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Abstract
We present a theoretic analysis on (azimuthal) spin momentum-dependent orbital motion
experienced by particles in a circularly-polarized annular focused field. Unlike vortex
phase-relevant (azimuthal) orbital momentum flow whose direction is specified by the sign of
topological charge, the direction of (azimuthal) spin momentum flow is determined by the
product of the field’s polarization ellipticity and radial derivative of field intensity. For an annular
focused field with a definite polarization ellipticity, the intensity’s radial derivative has opposite
signs on two sides of the central ring (intensity maximum), causing the spin momentum flow to
reverse its direction when crossing the central ring. When placed in such a spin momentum flow, a
probe particle is expected to response to this flow configuration by changing the direction of
orbital motion as it traversing from one side to the other. The reversal of the particle’s orbital
motion is a clear sign that spin momentum flow can affect particles’ orbital motion alone even
without orbital momentum flow. More interestingly, for dielectric particles the spin
momentum-dependent orbital motion tends to be ‘negative’, i.e., in the opposite direction of the
spin momentum flow. This arises mainly because of spin–orbit interaction during the scattering
process. For the purpose of experimental observation, we suggest the introduction of an auxiliary
radially-polarized illumination to adjust the particle’s radial equilibrium position, for the radial
gradient force of the circularly-polarized annular focused field tends to constrain the particle at the
ring of intensity maximum.

1. Introduction

It is well-known that light can carry both linear momentum and angular momentum (AM) [1–5]. When
interacting with a small particle, the optical linear momentum or/and AM can be transferred to the
particle, resulting in observable mechanical effects on the particle. For example, in optical tweezers, the
linear momentum transfer is essential in providing the gradient force to bind particles at the center of light
beam [6]; while in light-induced torque effects, the AM plays an important role in driving particles’ orbital
or/and spin motion [7–9]. In electromagnetism, the linear momentum density of light P in free space is
defined as the vector product of the electric field vector E and magnetic field vector H: P = E×H/c2

(c is the speed of light in free space). For monochromatic waves, the time-averaged momentum density 〈P〉
can, after some vector operations, be decomposed into a sum of its canonical part PO ∝ Im(E∗ · (∇)E) and
spin part PS ∝ 1/2∇× Im(E∗ × E) [10–12]. (Here, to simplify the discussion, we adopt the electric-biased
forms for optical orbital and spin momentum although there are more accepted dual-symmetry forms, i.e.
electromagnetic-democracy forms). The cross products of the position vector x with the orbital momentum
density PO and spin momentum density PS give the corresponding orbital AM and spin AM,
respectively.

In classical field theory, the orbital momentum density PO appears naturally in the canonical stress
tensor in the Lagrangian approach to electromagnetic fields [1, 11, 13]. The spin momentum density PS
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presents itself as an additional tensor augmented to the canonical stress tensor to ensure conservation of
angular momentum. For monochromatic fields, the orbital momentum density PO is closely linked to the
local wave vector kloc given by the phase gradient; while the spin momentum density PS is equal to the curl
of the spin AM (the oriented ellipticity of the local polarization) of the field. As a result, PS need not lie in
the direction of kloc, leading to a deviation in direction of the optical linear momentum density P from the
orbital momentum density PO [11–13]. The mechanical effect of the orbital momentum density PO on a
probe particle is easily observable. For example, a particle in a plane wave can experience a scattering force
along the direction the vector kloc (so PO) because of the presence of the dynamic phase factor exp(ikloc·x).
Recently, Bliokh et al [12] showed theoretically that in a structured evanescent field, there is a radiation
force transverse to PO on a probe gold Mie particle. This transverse force is PS- or polarization-dependent,
in a sharp contrast to the orbital momentum PO-induced radiation force which is in general determined by
phase gradient. This unconventional (spin-relevant) force was observed in experiment by Antognozzi et al
[14] using a nano-cantilever placed in an evanescent wave above a total internal reflecting glass surface. The
observed transverse force exhibits a clear polarization dependence. Besides evanescent fields, other
structured fields also have transverse spin momentum (norm to orbital momentum). For example,
Bekshaev et al [15] showed in theory that even in a simple field configuration like two-wave interference
there exists a spin momentum-dependent force on probe Mie particles.

Here, we report a spin momentum-dependent orbital motion of particles in a circularly-polarized
annular focused field. In such a field, the (azimuthal) spin momentum can form a closed azimuthal flow
orbiting the optical axis. This spin momentum flow exhibits an obvious spin-dependence, its direction
being reversed with the sign of the polarization ellipticity is swapped. Furthermore, the flow direction also
depends on the radial derivative of the field intensity. For annular focused field discussed here, the radial
derivative has different signs on two sides of the ring of intensity maximum, causing the spin momentum
flow to reverse its direction when crossing this ring. When a gold Mie particle is placed in this field, an
azimuthal radiation force emerges, as response to the spin momentum flow. As desired, the direction of this
azimuthal force is in line with that of the spin momentum flow and is reversed when going from one side of
the ring of intensity maximum to the other. Such a behavior of force suggests that we may verify in
experiment the radial-position-dependence of spin momentum flow in an annular focused field by
monitoring the orbital motion of a gold particle. For dielectric Mie particles, their orbital motions in the
field are, in many cases, ‘negative’, that is, in the opposite direction of the spin momentum flow. This
negative orbital motion is recently observed in a circularly-polarized (Gaussian-like) focused field in an
indirect way [16]. The difficulty of observing directly such orbital motions (positive or negative) lies in the
fact that the radial gradient force always tends to restrict the probe particle on the ring of intensity
maximum where the spin momentum flow vanishes. To remove this barrier, we propose introduction of an
auxiliary radially-polarized illumination (incoherent with the above circularly-polarized field) whose
ring-like focused field have no any azimuthal momentum flow and can be used to adjust the particle’s radial
equilibrium position to facilitate spin momentum detection at different radial positions. With the
introduction of this auxiliary field, a stable trapping along the longitudinal direction is also achievable,
making it possible to watch with ease the particle’s spin momentum-dependent orbital motion even its
reversal on the two sides of the ring of intensity maximum.

The paper is organized as follows. Section 2 presents an analysis of the spin momentum in a ring-like
focused field which is created by focusing an input field with circular polarization. By the cylindrical
symmetry, the azimuthal component of the spin momentum in the focused field can form a closed circular
flow circulating around the optical axis. One of the advantages of the ring-like focused field is that the
converted orbital AM accompanying tight focusing can be suppressed to a relatively large extent. Moreover,
the ring-like focused field has opposite azimuthal spin momentum flow, that is, on the two sides of the ring
of intensity maximum the (azimuthal) spin momentum flow has opposite direction, an unusual property
not pertaining to orbital momentum flow. For the further purpose, we investigate the focusing properties of
radially-polarized input field. Such a field has no azimuthal momentum flow even in tight focusing case.
Section 3 gives numerically calculated forces on probe particles by the circularly-polarized annular focused
field. Section 4 presents a discussion of radial and axial equilibrium positions of the probe particle under
combined action of the circularly-polarized and the auxiliary radially-polarized illuminations. Section 5
gives an AM perspective on particles’ orbital motion. Section 6 concludes the whole work.

2. Spin momentum flow

Throughout this paper, the fields are assumed to vary in time harmonically. Hereafter, for simplicity, we
drop the time-dependence factor. In general, optical trapping of particles is realized with a tightly focused
field. In numerical calculations, the (complex) electric field E(x) near the focus for an input field A0(ρ0, ϕ0)
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passing through a high numerical aperture (NA) objective lens can be expressed as the Richards–Wolf
integral [17–19]

E(x) = C

∫∫
D

A(ϑ,ϕ) exp(ik · x)dΩ (1)

Here, C is a constant associated with the input power, (ϑ, ϕ) are the spherical polar angles,
dΩ = sinϑdϑdϕ is the elemental solid angle and k = k1(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ) denote the wave
vectors of the angular spectra components with wavenumber k1 = 2πn1/λ (n1 is the index of refraction of
medium in image space and λ is the free space wavelength of light); the integral domain
D = {(ϑ,ϕ)|0 � ϑ � ϑmax, 0 � ϕ � 2π}withϑmax being the maximal converging angle determined by the
NA, that is, ϑmax = arcsin(NA/n1); the apodized field A(ϑ, ϕ) is related to the input field A0(ρ0, ϕ0 )
according the rule:

A(ϑ,ϕ) =
√

cos ϑ(eϑ, eϕ)

(
eρ0 · A0( f sin ϑ,ϕ− π)
eϕ0 · A0( f sin ϑ,ϕ− π)

)
(2)

where eρ0 and eϕ0 denote the respective unit vectors in the radial and azimuthal directions in the input
plane while eϑ and eϕ refer to the unit vectors in spherical polar angle directions with respect to the focus.
In writing equation (2), we have used the geometry relations ρ0 = f sin ϑ and ϕ = π + ϕ0.

The time-averaged momentum density 〈P〉 of the focused field can be decomposed into the orbital
momentum density PO and spin momentum density PS as [10–12]

〈P〉 = (1/2)Re(D∗ × B)

= (ε1/2ω) Im(E∗ · (∇)E) + (ε1/4ω)∇× Im(E∗ × E)

= PO + PS

(3)

with ε1 denoting the permittivity of the image space medium (usually water) and the notation convention
E∗ · (∇)E ≡ (∇E) · E∗ is adopted [10] (the repeated indices mean a summation). Here, we have adopted the
Minkowski momentum definition: 〈P〉 = 1/2 Re(D∗ × B) and our decomposition of orbital and spin
momentum is electric-biased. Other decompositions like dual-symmetry form contain both electric and
magnetic contributions in each part [10–12]. The difference between the two forms disappears in the
paraxial limit. Furthermore, in our numerical simulations, we find that for the focused field of a
circularly-polarized illumination, the qualitative behaviors of the two forms are substantial similar.

It is shown that for a paraxial circularly-polarized field its azimuthal spin momentum PS,φ forms a
(uniform) closed circular flow around the optical axis. For example, assume E(x) = eLf (ρ, z) or eR f (ρ, z)
(here and below, eL = (ex + iey)/

√
2 and eR = (ex−iey)/

√
2 are two circular polarization basis vectors). It

then follows that PS,φ ∝ −σ∂ρ| f |2, where σ is the polarization ellipticity of field and is equal to 1 for eL and
−1 for eR. Furthermore, for such a paraxial field, PO,φ = 0. As a result, a pure circularly-polarized paraxial
field provides a good platform for investigation of spin momentum-dependent orbital motion. However, for
tight focusing, the accompanying spin-to-orbit conversion leads to the following process
[20–24]: |eL〉 → |eL〉+ ei2φ|eR〉+ eiφ|ez〉 and likewise for a right-hand circular polarization
illumination |eR〉. This shows that even the input field is in a pure circular polarization state without any
vortex phase, the focused field contains other polarization components with non-zero vortex indices, a
manifest of azimuthal orbital momentum.

In figure 1, we plot the azimuthal components of orbital and spin momentum density of the focused
field for a uniform illumination (λ = 1.064 μm) with left-hand circular polarization A0 ∝ eL through an
NA = 1.26 water immersed (thus n1 = 1.33) objective lens. It can be shown by direction calculation that the
corresponding focused field takes the form E(x) = eLEL(ρ, z) + eRei2φER(ρ, z) + eiφezEz(ρ, z), where
(ρ, φ, z) are the cylindrical coordinates of the position vector x. By substituting this expression into
equation (3), one finds that either orbital or spin momentum forms a uniform closed circular flow orbiting
the optical axis, that is, ∂φ(PO,φ) = 0 and ∂φ(PS,φ) = 0. To simplify analysis, only the flows at a fixed
azimuthal angle, say φ = 0, are plotted. For purpose of discussion, the intensities of three electric field
components are also plotted.

Figure 1 shows that the focused field contains a dominant left-circularly polarized component EL, a
small axis component Ez and a negligible right-circularly polarized component ER. The Ez component carry
a vortex phase factor eiφ, giving rise to the azimuthal orbital momentum with a relative maximum (to the
spin momentum maximum) equal to ∼0.27. From equation (3), we have PO,φ ∝ (Iz + IR)/ρ ≈ Iz/ρ with Iz

= |Ez|2 and IR = |ER|2. Thus, PO,φ is positive over the whole radial range, a reflection of the fact that the
sign of azimuthal orbital momentum is dependent only on the topological charge of vortex phase. The
situation for the azimuthal spin momentum is different. It is shown from equation (3) that PS,φ ∝
−σ∂ρ(IL-IR) ≈ −σ∂ρIL with σ = 1 for the left-circularly polarized illumination discussed here. For a
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Figure 1. Spin part PS,φ (blue) and orbital part PO,φ (red) of azimuthal momentum density of the focused field of a uniform
left-circularly polarized illumination. The coordinate ρ on the abscissa axis is the radial distance from the optical axis. The
dashed curves describe the intensities of left-circularly polarized field (blue), right-circularly polarized field (black) and axial field
(red), respectively. If the illumination is right-circularly polarized, the two azimuthal momentum flows will reverse the directions
and the intensities IL and IR exchange while IZ remains unchanged.

Figure 2. Azimuthal spin PS,φ (blue) and orbital PO,φ (red) momentum density of the focused field of a left-circularly polarized
illumination with amplitude A0 ∝ eLJ0(2.5k1 sin ϑ). The coordinate ρ on the abscissa axis is the radial distance from the optical
axis. The dashed curves describe the intensities of left-circularly polarized field (blue), right-circularly polarized field (black) and
axial field (red), respectively. When the illumination A0 ∝ eRJ0(2.5k1 sin ϑ) (right-hand circular polarization), PS,φ and PO,φ

change the signs and IL and IR exchange while Iz remains unchanged.

right-circularly polarized illumination, the result for PS,φ is obtained by setting σ = −1 and the orbital
momentum PO,φ also changes the sign correspondingly. Thus, the azimuthal spin momentum flow depends
on the helicity as well as the radial derivative of the intensity. For a given value of σ, the sign of PS,φ will
reverse if the radial derivative of the intensity changes its sign. This occurs usually on the two sides of a ring
of (local) intensity extreme. In figure 1, the reversal of the sign of appears first on two sides of ρ ≈ 0.52 μm,
at which IL reaches a local minimum. However, this negative (azimuthal) spin momentum flow is in
magnitude much less than that of the positive flow. To enhance the negative flow, we propose a ring-like
focused field by means of so-called perfect vortex fields [25–28]. The key is to introduce to the input field a
Bessel modulation factor J0(αk1sinϑ), where J0(·) denotes the first kind of cylindrical Bessel function of
order zero. With this modulation, i.e., A0 → J0(αk1 sin ϑ)A0, the focused field will exhibit a ring-like
pattern with adjustable radius (controlled by the parameter α). The formation of the ring-like focused field
can be understood by realizing that the field in the focal plane is in fact the inverse Fourier transform of the
input field [see equation (1)] and the 2D Fourier transform of J0(·) is just a ring with a rather narrow width
(ideally a delta-ring). This narrow-ring structure implies that the radial derivatives of intensity on two sides
of the ring of intensity maximum have large magnitudes but opposite signs.

Figure 2 shows PS,φ, PO,φ, and the three electric field component intensities as a function of radius ρ of
the focused field of a modulated left-circularly polarized illumination A0 ∝ eLJ0(2.5k1 sin ϑ) [here and
below, we only take the numerical value of k1 (= 2πn1/1.064) in the argument of J0(·). The other
parameters are as in figure 1. The focused field is dominated by the left-circularly polarized electric field
component, whose intensity takes on an obvious ring-like pattern with central radius ρ0 ≈ 2.5 μm and
width Δ ≈ 1μm. Under this field configuration, the azimuthal spin momentum has two appealing peaks
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Figure 3. Azimuthal forces on polystyrene sphere (red) and gold sphere (blue) in the focused field of a modulated left-circularly
polarized illumination A0 ∝ eLJ0(2.5k1 sin ϑ) with 200 mW power. The coordinate ρ on the abscissa axis is the radial distance
from the optical axis. Both spheres have a radius of 0.5 μm. The force on the gold sphere is scaled by a factor of 0.15. The dashed
curve (black) is the azimuthal spin momentum flow.

with opposite signs on the inner and outer sides of the ring of intensity maximum (ρ0 ≈ 2.5 μm).
Moreover, the azimuthal orbital momentum has a local maximum value ∼0.0412 near the ring of intensity
maximum while the two peak values of the spin momentum are −1.024 and 1.0, implying that the orbital
momentum may be neglected when considering the orbital motion of the probe particle. More interestingly,
the occurrence of the two peaks with opposite signs of PS,φ facilitates greatly the observation of reversal of
orbital motion of a probe particle on the two sides, which never be expected from orbital momentum.

3. Mechanical effects of spin momentum

We now turn to mechanical effects of spin momentum on a probe particle. To detect spin momentum, it is
necessary that the characteristic size of the probe particle a satisfies a > ∼1/k1 [12], that is, a finite size Mie
particle. For incident light of 1.064 μm wavelength and n1 = 1.33 as in figures 1 and 2, the particle’s size
needs to be larger than ∼0.1273 μm. As an illustration, we consider a spherical polystyrene
(n2 = 1.59) particle of radius a = 0.5 μm located in the focused field as in figure 2. We use the Mie
scattering theory and the Maxwell stress tensor to calculate the forces on the particle [29–32]. The Mie
scattering theory can compute exactly the scattered fields by a uniform, isotropic spherical particle
illuminated by a plane wave. With some appropriate modifications, it can handle the scattering problem
involving tightly focused field given by the integral (1) [32]. Let the incident power P0 = 200 mW. The red
curve in figure 3 shows the azimuthal force Fφ on the polystyrene sphere. Obviously, this azimuthal force
has two peaks (with opposite signs) on the two sides of the ring of intensity maximum (ρ0 ≈ 2.5 μm).
Interestingly, the force is in the opposite direction of the azimuthal spin momentum flow (dashed curve): in
the inner side near the ring the force is positive while the flow is negative, and the contrary situation arises
in the outer side of the ring. This means that the polystyrene sphere will experience an orbital motion
against the spin momentum flow, and will reverse the direction of orbital motion when crossing the ring of
intensity maximum, which is not observed in orbital momentum-induced orbital motion.

The above counter-flow effect can be explained by considering the dipole–dipole coupling model [12,
33, 34], the next order correction to the dipole approximation. In the dipole approximation, it is shown that
the scattering force on a dielectric particle Fscat,p ∝ Im(αe)PO [33]. Since we are interested in the region
near the ring, the azimuthal orbital momentum there is neglectable as shown in figure 2, so is the azimuthal
component (Fscat,p)φ. The next order correction is the dipole–dipole term Fscat,pm arising from the
higher-order interaction between electric- and magnetic-induced dipoles [12, 34] whose azimuthal
component (Fscat,pm)φ ∝ −Re(αe αm

∗)PS,φ. Here αe and αm are the electric and magnetic polarizabilities.
Note that in writing (Fscat,pm)φ, we have neglected the contribution from the orbital momentum PO,φ, since
it is negligibly small. Thus, we see that the azimuthal scattering force on the particle is, as far as
dipole–dipole order, approximately proportional to PS,φ with the proportionality −Re(αeαm

∗). For
dielectric material, the proportionality −Re(αeαm

∗) is usually negative, indicating the scattering force is
opposite to the spin momentum flow as shown in figure 3 for the polystyrene sphere. However, for metal
particles of high absorption, say gold particles (n2 ≈ 0.4 + 7.36i at 1.064 μm), the proportionality is
positive [34]. The blue curve in figure 3 shows the (0.15 times) azimuthal force on a gold sphere of radius
0.5 μm, the other parameters being the same as for the polystyrene sphere. As desired, the force is parallel to
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Figure 4. Azimuthal force (units: pN) as a function of particle’s radius and radial position. (a) Polystyrene sphere and (b) gold
sphere. The illumination at the entrance pupil plane is as in figures 2 and 3: A0 ∝ eLJ0(2.5k1 sin ϑ) with 200 mW power.

the spin momentum flow. Again, the force reverses the direction on two sides of the ring of intensity
maximum.

We now extend the analysis of azimuthal force to a broad range of particle size. Figure 4 describes the
azimuthal force distribution in particle’s radius and radial position for the polystyrene sphere and gold
sphere. The black dashed line in each plot denotes the critical radial positions crossing which the azimuthal
force reverses the direction. The starting point of each critical line is chosen such that the associated force is
not too small. When the particle’s radius is less than that at the starting point, the dipole force Fscat,p

dominates and the reversal of force cannot be observed. Note that the two critical lines are approximately
two horizontal straight lines given approximately by ρ0 ≈ 2.5 μm, the value of radius of the ring. For each
plot, the force shows a reversal on the two sides of the line with the difference that for the polystyrene
sphere, the force is in the opposite direction of flow while for the gold sphere the situation is conversed. The
results contained in figure 4 reveal that for a wide range of particle’s size we can investigate the reverse of
spin momentum flow of a circularly-polarized ring-like focused field by observing orbital motion reversal.

4. Equilibrium-position consideration

The preceding sections reveal that the (azimuthal) spin momentum flow of a circularly-polarized ring-like
focused field forms closed circular flow orbiting the optical axis and have two peaks with opposite signs on
the two sides the ring of intensity maximum. When a probe particle is placed in such a flow, the azimuthal
force on the particle, thus the particle’ orbital motion, can manifest this two-peak feature of the flow by
reversing the direction when crossing the ring along the radial direction. Moreover, the azimuthal force on
the dielectric particle is always against the flow while for the gold particle the force is directed along the
flow.

To detect the aforementioned radial position-dependent spin momentum flow, a simple and
straightforward method is to observe the orbital motion of a probe particle placed into the flow. To this
end, we need to first address the issue of equilibrium position of the particle, both radially and axially. We
first consider the radial one. In optical trapping, the gradient force tends to hold a dielectric particle at the
locus of intensity maximum. In the case of the polystyrene sphere discussed in figure 3, the radial
equilibrium position is expected to be located on the ring of intensity maximum. The black dashed curve
FLP,ρ in figure 5(a) describes the radial force on the same polystyrene sphere with the same illumination A0

∝ eLJ0(2.5k1 sin ϑ) as in figure 3. It is seen that the radial equilibrium position, denoted by the circle C0, is
located roughly at ρ = 2.45 μm, very close to the ring of intensity maximum. At the position, the azimuthal
force on the sphere is too small (see figure 3) to drive orbital motion in practice.

To observe the orbital motion of the probe particle and the corresponding reversal, it is desirable to
develop a technique that can change the particle’s radial equilibrium position. Here, we introduce an
auxiliary radially-polarized illumination to realize this adjustment of radial equilibrium position. The
radially-polarized illumination is assumed to be inherent with the circularly-polarized illumination. The
focused field of radially-polarized illumination have many unique properties like strong axial component
and smaller focal spot size [35–38]. Such focusing properties can be used to create an axially polarized
optical needle [39], improve axial optical trapping efficiency [40–42] and break the diffraction limit in
confocal microscopy [43]. One of the advantages of use of radially polarized illumination in our analysis is
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Figure 5. Radial force of the focused field with a left-circularly illumination A0 ∝ eLJ0(2.5k1 sin ϑ) (black dashed curve) and two
radially polarized illumination ARad1 ∝ eρ0J0(1.95k1 sin ϑ) (red dashed curve) and ARad2 ∝ eρ0J0(3.25k1 sin ϑ) (blue dashed
curve). The coordinate ρ on the abscissa axis is the radial distance from the optical axis. The red solid curve presents the total
radial force under the (incoherent) (A0, ARad1) combination and the blue solid curve is the total radial force under the
(incoherent) (A0, ARad2) combination

that its focused field contains no azimuthal momentum flow, neither orbital nor spin, thus its introduction
does not contaminate the spin momentum flow to be detected.

We now consider a radially-polarized illumination of the form

ARad(ρ0,ϕ0) =

⎧⎨
⎩

eρ0A0J0(βk1 sin ϑ), 0.3 < sin ϑ < 1.26/n1

0, 0 < sin ϑ < 0.3
(4)

where again sin ϑ = ρ0/f and A0 a constant associated with the incident power. The simple annulus pupil
apodization function (4) is widely used in the calculations involving radially-polarized fields [19]. The
amplitude modulation factor J0(βk1 sin ϑ) in the input field (4) is presented to produce a ring-like focused
field pattern with adjustable radius controlled by the parameter β. When the ring radius of the radially
polarized focused field is different from that of the circularly-polarized focused field presented in figure 2,
the resulting force of the two radial forces may trap the probe particle at some intermediate position
between the two rings. By this trick, we may change the radial equilibrium position as desirable. To verify
this, we put the incident power of the radially-polarized illumination P1 equal to 600 mW and set β = 1.95.
For simplicity, we denote this input field by ARad1 ∝ eρ0J0(1.95k1 sin ϑ). The input field ARad1 gives rise to a
ring-like focused pattern with smaller radius than the left-hand circular polarization illumination A0. The
radial force FRad1,ρ under the individual illumination ARad1 is shown in figure 5 (red dashed curve), which
attains its radial equilibrium position at ∼1.92 μm, roughly 0.53 μm inwardly away from the original radial
position C0 (∼2.45 μm) given solely by FLP,ρ (black dashed curve) of the left-circularly-polarized
illumination A0. The total radial force F1,ρ (red solid curve) under the incoherent (A0, ARad1) combination
gives a final radial equilibrium position C1 (∼1.92 μm), where the azimuthal force on the particle is
appreciable and positive. We next set β = 3.25 and P1 = 900 mW with the corresponding input field
denoted by ARad2 ∝ eρ0J0(3.25k1 sin ϑ). The radial force FRad2,ρ (blue dashed curve) under this illumination
has its radial equilibrium position exterior to C0. The total radial force F2,ρ(blue solid curve) under the
combination (A0, ARad2) results in a radial equilibrium position C2 (∼2.76 μm), where the azimuthal force
on the particle is large and negative.

The above calculations show that the introduction of a radially-polarized illumination can confine stably
the probe particle at specific radial position, where azimuthal spin momentum flow, thus the associated
azimuthal force on the particle, is large and can be negative or positive. As a result, the detection of the
reversal of spin momentum flow via particle’s orbital motion is reliable, as long as radial trapping is
concerned. We now turn to the axial equilibrium position issue with the parameters as given in figure 5. In
figure 6, we plot the line scans of total axis forces at ρ = 1.92 μm for the (A0, ARad1) combination (F1,z : red
solid curve) and ρ = 2.76 μm for the (A0, ARad2) combination (F2,z : blue solid curve), respectively. These
two radial positions correspond to equilibrium positions for two combinations, respectively. For purpose of
comparison, we also plot the axial forces at ρ = 1.92 μm for respective A0 (FLP1,z : red dot-dashed curve)
and ARad1(FRad1,z : red dashed curve), and those at ρ = 2.76 μm for respective A0 (FLP2,z : red dot-dashed
curve) and ARad2 (FRad2,z : red dashed curve). We see that with A0 as the only illumination, there is hardly
axial restoring force. While with the introduction of radially-polarized illumination, the effective axial
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Figure 6. Axial forces at two radial positions ρ= 1.92 μm (red curves) and ρ= 2.76 μm (blue curves) of the focused field for
different illuminations. The transverse coordinate z is the longitudinal distance from the focal plane. The left-circularly
illumination A0 ∝ eLJ0(2.5k1 sin ϑ) provides almost no restoring force either at ρ= 1.92 μm (red dot-dashed curve) or at ρ=
2.76 μm (blue dot-dashed curve). The radially-polarized illuminations ARad1 ∝ eρ0J0(1.95k1 sin ϑ) (red dashed curve) and ARad2

∝ eρ0J0(3.25k1 sin ϑ) (blue dashed curve) have effective restoring forces. The total axial force (red curve) under the (A0, ARad1)
combination has an equilibrium position C1 (∼0.39 μm) for ρ= 1.92 μm and total axial force (blue curve) with the (A0, ARad2)
combination gives an axial equilibrium position C2 (∼0.59 μm) for ρ= 2.76 μm.

restoring forces occurs, giving the axial equilibrium positions C1 (∼0.39 μm) for the (A0, ARad1)
combination and C2 (∼0.59 μm) for the (A0, ARad2) combination. The maximal axial restoring forces for
the two combinations are −8.47 pN and −3.25 pN, respectively. Thus, stable axial trapping is realized in
either case: the (A0, ARad1) combination used in detecting inner-side spin momentum flow or the (A0,
ARad2) used in detecting outer-side flow. The smallness of axial restoring force for the (A0, ARad2)
combination is a result of remarkable reduction in field intensity of the focused ring of the input field ARad2

(although its input power is 900 mW). Enhancement of the axis restoring force is possible either by
increasing the incident power or by decreasing the radii of all focused rings.

For gold particles, the axial equilibrium issue can hardly be addressed, since their high absorption causes
a very strong scattering force. Even for radial trapping, the radial equilibrium can appear at several position,
which complicate the situation very much.

5. AM perspective on orbital motion

In section 3, we consider the particles’ orbital motion by calculating the azimuthal force on them. In this
section, we treat the particles’ orbital motion by calculating angular momentum (AM) transfer. During the
field-particle interaction, the total AM (field plus particle) is conserved. Mathematically, the AM
conservation is written as [1]

Γ = −n

c

∮
S∞

(r × 〈Smix〉)dσ − n

c

∮
S∞

(r × 〈SS〉)dσ

≡ Mmix − MS

(5)

where Γ is the torque on the particle, S∞ is a closed spherical surface at infinity enclosing the particle, and
〈Smix〉 and 〈SS〉 are time-averaged Poynting vectors associated with extinction (arising from the interference
between incident and scattered fields) and scattering processes, respectively [1, 30]. In light–matter
interaction, their integrals give respective linear momenta per unit time removed from the incident light
and scattered by the particle. Accordingly, the quantities Mmix and MS in equation (5) define the AM per
unit time removed from the incident field and scattered by the particle. Their difference gives the torque on
the particle: a reflection of conservation of total AM (removed AM = scattered AM + particle’s
torque).

If the spherical surface S∞ is centered at the particle’s center of mass, Γ will be the spin torque on the
particle; if the center of S∞ coincides with the beam’s center, Γ will give the total torque on the particle: the
spin torque plus the orbital torque with respect to beam’s center. Since we are dealing with particle’s orbital
motion in the focal plane, only z- component of equation (5) is of interest. Figure 7 shows the
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Figure 7. z-components of the total torque (solid), removed AM (blue dot-dashed), scattered AM (red dot-dashed) and spin
torque (red dashed) for a gold sphere of radius a = 0.5 μm (all other settings are the same as in figure 3).

Figure 8. z-components of the total torque (solid), removed AM (blue dot-dashed), scattered AM (red dot-dashed) and spin
torque (red dashed) for a PS sphere of radius a = 0.5 μm (all other settings are the same as in figure 3).

z-components of the total torque Γ z (solid), removed AM (blue dot-dashed) Mmix, z, scattered AM
(red dot-dashed) MS,z for a gold sphere of radius a = 0.5 μm (all other settings are the same as in figure 3).
In addition ,the spin torque Γ spin

z (red dashed) on the particle is also plotted. This spin torque arises from
absorption and is very small compared to the total torque. So, the gold sphere in fact mainly experiences an
orbital torque. Moreover, we see that the removed AM is always positive but the scattered AM can either be
positive or negative depending on the radial position, so that the total toque (mainly orbital) can also be
positive or negative.

Likewise, we present the corresponding results for a PS sphere of radius a = 0.5 μm in figure 8. Unlike
the gold sphere in figure 7, the PS sphere exhibits no absorption, thus the spin torque is zero, as desired.
Moreover, the scattered AM for the PS sphere is almost positive, but its peak has a coordinate shift to that of
the removed AM. As a result, their difference gives a torque on the PS sphere whose direction and
magnitude still depend on radial position.

An interesting observation from the above results is that since our incident field has a dominant spin
AM density, the removed AM from the incident field thus contains almost no orbital AM (thus the particle
obtains no orbital torque from the incident field), suggesting no azimuthal linear momentum is removed in
the extinction process (this can also be verified by directly calculating the azimuthal force associated with
extinction process). Noting that the incident field is dominated by the spin momentum density, this result
seems to confirm the ‘virtual’ nature of spin
momentum.
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6. Discussions and conclusions

The orbital motion of the probe particles shown above is a result of higher-order moment interference in
scattering, which gives rise to an azimuthal force (Fscat,pm)φ ∝ −Re(αe αm

∗)PS,φ as discussed in section 3.
This force is closely related to the azimuthal spin momentum PS,φ, thus leading to an orbital motion. The
direction of the motion is parallel or anti-parallel to PS,φ depending on the sign of proportionality factor
−Re(αeαm

∗). Alternatively, we can also examine the particles’ orbital motion from angular-momentum
point of view. For the purposes of understanding, we may view the interaction as a two-step process: first,
the particle removes the AM from the incident light due to extinction effect and temporally obtains this
AM; second, the particle scatters radiation, during which a certain amount of AM is taken away by the
scattered field. The AM difference of the two processed gives the net torque on the particle to guarantee
conservation of the total AM of the whole system (field plus particle). In our focused field configuration (a
circularly-polarized annular focusing pattern), the orbital AM of the incident field is negligibly small so that
the particle can only remove the spin AM, giving no orbital motion (with respect to the optical axis) on the
particle. During the scattering, the redirection of spin AM gives rise to orbital AM in the scattered field,
which may lead to an orbital motion on the particle. The whole process may be viewed as a typical example
of spin–orbit interaction due to scattering. This spin–orbit interaction is related to incident light in two
aspects: (a) polarization state of the incident light since different incident polarizations may give opposite
orbital motions. (b) The gradient of the incident light (different radiation positions may also lead to
reversal of the orbital motion). Moreover, electromagnetic properties of the particle (absorptive or
non-absorptive) may also affect this interaction. In our calculations, we find that the scattering patterns are
actually symmetry broken (not cylindrically symmetrical). The specific characteristic of asymmetry is
affected by the above three factors (incident polarization, gradient of incident field and electromagnetic
properties of the particle). These natures may help find potential applications in separation of light with
different states of polarization and optical manipulation of small particles. The mechanism behind these
effects are worthy of consideration in the near future.

In summary, we have revealed that the focused field of a uniform circularly-polarized illumination
modulated by a Bessel function factor has a ring-like pattern, which exhibits interesting azimuthal
momentum flow profile: the orbital momentum flow is negligibly small in the vicinity of the ring while the
spin momentum flow has two peaks: one is interior to and the other exterior to the ring of intensity
maximum. The two peaks have opposite signs. When a small probe particle (say a polystyrene sphere) is
placed in this field, it can experience an azimuthal force that is closely related to the spin momentum flow,
thus executing an orbital motion around the optical axis. Furthermore, the force, hence the orbital motion,
reverses the direction when crossing the ring of intensity maximum, a manifest of spin momentum flow
reversal. To observe such radial position-dependent orbital motion in practice, a radially-polarized
illumination with proper amplitude modulation is introduced to shift the particle’s radial equilibrium
position. Given that this radial-position dependence is not expected from orbital momentum flow, the
proposed spin momentum-dependent orbital motion may enrich our understanding of optical linear and
angular momentum
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