow a
faster estimation of band gaps, as well as exciton binding energies.

In this paper we introduce an alternative G0W0 method adapted for the calculation of quasi two
dimensional (q2D) quasiparticle properties, the q2D-G0W0 method. The primary advantage of q2D-G0W0

method is that it completely excludes the spurious Coulomb interaction with 2D crystal replicas. The
computational acceleration is achieved through the inclusion of the crystal-local-field-effects (CLFE) in the
correlation self-energy ΣC

nK(ω) solely in the perpendicular direction. The obtained q2D-G0W0 band-gaps in
hBN, MoS2 and MoTe2 are in good agreement with other theoretical results [20, 24–27]. The exciton
binding energies in hBN will be explored by solving a computationally much simpler 2D Bethe-Salpeter
equation (2D-BSE) equation which is derived from the 2D equation of motion for the electron–hole pair
propagator [28, 29]. The q2D-G0W0 band-gap (through the definition of screening length) and RPA 2D
screened Coulomb interaction w enter into 2D-BSE. The plausibility of 2D-BSE will be commented upon.
In the approach of two parabolic bands (described by effective masses m∗

v and m∗
c ) and in the long

wavelength limit (Q → 0) the 2D-BSE is reduced to a two body Schrödinger equation in a screened DFT 2D
Coulomb potential w. A realistic value of the single particle band gap will be obtained using the derived
formulas and the experimentally determined exciton energy. In particular, the ground state exciton binding
energy in the high polarizability limit will be investigated by employing the Einstein–Brillouin–Keller
(EBK) procedure [30] and compared with the solutions of the Schrödinger equation. The analytical
expression for the ground state exciton binding energy will be derived and used to predict the quasiparticle
band gaps of the selected two-dimensional insulators [18–20].

This paper is organized as follows: in section 2 the formulation of the q2D-G0W0 method is presented
and applied to calculate the hBN band gap in G, K and M points of Brillouin zone. Then, the 2D-BSE is
derived from equations of motion for the electron–hole propagator with the implemented RPA 2D screened
Coulomb interaction w. The 2D-BSE is reduced to a two-body Schrödinger equation. The results are
presented in section 3. The first ten exciton energy levels are calculated, as well their spatial extent. The
derived formulation is used to estimate the quasiparticle band gap in hBN and various TMDs. The ground
state exciton binding energy in the high polarizability limit is investigated using the EBK procedure and
compared with the results of section 3.1. Conclusions are presented in section 4.

2. Ab initio studies of hBN-ML quasi-particle and optical properties

In this section the modified q2D-G0W0 method adapted for the calculation of quasiparticle band gaps in
2D crystals is presented. The equation of motion is formulated for the 2D electron–hole operator which is
analogous to 2D-BSE. This equation contains q2D-G0W0 corrected band gap and RPA 2D screened
Coulomb interaction w. Finally, it is shown that this methodology produces a fairly accurate band-gap and
exciton binding energies.

2.1. The q2D-G0W0 method
It is well known that the LDA underestimates the semiconducting band gap. Therefore, in order to obtain
the accurate exciton energy, providing quasiparticle corrections is of crucial importance. The calculation of
the exchange–correlation self-energy within G0W0 aproximation, introduced a long time ago by Hedin,
Strinati and Louie [31–34] and more recently by Louie, Thygesen and others [20, 24, 35], is applied to
calculate various crystal quasiparticle band structures. Here we briefly present some modifications which
should be done to the standard G0W0 approximation when used in calculating the band gaps of 2D crystals.
The G0W0 exchange–correlation (XC) self-energy corresponding to the Bloch state (n, k) is

ΣXC
nk (ω) = ΣX

nk +ΣC
nk(ω), (2.1)

where the exchange self-energy is

ΣX
nk = − 1

V

∑
m

∑
GG′

∑
q∈B.Z

f m
k+qρ

∗
nk,mk+q(G) vGG′(q) ρnk,mk+q(G′) (2.2)
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and the correlation self-energy is

ΣC
nk(ω) =

1

V

∑
m

∑
GG′

∑
q∈B.Z

ρ∗nk,mk+q(G)

[
i

∫ ∞

−∞

dν

2π
eiντG0

mk+q(ω + ν)W ind
GG′(q, ν)

]
ρnk,mk+q(G′). (2.3)

Here f n
k is the Fermi–Dirac distribution, G0

nk(ω) = 1/
[
�ω − En

k + iη sgn(En
k − EF)

]
is the one-particle

Green’s function at T = 0 and the charge vertices are

ρnk,mk+q(G) =

∫
V

drφ∗
nk(r)e−i(q+G)rφmk+q(r). (2.4)

The τ = 0+ and η = 0+ are infinitesimally small positive numbers. The induced part of dynamically
screened Coulomb interaction (which enters into (2.3)) can be written as

W ind
GG′(Q,ω) =

∑
G1G2

vGG1 (Q)χT
G1G2

(Q,ω)vG2G′(Q). (2.5)

The time-ordered response function is the solution of the Dyson equation

χT
GG′(q,ω) = χ̃0

GG′(q,ω) +
∑
G1G2

χ̃0
GG1

(q,ω)vG1G2 (q)χT
G2G′(q,ω), (2.6)

where the RPA time-ordered irreducible polarizability is explicitly given by

χ̃0
GG′(q,ω) =

2

V

∑
nm

∑
k∈B.Z

ρnk,mk+q(G)ρ∗nk,mk+q(G′)
f n
k − f m

k+q

�ω + En
k − Em

k+q + iη sgn(Em
k+q − En

k)
. (2.7)

The Coulomb interaction kernel is

vGG′(Q) ≡ v3D
GG′(Q) =

4π

|Q + G|2
δGG′ , (2.8)

q = (qx, qy, qz) is a 3D momentum transfer, r = (ρ, z) is a 3D position vector, G = (G‖, Gz) are the
reciprocal lattice wave vectors and V is the normalization volume. The equations (2.1)–(2.7) represent the
standard G0W0 procedure for the electronic self-energy calculation in 3D crystals. The question now is how
to transform these formulas in a way that they can be applied to the calculation of the electron self-energy
in an isolated 2D crystal. Suppose that we want to calculate the electron self-energy in the i-th hBN
monolayer which is part of periodically stacked non-overlapping hBN layers, as sketched in figure 1(a).

The charge density fluctuations ρnk,mk+q created by electron–electron scattering or by electron–hole
transitions |nk〉 → |mk + q〉 in ith hBN layer are represented by the blue dots while the red squares
represent the same in the surrounding hBN layers ( j 
= i). A blue dot can interact with a blue dot in the
same layer via Coulomb interaction (2.8), as well as with red squares in the surrounding hBN layers. The
corresponding correlation self-energy (2.3) is represented by the Feynman diagrams in figure 1(b). It
consists of the process (I) where the electron propagator in ith layer interacts with the polarization in the
same layer, and the processes (II–IV) where it interacts with the polarization in the surrounding layers.
Since we are interested in how the electronic state in the ith layer is influenced only by the polarization of
the same layer, the processes (II–IV) should be neglected and only the process (I) should be retained.
However, the process (I) still contains the influence of the surrounding ( j 
= i) hBN layers. The
time-ordered RPA response function χT, represented by the Feynman diagrams in figure 2(a), consists of
processes where the ‘bubble’ diagrams in the ith layer interact with the ‘bubble’ diagrams in the same layer
(processes (i–iii)), but also of processes where the ‘bubble’ diagrams in the ith layer interact with the
‘bubble’ diagrams in the surrounding layers (e.g. process (iv)). Therefore the processes of type (iv) should
be neglected and the Dyson equation for χT takes the form shown by Feynman diagrams figure 2(b).
Finally, this results in the complete annulment of the interaction with the surrounding hBN layers.
Technically, the processes (II–IV) in figure 1(b) and processes of type (iv) in figure 2(a) can be neglected in
a way that the formulation (2.1)–(2.7) is retained, however, the Coulomb interaction kernel (2.8) is
modified as follows [44, 45]

v3D
GG′(Q) → v2D

GG′(Q) = v3D
GG′(Q) − pGz pG′

z

4π(1 − e−|Q+G‖|L)∣∣Q + G‖
∣∣ L

∣∣Q + G‖
∣∣2 − GzG′

z

(
∣∣Q + G‖

∣∣2
+ G2

z )(
∣∣Q + G‖

∣∣2
+ G′2

z )
δG‖G′

‖
,

(2.9)
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Figure 1. (a) Periodically stacked non-overlapping hBN layers. The charge density fluctuation ρnk,mk+q created in the ith layer
(blue dot) interacts, via Coulomb interaction (2.8), with the charge density fluctuation in the same layer, but also with the charge
density fluctuations in surrounding layers (red squares). (b)The Feynman diagrams representing the contributions to the
correlation self-energy in ith hBN layer. (I) The electron propagator in the ith layer interacting with the polarization in the same
layer and (II–IV) interacting with the polarization in the surrounding j 
= i layers.

where

pGz =

⎧⎪⎨
⎪⎩

1; Gz =
2kπ

L

−1; Gz =
(2k + 1)π

L
, , k = 0, 1, 2, 3, . . . .

Also, the following transformation must be done

q, k → Q, K (2.10)

where Q = (qx, qy) and K = (Kx, Ky) are the wave-vectors parallel to the x–y plane. The 3D Brillouin zone q
summation should be replaced by 2D summation as

1

V

∑
q∈B.Z

→ 1

LS

∑
Q∈S.B.Z

, (2.11)

and the same is true for the k summation in (2.7). Here S is the normalization surface and L is the unit cell
constant in the perpendicular (z) direction, as sketched in figure 1(a). An example of how to transform the
Dyson equation for 3D or bulk response function (2.6) into the Dyson equation for q2D response function
which represents the charge density fluctuations in an isolated 2D crystal is presented in appendix A. There,
it is clearly demonstrated that the only modification which should be done in (2.6) is the transformation
(2.9).

The quasiparticle energy of the Bloch state (n, K) is calculated by solving the equation

�ω + VXC
nK − ReΣXC

nK (ω) = En
K, (2.12)

for �ω. Here VXC
nK represents the LDA exchange–correlation energy of Bloch state |nK〉. For non-overlapping

layers, in the exchange term (2.2) the charge density fluctuation ρnk,mk+q always interacts within the same
layer through the bare Coulomb interaction. This means that the expression (2.2) can still be used without
further modifications.

4
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Figure 2. (a) Perturbative expansion of the time-ordered response function χT in terms of the RPA irreducible polarizability χ̃.
The charge density fluctuations ρnk,mk+q created/annihilated in the ith hBN layer are denoted by the blue dots and those created
in the j 
= i hBN layer by the red squares. Processes (i–iii) contrary to process (iv) do not include the interaction of ith layer with
surrounding j 
= i layers. (b) Dyson equation for the time-ordered response function χT when processes of type (iv) are
neglected.

The only difference between a Coulomb kernel (2.9) and a Coulomb truncation (equation 16) in
reference [46] or (equation 43) in reference [24] is that in equation (2.9) the Coulomb interaction is ‘closed’
within z ∈ [−L/2, L/2], i.e. the charge at z = L/2 cannot interact with any other charge, even at
z = L/2 + 0+, while the Coulomb interaction (equation (16) or (43)) is such that the charge at z = L/2 can
interact with all of the charges in the region z ∈ [L/2 − R, L/2 + R]. This requires more layers of vacuum if
one wants to avoid interaction with neighbouring cells. The detailed description how (2.9) is derived is
given in reference [45]. The truncated interaction (2.9) enables that in a periodic superlattice arrangement
it is sufficient to choose inter-layer spacing such that electronic densities in adjacent layers do not overlap.
Any increase in this distance will not change the result. So the interaction (2.9) allows for supercells with a
very few layers of vacuum, which is another important advantage over the truncated interaction proposed
in reference [46].

The introduction of the Coulomb kernel (2.9) easily overcomes the most critical issue of the 3D
periodicity: how to calculate the long-range image potential at any point z produced by an individual slab,
located at −L/2 < z < L/2, which is a part of the supper-lattice. This issue is also solved in reference [47].
Here, in appendix A is demonstrated that if the Dyson equation for the response function χT(z, z′) is solved
in the restricted real space −L/2 < z, z′ < L/2, the density–density Coulomb interaction remains limited
within the boundaries [−L/2, L/2]. This results in χT(z, z′) representing the dynamical response of an
individual slab without any admixture of other slabs. Consequently, for the induced Coulomb
interaction

W ind(Q,ω, z, z′) =

∫ L/2

−L/2
dz1 dz2v

2D(Q, z, z1)χT(Q,ω, z1, z2)v2D(Q, z2, z′) (2.13)

the other layers becomes ‘invisible’, i.e. it properly describes the induced interaction in point z produced by
charge in z′ where z and z′ are no longer limited to −L/2 < z, z′ < L/2. Here the bare Coulomb interaction
v2D(Q, z, z′) is given by (A.4). Moreover, the integration of static potential Wind(Q,ω = 0, z, z) over parallel
wave vector Q provides the correct image potential at any point z, as presented in detail in reference [48]. A
very similar argumentation applies to calculation of the correlation self-energy (2.3) with the induced
interaction (2.5), which after transformation v → v2D, represents exactly the Fourier transform
of (2.13).

2.1.1. Implementation of the crystal local field effects in perpendicular z direction
The crystal local field effects CLFE can be explained as dispersivity (or microscopic distribution) of induced
potential Wind or induced density ρind on the unit cell scale. For example, if a unit charge is placed
somewhere in the crystal it will induce a charge density at macroscopic scale but also variatioins of
microscopic charge density within the unit cell. If the CLFE are excluded then the variations of microscopic
charge density are neglected and the macroscopic ones remain. From the point of view of the reciprocal

5
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space the exclusion of CLFE results that in matrices χ̃0, χT and Wind we retain just the G = G′ = 0
component. In bulk crystals the exclusion of the CLF is sometimes justified, especially in long wavelength
limit Q → 0. However, in the low dimensional crystals (0D, 1D or 2D crystals) the the strong dispersivity
(fast variation) of the induced charge density in the direction of the broken periodicity (e.g. in 2D crystals it
would be perpendicular to crystal plane) requires inclusion of the CLFE, at least in the direction of the
broken periodicity. For these reasons in this calculation we retain the CLFE in the perpendicular z direction
and neglect them in the parallel direction. From the point of view of the reciprocal space this means that in
all equations (2.1)–(2.9) we put G‖ = G‖

′ = 0, but we keep the z component different from zero, i.e. Gz 
= 0
and Gz

′ 
= 0. By doing so we capture the important microscopic variations of the induced density in z
direction and ignore the not so important microscopic dispersivity in parallel (x–y) directions. This reduces
the dimension of matrices χ̃0, χT and W ind, significantly reducing the memory allocation requirements and
substantially accelerating the computation. At the same time the accuracy of the calculation remains
satisfactory. The inclusion or exclusion of the CLFE does not affect the definition of the truncated
interaction (2.9) and it remains unchanged. For example, if the CLFE are included just in z direction, then
G‖ = G‖

′ = 0 and the irreducible polarisability and the response function matrices become χ̃0

GzG′
z

and χT

GzG′
z

,

respectively. This implies that in the matrix Dyson equation for χT (2.6) matrix v becomes v2D

Gz ,G′
z

, i.e. it has

the same form as (2.9) with the exception that G‖ = G‖
′ = 0.

In the optical limit (Q � 1/a, 1/L) a q2D crystal can be considered a 2D sheet crystal. In this case we
can average the dynamical response in the z direction

1

L

∫ L/2

−L/2
dzdz′χ̃0(z, z′) = χ̃0

Gz=0G′
z=0

,

and squeeze it in z = 0 plane
χ̃0

2D(z, z′) = Lχ̃0

Gz=0G′
z=0

δ(z)δ(z′).

In this way the strong dispersivity in z direction counterintuitively resulted in exclusion of the crystal local
field effects in the z direction (Gz = Gz

′ = 0). This works well in the Q � 1/a, 1/L limit, but for example in
the correlation self energy (2.3) short wavelength contributions (Q ≈ 1/a, 1/L) or the dispersivity of the
induced interaction Wind within the unit cell become important and the 2D model is no longer adequate.
So when solving the BSE we use the 2D limit (G = G′ = 0) but when we provide the quasiparticle GW
corrections we include the CLFE in the direction in which they are strongest, the z direction, so we put
G‖ = G‖

′ = 0 and leave Gz 
= 0, Gz 
= 0.

2.1.2. Calculation of quasi-particle band gap
At the DFT stage of the calculation the Kohn–Sham (KS) wave functions φ∗

nk and energy levels EnK, i.e. the
band structure of a hBN-ML, are determined using the plane-wave DFT code QUANTUM ESPRESSO (QE)
[36]. The core–electron interaction is approximated by the norm-conserving pseudopotentials [37], and the
exchange correlation (XC) potential by the LDA Perdew–Zunger (PZ) functional [38]. For the hBN-ML
primitive cell constant, a = 4.746a0 (a0 is the Bohr radius) is used and the superlattice constant in the z
direction is L = 23.73a0. The ground state electronic densities of the hBN-ML are calculated using the
12 × 12 × 1 Monkhorst–Pack k-point mesh [39] of the first Brillouin zone (BZ). For the plane-wave cut-off
energy we used 60 Ry (816 eV). The RPA time-ordered irreducible polarizability (2.7) is calculated using
201 × 201 × 1k-point mesh sampling. This k-point mesh sampling enables the minimum transfer wave
vector qmin = 0.0076 a−1

0 . The damping parameter used is η = 50 meV and the temperature is kBT = 10
meV. The band summation is performed over 40 bands, which proved sufficient for the proper description
of the electronic excitations up to 30 eV. The crystal local field effects (CLFE) are included only in the
perpendicular (z) direction and CLFE energy cut-off is chosen to be 10 Ry (136 eV). The Q-point mesh
used in self-energy calculation (2.1)–(2.7) is 21 × 21 × 1. In the exchange energy calculation (2.2) the 3D
CLFE are included and CLFE energy cut off is is chosen to be 20 Ry (272 eV).

The hBN-ML is a direct gap insulator with the conduction band minimum and the valence band
maximum located at the K point of the Brillouin zone. The DFT band gap obtained in this calculation is
ΔDFT = 4.5 eV and after the q2D-G0W0 quasiparticle correction (2.1)–(2.12) it is increased to ΔGW = 7.7
eV. The value of the q2D-G0W0 band gap is slightly overestimated compared to the value of about 7.4 eV
proposed in previous calculations [23, 24, 40, 41]. The slight difference may arise from the fact that in the
correlation self-energy (2.3) the CLFE are included only in the z direction. On the other hand, it seems that
the number of 40 bands is well converged, considering that after using 80 bands the gap was reduced by

6
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Figure 3. The band structure of hBN-ML obtained by the LDA. The red dots represent the q2D-G0W0 correction of highest
occupied (valence) and the lowest unoccupied (conduction) bands in Γ, K and M points of Brillouin zone.

only 20 meV. However, it should be noted that the number of bands and CLFE energy cut-off are not
independent [20, 24]. Thus, even if the number of bands is well converged, the low CLFE cut-off may be
responsible for the disagreement. Figure 3 shows the hBN-ML band structure obtained using LDA. The red
dots represent the q2D-G0W0 correction of highest occupied (or valence) B(2pz) and the lowest unoccupied
(or conduction) N(2pz) bands in Γ, K and M points of Brillouin zone. It is worth noticing that after G0W0

correction the hBN possess the indirect band gap of 6.2 eV which slightly underestimate the values 6.58 eV
reported in reference [24]. However, the q2D-G0W0 correction causes a mostly equal shift upwards of the
conduction band which is also in accordance with previous, more detailed calculations [23, 24, 40, 41]. This
allows us to use the scissor operator approach, i.e. at K point, the parabolic conduction band will be shifted
only relative to parabolic valence band for the value of q2D-G0W0 band-gap. The LDA effective masses of
the conduction and the valence bands at K point are m∗

c = 0.8me and m∗
v = 0.75me, respectively.

2.2. Optical properties of q2D
One of the ways to describe the optical properties of a semiconducting system is to solve the 3D
Bethe–Salpeter equation (BSE) for the electron–hole propagator. In the leading order of Coulomb
interaction the BSE consists of an RPA term (creation and annihilation of electron–hole pairs), a ladder
term (interaction between excited electron and hole) and of quasiparticle G0W0 corrections
(renormalization of the electron and hole self-energies).

In the very first moment of the optical absorption process, the electron and the hole are created and they
propagate for a short time without any scattering. Considering that the photon wavelength is usually much
larger than q2D crystal thickness (λ = 1/|Q|  L), such pure creation or annihilation processes can be
described using an intrinsically 2D model. However, in a very short time after their creation, the electron
and the hole being to interact with each other via the screened Coulomb interaction w and scatter with
other excitations and impurities in the crystal. The short range and the local character of these scattering
processes (they occur for larger wave vectors |Q′| ≈ 1/a) requires the microscopic treatment of the screened
Coulomb interaction, i.e. its spatial dispersivity in all three dimensions becomes important. Because of that,
the DFT-RPA screened Coulomb interaction w, implemented in the G0W0 self-energy and in the ladder
term, should be calculated at a high level of accuracy, including a large number of unoccupied bands, as
well as the 3D crystal-local field effects. For this reason, the 2D model is adequate at the RPA stage of
calculation but inadequate when G0W0 and ladder corrections are included. However, below we still use the
2D approach because the short-range self-energy corrections are already implemented in band structure
through the scissor operator approach. Moreover, considering the weak dependence of the ladder term on
the number of bands, it is sufficient to include in the calculation only the scattering within one valence (v)
and one conduction (c) band. Additionally, in the ladder term we restrict the calculation to only the
strongest contribution Q′ ≈ 0 which finally reduces to a 2D model.

2.2.1. Equation of motion for the electron–hole propagator
The dynamics of charge density fluctuation at wave vector Q can be described by a Heisenberg equation for
the charge density operator

�̂(Q) =
∑
n,m

∑
K∈S.B.Z.

ρnK,mK+Q ĉ†nKĉmK+Q (2.14)

7
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where the charge vertices (2.4) are now ρnK,mK+Q = ρnK,mK+Q(0). The Heisenberg equation for
electron–hole excitations operator �̂vc

K,K+Q = ĉ†vKĉcK+Q is

i�
∂

∂t
�̂vc

K,K+Q =
[
�̂vc

K,K+Q, H
]

, (2.15)

where we omit writing the spin index. The Hamiltonian of the system is given by

H = H0 + He−e, (2.16)

where the bare Hamiltonian is
H0 =

∑
n=v,c

∑
K∈S.B.Z.

En
Kĉ†nKĉnK (2.17)

and electron–electron interaction is given by

He−e = −1

2

∑
Q

vQ�̂
†(Q)�̂(Q). (2.18)

Using the Wick theorem [42], the solution of the equation (2.15), to the first order in the Coulomb
interaction vq, can be written as

(
�ω + Ev

K − Ec
K+Q

)
�̂vc

K,K+Q =
2

V

∑
K′

vQρcK+Q,vKρvK′,cK′+Q

(
f vK − f c

K+Q

)
�̂vc

K′ ,K′+Q

+
1

V

∑
K′

vK′−KρcK+Q,cK′+QρvK′ ,vK

(
f c
K+Q − f vK

)
�̂vc

K′,K′+Q +O(v2). (2.19)

Equation (2.19) is a self-consistent integral equation, which is usually solved numerically. Various
approximations have to be performed in order to obtain a more appealing analytical solution.
Equation (2.19) consists of three main contributions. The left-hand side term contains the DFT energies En

K

which are already improved by the q2D-G0W0 self-energy. The first and the second term on the right-hand
side represent RPA and ladder contributions, respectively. In the Q ≈ 0 limit the interband charge vertex
ρvK,cK+Q ∝ Q while the intraband is ρcK,cK+Q ≈ 1. Hence the RPA term goes linearly with Q and it can be
put to zero. Secondly, this is the reason why we can neglect the ‘off-resonance’ scattering processes �̂cv

K′,K′+Q
in the higher order contribution to the ladder part in equation (2.19). Such ‘off-resonance’ processes that
requires interband v ↔ c transitions are neglected here in accordance with the so called the Tamm–Dancoff
approximation [43].

We can also restrict our consideration to transitions which are only in narrow area around the K point
of the Brillouin zone. Approximating the valence and the conduction bands by parabolas with effective
masses m∗

v and m∗
c respectively, the left-hand side in (2.19) becomes

Ec
K − Ev

K ≈ Δ+ �
2K2/2μ. (2.20)

Here μ = m∗
c m∗

v/(m∗
c + m∗

v) is the reduced mass and the band gap is Δ. By applying these approximations
and defining the exciton energies Ω relative to the bottom of the conduction band, i.e. Ω = �ω −Δ,
equation (2.19) becomes

(Ω− �
2K2/2μ) �̂vc

K,K ≈ − 1

V

∑
Q′

vQ′ρcK,cK+Q′ρvK+Q′,vK �̂vc
K+Q′,K+Q′ . (2.21)

In the above expression we have put Q′ = K′ − K. Main contributions to the sum in (2.21) come from
Q′ ≈ 0 due to the singular behavior of the vQ′ ∼ 1/Q′. In this regime the charge vertices can be
approximated as ρvK+Q′,vK ≈ 1 and equation (2.21) finally gives

(Ω− �
2K2/2μ) �̂vc

K,K ≈ − 1

V

∑
Q′≈0

vQ′ �̂vc
K+Q′ ,K+Q′ . (2.22)

The particular set of higher order contributions to the Coulomb interaction in (2.22) can be provided by
replacing the bare Coulomb interaction by a dynamically screened Coulomb interaction

8
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vQ′ → wQ′(ω).

Subsequently, the equation (2.22) is solved in the cases of bare and screened Coulomb potential.

2.2.2. 2D screened Coulomb interaction
In long wavelength limit Q → 0 the hBN-ML can be approximated as a fully 2D system and its independent
electrons response matrix becomes

lim
Q→0

χ0
GG′(Q,ω) = χ0(Q,ω)δG,0δG′,0 (2.23)

where
χ0(Q,ω) = Lχ0

G=0,G′=0(Q,ω). (2.24)

In this case the Dyson matrix equation (2.6) becomes a scalar equation with the solution
χ = χ0/(1 − vQχ

0) and the screened 2D Coulomb interaction becomes

wQ(ω) = vQ/ε(Q,ω), (2.25)

where the 2D dielectric function is
ε(Q,ω) = 1 − vQχ

0(Q,ω), (2.26)

and where vQ = 2π/|Q|. It is shown that in the long wavelength limit (Q ≈ 0) the hBN-ML 2D dielectric
function can be approximated as [44]

ε(Q ≈ 0,ω) = 1 + λ(ω)|Q|. (2.27)

Inserting (2.27) into (2.25) the 2D dynamically screened Coulomb potential becomes

wQ(ω) =
2π

|Q|(1 + λ(ω)|Q|) , (2.28)

which after a Fourier transformation to the direct space becomes the Keldysh potential [49–51]

W(r) =
e2π

2λ

[
Y0(r/λ) − N0(r/λ)

]
. (2.29)

Here Y0(x) and N0(x) represent Struve and Neumann functions, respectively. Considering the wide
hBN-ML band gap, the static approximation

λ(ω) ≈ λ(ω = 0)

is also valid in the dynamic limit. The λ(ω = 0) is derived such that we first calculate the static (ω ≈ 0) 2D
dielectric function (2.26) for different wave vectors Q. In the interval Q < 0.2 a.u. it behaves exactly as
(2.27) such that the screening length λ(ω = 0) is derived by fitting (2.26) with (2.27) and extracting the
slope parameter. Due to large hBN band-gap, the dynamical 2D dielectric function can be approximated as
(2.27) for λ(ω = 0) up to �ω ≈ 4 eV. This is the assumption we use in a further estimation of the optical
properties of hBN. From (2.27), it is obvious that λ(ω = 0) = λ can also be interpreted as a screening
length. The DFT screening length of hBN-ML is λ = 12.6a0 [44]. However, given that λ strongly depends
on the band-gap energy (λ decreases as the band-gap increases), in further calculations we use the value
obtained using q2D-G0W0 corrected band-gap, which is λ = 10a0.

2.2.3. Wannier model
Here we briefly mention the Wannier procedure for solving the equation (2.22) for the bare Coulomb
interaction, in order to determine the exciton binding energy. After a Fourier transform of the
electron–hole operator in the real space

ψ(r) =
1

V

∑
K

�̂vc
K,K eiK·r, (2.30)

(which, by assumption, is a smooth and well-behaved function of the electron–hole distance |r|) it can
shown that equation (2.22) can be written as a two-body Schrödinger-like equation

9
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[
− �

2

2μ
∇2 − e2

|r|

]
ψ(r) = Ωψ(r). (2.31)

The eigenvalues are well-known 2D hydrogen-like energies [52]

Ωn = − μ

me

1Ry

(n − 1/2)2
, (2.32)

where each state denoted by the quantum number n is (n − 1) times degenerated (not including the valley
degeneracy which brings an extra factor of 2), since � = 0, 1, . . . , n − 1. By inserting the reduced mass
μ = 0.35me in (2.32) the hBN-ML ground state exciton energy can be estimated as Ω1 = −1.4 Ry (−19
eV). Thus obtained binding energy is highly overestimated because in (2.31) a bare Coulomb interaction is
used. The binding energies will be more realistic when the interaction is replaced by a screened Coulomb
interaction (2.29).

3. Results and discussion

3.1. Exciton energies and spatial extent
In this section we present the exciton binding energies obtained by solving the Schrödinger equation (2.31)
for the screened potential (2.29) where the screening length λ = 10a0 is obtained from DFT-RPA
calculations. The exciton binding energies given in table 1 are presented in terms of two quantum numbers
(nr, �). The radial quantum number nr gives the number of nodes in the radial part of the wave function
and � is the orbital quantum number. The states denoted by the � = 0, 1, 2, . . . are labeled s, p, d, . . . This is
an adequate choice since the absolute square of the angular part of the wave function behaves like
|Φ(ϕ)|2 ∼ cos2(�ϕ), thus resembling to the 2D projections of the 3D atomic hydrogen orbitals. Moreover,
the principal quantum number n = 1 + nr + � can be introduced. Then the energy states labeled Ω(nr, �)
can be equally labeled Ωn�. For example, a state Ω(nr = 1, � = 1) is equivalent to the state Ω3p, etc. All
energy states having the same n are given in the same colour in table 1.

The replacement of the bare Coulomb interaction by screened one (even wide band-gap hBN screening
is not very efficient) causes strong reduction of the ground state exciton binding energy, from 19 eV
(obtained from equation (2.32)) to Ω1s = −2.53 eV, as can be seen in table 1.

This result are similar to results recently obtained by combined ab initio and tight-binding Wannier
calculation [23] although the discrepancies can be easily traced to the different values of the effective masses
and especially to larger screening length (λ ≈ 20a0) used in reference [23]. Figure 5 shows the exciton
(excitation) energies in hBN-ML how they would appear in, for example, an optical absorption experiment.
The excitation energies are calculated using formula �ω = Δ+Ω(nr, �) where first ten binding energies (or
energy levels) are taken from the table 1. The energy of 1s exciton �ω ≈ 5.14 eV agrees very well with
energy of q ≈ 0 singlet exciton �ω ≈ 5.3 eV obtained by solving full ab initio Bethe–Salpeter equation [17].
Also we obtain excellent agreement with optical absorption [53, 54] or photoluminescence (PL) [55]
experimental result, which reported �ω1s ≈ 6 eV.

The states with higher � have lower energy for the same n. This can be seen from figure 5 in the case of
n = 3 series Ω3d < Ω3p < Ω3s. This energy ordering is experimentally observed in the two-photon
absorption experiments on tungsten disulphide [56]. The mean exciton radius, defined as the average
electron–hole separation in the state ψn�, is calculated as rn� = 〈ψn�|r|ψn�〉. In the ground state r1s ≈ 6 a0

which is approximately equal to the unit cell dimension. The mean exciton radius decreases with Ωn�. For
example, r2s ≈ 22 a0 and r2p ≈ 15 a0, while for the highest calculated energy level r4s ≈ 75 a0. In the figure 4
the screened potential W(r) is plotted as a function of the screening length λ. As λ increases, the
logarithmic nature of the potential becomes more apparent for small electron–hole separations. This can be
seen by taking the two opposite limits of the expression (2.29)

W(r →∞) →−e2/r (3.1)

W(r → 0) → (e2/λ) ln(r eγ/2λ), (3.2)

where γ is Euler–Mascherion constant. The shape of the above potential suggests the reason why the states
within the same shell n differ in energy. The radial part of the wave function of the states with lower � is
located closer to the origin where it is governed by a weaker logarithmic potential (3.2). Therefore, the
binding energy is smaller and the mean radius is larger compared to the states with larger values of � which
are under the influence of stronger bare Coulomb potential (3.1) and thus have larger binding energy and
smaller spatial extension.
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Table 1. The first ten exciton energy levels in eV. The states
within the same shell are given in the same colour: n = 1, 2, 3, 4
in maroon, red, orange and olive green, respectively.

Figure 4. The bare Coulomb potential (black) and the screened Coulomb potential (2.29) (orange) plotted for different
parameters λ = 1, 2, 5, 10a0. The insert shows dependence of the ground state exciton binding energy Ω1s on λ for μ = 0.35me.

Figure 5. The excitonic spectrum of hBN-ML containing first ten levels (solid lines) from the table 1. The dashed maroon line
represents the exciton ground state energy Ω1s(λDFT) = −2.53 eV calculated using the λDFT static screening length. The threshold
energy for the single particle excitations is represented by a black line.

Here, it is also suggestive to see how the ground state exciton binding energy Ω1s depends on the
screening length λ. This dependence is shown in the insert of figure 4. In the limit λ→ 0 the Ω1s(λ) = −19
eV as obtained from equation (2.32). However, with the increase of the screening length, the exciton
binding energy rapidly decreases such that for λGW = 10a0 it is Ω1s(λ) = −2.53 eV, as already discussed in
table 1. In the opposite limit (λ→∞) a saturation of the Ω1s(λ) can be seen. The analytical approximation
of Ω1s(λ→∞) will be considered in the last section.

Observing figure 5, some conclusions can be made regarding the interaction of excitons with phonons,
impurities, and electrons, changing their appearance in the absorption spectrum. Due to these interactions,
the exciton signals will be broader and slightly shifted in energy. This causes an overlap between the
individual exciton signals that are close in energy, to the point that they can even be joined with the single
particle threshold. This would imply the indistinguishability of partial contributions originating from the
single particle excitations and the excitons in the optical absorption spectra.

3.2. The single particle gap estimation
The results obtained in section 3.1 can be used to estimate the hBN-ML band gap which is experimentally
still not observed and ab initio results are not yet in consensus, considering that the values between 7 and 9
eV are reported [14, 15]. The band gap Δ′ can be estimated by finding a value Δ′ for which the theoretically
obtained exciton energy �ω1s is equal to the experimental value �ωexp

1s or using the formula

�ω
exp
1s = Δ′ +Ω1s[λ(Δ′)]. (3.3)

This equation can be solved numerically by calculating the binding energy Ω1s as a function of Δ′ which is
then inserted in (3.3). However, here we take into account that the binding energy Ω1s changes slowly for
screening lengths in the range of λ = 10a0 ± 2a0 which essentially covers the values of the static screening
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length calculated for the bandgap between 4.5 eV and 10 eV, as shown in figure 4 insert. Hence, for a
reliable estimate we can choose the screening length value λ = 10a0 obtained from the G0W0 band
structure. Moreover, the same value for exciton binding energy Ω1s(λ) = −2.53 eV can be used. In optical
absorption or PL experiments on quasi hBN-ML [53–55] the exciton ground state signal appears at the
energy �ω

exp
1s ≈ 6 eV. Therefore using this data and (3.3) the quasiparticle band gap is estimated as Δ′ ≈ 8.5

eV, which overestimate the q2D-G0W0 band gap ΔGW = 7.7 eV, as presented in section 2.1.

3.3. The limit of high polarizability—EBK procedure
Here we present the analytical form for the ground state exciton energy Ω1s in the limit of high screening
length (λ→∞). As the ab initio results predict, hBN-ML can not be considered a material where the above
condition applies, since λ = 10a0. However, other two-dimensional materials, such as transition-metal
dichalcogenides, have a much larger λ. We have also performed the DFT calculations for molybdenum
disulfide (MoS2-ML) and molybdenum ditelluride (MoTe2-ML) and obtained λ = 76a0 and 120a0 and
μ = 0.25me and 0.3me, respectively. The relatively large λ for these two materials originates from their
spatial structure where a transition metal plane lies between the planes of two chalcogenide atoms. This
geometrical coordination reduces the electronic hopping elements between the atomic orbitals of the
neighbouring atoms [57], therefore causing the flattening of the electron bands. Smaller dispersivity of the
electron bands combined with the smaller band gap, such as ΔDFT ≈ 1.8 eV in the case of MoS2-ML and
ΔDFT ≈ 1.2 eV in the case of MoTe2-ML, give a static screening length almost an order of magnitude larger
compared to λ = 10a0 in hBN-ML. This will certainly be responsible for the logarithmic behaviour of the
screened potential over a sizeable electron–hole spatial extension, as can be seen in figure 4, making the
logarithmic potential (3.2) adequate for determining the ground state exciton binding energy.

In this case the semiclasical EBK approach can be applied to calculate low-lying (� = 0) exiton energy
levels. The general EBK approximation [58] asserts that in the spherical symmetric problem the phase
integral of the radial impulse is quantized as

2

∫ r0

0

√
2μ [Ω− W(r → 0)]dr = π�(nr + z/4). (3.4)

Here r0 is the classical turning point, nr = 0 is the radial quantum number for the ground state energy case,
and z = 2 is the Maslov index [58], which gives the number of classical turning points. This leads to the
implicit expression for the exciton ground state energy

√
π

2
Erf

(√
Ωλ/e2

)
eΩλ/e2 −

√
Ωλ/e2 =

π� eγz/4√
32μe2λ

. (3.5)

In the case of a large screening length (λ/e2 →∞), when the exponential function dominates and the error
function is Erf(x →∞) = 1, equation (3.5) can be simplified, which finally leads to the analytical
expression for the ground state exciton binding energy

Ω1s(λ) ≈ e2

λ
ln

(
� eγz

√
π

8
√

2λμe2

)
. (3.6)

The similar expression has been found as the limiting solution of the Schrödinger equation for the
logarithmic potential [59], while the results of reference [60] predict Ω1s(λ) ≈ −(3/4π)e2/λ behaviour in
the same limit suggesting that they neglected the logarithmic term. The expression (3.6) gives a fairly
accurate description of Ω1s(λ) in λ→∞ limit, but it can be improved by setting z = 3.5. For that purpose
we introduce the dimensionless values λ′ and μ′ trough λ = λ′a0 and μ = μ′me and by putting z = 3.5 in
the expression (3.6) we have

Ω1s(λ) ≈ −1Ry

λ′ ln
(
λ′μ′) . (3.7)

Figure 6 shows the comparison between the ground state energy Ω1s(λ) obtained using the static screened
potential (2.29) (solid lines) and using the analytical form (3.7) (dashed lines), for two different reduced
masses μ. It is evident that the agreement between the (solid and dashed) curves starts only for large values
of λ.

Using formula (3.3) outlined in section 3.2, together with formula (3.6) and the experimentally
determined exciton energies �ωexp

1s (MoS2) ≈ 1.9 eV and �ω
exp
1s (MoTe2) ≈ 1.2 eV [61–63], it is possible to

estimate the single particle band gap of MoS2 and MoTe2 monolayers. Inserting the calculated
polarizabilities and the reduced masses into (3.6) and using (3.3) gives Δ′

MoS2
≈ 2.5 eV and
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Figure 6. Ground state exciton binding energy Ω1s as a function of the screening length λ obtained by solving the Schrödinger
equation for the statically screened potential (2.29) (solid lines) and using the analytical expression equation (3.6) (dashed lines)
with z = 3.5 for two values of the reduced masses μ = 0.35me (red) and μ = 0.25me (orange). The ab initio values of the static
screening lengths of hBN, MoS2 and MoTe2 monolayers are indicated.

Table 2. The quasiparticle band gap Δ′ estimated from screening lengths
λ, reduced masses μ, the experimental exciton energies �ωexp

1s [61–63] and
equations (3.3) and (3.7). The Δ represents the band gaps obtained using
q2D-G0W0 method (2.1)–(2.12).

2D crystal hBN MoS2 MoTe2

λ/a0 10 76 120
μ/me 0.35 0.25 0.3
�ωexp

1s 6.0 1.9 1.2
Ω1s −2.53 −0.53 −0.4
Δ′ 8.5 2.43 1.6
ΔGW 7.7(7.37a) 2.6(2.78b) 1.9(1.77c)

aThe values in parentheses are taken from reference [24].
bThe values in parentheses are taken from reference [20]
cThe values in parentheses are taken from reference [25].

Δ′
MoTe2

≈ 1.6 eV. The DFT polarizabilities, the experimental exciton energies and the estimated
quasiparticle band-gap for the three studied 2D crystals are summarized in table 2. It is worth noticing that
the estimated band-gaps Δ′ agree satisfactorily well with other BSE-GW calculations [18–20, 25–27]
considering that the relative error is not larger than 15%, while the method used to derive Δ′ is very simple.
The q2D-G0W0 band-gaps ΔGW in hBN, MoS2 and MoTe2 are also compared with other G0W0

calculations. The hBN direct gap (K → K) 7.7 eV slightly overestimates and the indirect gap (K → Γ) 6.2 eV
(shown in figure 3) slightly underestimates the values 7.37 eV and 6.58 eV, respectively, reported in
reference [24]. The MoS2 band gap of 2.6 eV slightly underestimates the value 2.78 eV reported in reference
[20]. As in reference [20], there is a problem here concerning the band gap in the M point which is 4.8 eV
instead of 3.9 eV obtained by using 104 bands and a 500 eV CLFE cut-off. However, the high-resolution
STM spectroscopy measurements [64, 65] show that MoS2 monolayer band-gap is in the range 2.2–2.4 eV.
This substantial reduction is probably a result of MoS2 monolayer being deposited on graphite which due to
metallic screening reduces the band gap. Finally the MoTe2 band-gap 1.9 eV overestimates the other results
which are in range 1.72–1.77 eV [25–27]. The disagreement is probably because here the CLFE are
included only in the perpendicular (z) direction which simultaneously results in the band gap converging
with fewer bands.

4. Conclusion

The alternative q2D-G0W0-BSE method was applied to calculate the quasiparticle band-gap and the exciton
binding energies in hBN, MoS2 and MoTe2. The q2D-G0W0-BSE method is complementary to existing high
performance GW-BSE methodology because it is computationally less demanding (at the G0W0 stage the
CLFE are included only in the direction of broken periodic symmetry), it excludes the spurious Coulomb
interaction and takes advantage of the reduction of BSE to its 2D counterpart. The obtained results for
hBN, MoS2 and MoTe2 single-particle band-gap and exciton binding energies agree well with other
theoretical results. Using the calculated ground state exciton binding energies Ω1s and the experimental
exciton (excitation) energies �ω1s the realistic value of the single particle band gap Δ′ in hBN, MoS2 and
MoTe2 monolayers are estimated and compared with other results. An analytical expression for the ground
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state exciton binding energy Ω1s is obtained in the high polarizability limit using the EBK procedure. This
was shown to be valid for the family of TMDs and therefore can be a very useful tool for experimentalists.
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Appendix A. Transformation from 3D to q2D dynamical response

The RPA time-ordered irreducible polarizability defined as (2.7) is periodic in the direction perpendicular
to q2D crystal plane (the z direction), i.e. it periodically repeats from supercell to supercell, separated by the
distance L. Therefore, the time-ordered response function calculated by solving the RPA Dyson equation

χT
GG′(q,ω) = χ̃0

GG′(q,ω) +
∑
G1G2

χ̃0
GG1

(q,ω)v3D
G1G2

(q)χT
G2G′(q,ω), (A.1)

where

v3D
GG′(Q) =

4π

|Q + G|2
δGG′ , (A.2)

contains the effects of interaction with surrounding q2D crystals. However, the interaction with the
surrounding supercells can be easily completely eliminated. Instead of performing the complete Fourier
transform (A.1) and (A.2), we can start from the partially Fourier-transformed RPA Dyson equation

χT

G‖G′
‖
(Q,ω, z, z′) = χ̃0

G‖G′
‖
(Q,ω, z, z′) +

∑
G‖1

∫ L/2

−L/2
dz1dz2

× χ̃0
G‖G‖1

(Q,ω, z, z1) v2D
G‖1

(Q, z1, z2)χT

G‖1,G′
‖
(Q,ω, z2, z′). (A.3)

Since the z coordinate remains untransformed, the 2D Fourier transform of the bare Coulomb interaction
becomes

v2D
G‖

(Q, z, z′) =
2π

|Q + G‖|
e−|Q+G‖‖z−z′| (A.4)

and

χ̃0

G‖G′
‖
(Q,ω, z, z′) =

1

L

∑
GzG′

z

χ̃0
GG′(Q,ω)eiGzz−iG′

zz′ (A.5)

represents the Fourier expansion of the irreducible polarizability in z and z′ direction. Since the z1 and z2

integrations in (A.3) are performed from −L/2 to L/2, instead of from −∞ to ∞, as done in (A.1), the
interaction between density fluctuations is possible only within the same layer, while the interaction with
the polarization in surrounding layers is completely excluded. We can say that we ‘closed’ the Coulomb
interaction within unit cell −L/2 < z < L/2. After inserting the Fourier expansion (A.5), and a similar one
for χT, in the RPA Dyson equation (A.3) we can perform integration over z1 and z2 and it again becomes a
full matrix equation

χT
GG′(Q,ω) = χ̃0

GG′(Q,ω) +
∑
G1G2

χ̃0
GG1

(Q,ω) v2D
G1G2

(Q)χT
G2G′(Q,ω), (A.6)

similar to Dyson equation (A.1). However, now matrix of the bare Coulomb interaction becomes

v2D
GG′(Q) = v3D

GG′(Q) − pGz pG′
z

4π(1 − e−|Q+G‖|L)∣∣Q + G‖
∣∣ L

∣∣Q + G‖
∣∣2 − GzG′

z

(
∣∣Q + G‖

∣∣2
+ G2

z )(
∣∣Q + G‖

∣∣2
+ G′2

z )
δG‖G′

‖
, (A.7)
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where

pGz =

⎧⎪⎨
⎪⎩

1; Gz =
2kπ

L

−1; Gz =
(2k + 1)π

L
, k = 0, 1, 2, 3, . . . .

This means that the time-ordered response function in q2D crystals can be obtained the same way as in the
3D (bulk) calculation (A.1), with the matrix of the bare Coulomb interaction (A.2) replaced by (A.7), i.e.

v3D
GG′(Q) → v2D

GG′(Q).
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