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Abstract

We discuss how the internal structure of ultracold molecules, trapped in the motional ground
state of optical tweezers, can be used to implement qudits. We explore the rotational, fine and
hyperfine structure of 40Ca'F and ’Rb'*>Cs, which are examples of molecules with Y and!'y®
electronic ground states, respectively. In each case we identify a subset of levels within a single
rotational manifold suitable to implement a four-level qudit. Quantum gates can be implemented
using two-photon microwave transitions via levels in a neighboring rotational manifold. We
discuss limitations to the usefulness of molecular qudits, arising from off-resonant excitation and
decoherence. As an example, we present a protocol for using a molecular qudit of dimension

d = 4to perform the Deutsch algorithm.

Quantum computation has the potential to outperform conventional computation for certain challenging
problems [1]. Many groups are developing the building blocks of a quantum computer, exploring several
different physical systems in the search for the best architecture [2—14]. One of the challenges is the problem
of scalability [ 15]: it is difficult to engineer a quantum system with a large number of individually
controllable qubits that together form alarge Hilbert space and are free from external perturbations

and loss.

The problem of scalability can be reduced by using higher-dimensional quantum systems (qudits)
instead of two-level qubits. For the same size of Hilbert space, the number of d-level qudits required is
smaller than the number of qubits by the factor log, d [16, 17], as shown in figure 1. For example, to perform
a computation thatis beyond the capabilities of any current classical computer (termed quantum supremacy
[18]) requires about 50 qubits [ 19] but only 15 ten-level qudits. Additionally, the time required to carry out
gate operations can be reduced by a factor of (log, d)* [16, 20] if arbitrary transformations can be achieved in
the d-dimensional space. Other advantages of using qudits for quantum computation are increased
robustness [21-23] and improvements for quantum error-correcting codes [24—30].

There are many quantum-computational algorithms that can work with even a unary (single) qudit.
Animportant example is Grover’s search algorithm [31, 32]. Versions of this have been implemented using
anoptical field as a qudit with d = 4 [33], atoms with d = 8 [34] and a single nuclear spin with d = 4[35].
Other algorithms that can be performed with qudits include quantum phase estimation and quantum
counting [36], the Deutsch algorithm [37], and finding the parity of permutation; the last has been
experimentally demonstrated by Gedik et al [38] with a single qudit, using nuclear magnetic resonance.

Ultracold molecules provide very attractive systems for quantum computation. The rotational and
spin degrees of freedom make it possible to encode quantum information in ways not possible on other

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Figure 1. Combining qubits and qudits formed in optical tweezer arrays. p qubits form a Hilbert space with dimension 27, while q
qudits form a space of dimension d. To achieve the same Hilbert-space dimension in each case, g = p/log, d. This shows the
advantage of using qudits for quantum computation.

platforms. Experiments with ultracold molecules have progressed rapidly over the last decade [39-53],

and the rotational, fine and hyperfine structure has been studied in detail [54—61]. Heteronuclear molecules
can have electric dipole moments fixed in the molecular frame, allowing manipulation of the quantum
states with microwave fields [57-59, 62]. A quantum computer formed from ultracold polar molecules can
be increased in scale by linking neighboring molecules via the long-range dipole—dipole interaction
[63—69].

In this article, we investigate the rich internal structure of diatomic molecules with the aim of using
them as qudits. We consider ultracold molecules trapped in the motional ground states of optical tweezers.
Tweezers are an established tool for atoms [70—75], and have recently been extended to ultracold molecules,
both by loading laser-cooled molecules directly into tweezers [76] and by associating atoms in a tweezer to
form molecules [48, 49]. Tweezers offer single-particle addressability and detection, combined with easy
scaling up to arrays of ~100 traps [73—75], making them an ideal platform for quantum computation with
ultracold molecules.

In the following sections, we examine the rotational and hyperfine structure of ultracold molecules in
electronic states of >°> and '3 symmetry, with a focus on 40CaF [51]and ¥ Rb'**Cs [43]. In each case we
identify a set of levels that can form a qudit, with transitions between them well isolated from others that might
causeloss. In section 2, we discuss the sources of decoherence of these qudits and the limitations these may
present in future experiments. We focus on two main sources of decoherence: differential ac-Stark shifts and
magnetic field noise. In section 3, we discuss basic gate operations for the qudits, implementable using
microwaves. Finally, in section 4, we describe how the Deutsch algorithm [77] can be implemented using a single
qudit formed from a single diatomic molecule.

1. Internal structure of ultracold molecules relevant for qudits

The internal structure of molecules is very rich, even in the electronic and vibrational ground state, because of
the presence of molecular rotation, electron spin and nuclear spins. In this section, we briefly discuss the
advantages and challenges this presents for the realization of qudits. We describe the internal structure of
diatomic molecules in *Y and 'Y electronic states. Molecules in *Y. states possess an unpaired electron, whereas
those in 'Y states do not. 'Y is the electronic ground state of molecules formed by associating two alkali atoms
[39—49]. 2% is the electronic ground state of molecules such as SrF [50], CaF [51, 52], YbF [78] and YO [53],
which have been recently laser cooled. Molecules formed by associating an alkali atom and a closed-shell atom
[79—81] will also have 2% ground states. To illustrate our discussion, we consider the specific cases of “0Ca'Fand
8Rb'**Cs molecules.

1.1. General considerations
We propose to use the rotational and hyperfine levels of molecules to form a qudit. A qudit of dimension d is
formed from d primary levels in a single rotational manifold and can be manipulated using two-photon

2
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microwave transitions via auxiliary levels in a neighboring rotational manifold. The transitions must be
sufficiently separated in frequency to avoid off-resonant excitation to other levels (both within the qudit and,
more broadly, within the molecule). Any such excitation will reduce the state fidelity. The upper bound for the
probability of an off-resonant excitation is [82, 83],

(rtclmQ)2

(7'tde)2 + & ’ M

p loss —

where (2 is the Rabi frequency for the target transition, A is the frequency detuning of the microwave field from
the off-resonant transition, and 7y, is the ratio of the transition dipole moments of the off-resonant and target
transitions. (2 is related to the duration ¢, , ofa /2 pulse by Q = 7/(2t,/,).

We consider molecules trapped in optical tweezers with wavelength A = 1064 nm and waist 1 gm. The
tweezers are assumed to have radial and axial trapping frequencies w, ~ 10 kHzand w, ~ 2 kHz, respectively.
This is achieved with a peak laser intensity of I, ~ 20 kW cm ™ for **Ca'*Fand I, ~ 5 kW cm ™ for *Rb'**Cs®.
Our choice of [y is a compromise between two considerations. First, as explained in section 2, the noise in the
intensity of tweezers leads to decoherence, which is in general more severe at high intensities. However, lowering
the intensity increases the width of the external wavefunction of the molecule trapped in the tweezer [68]. This
limits the proximity achievable before molecules can tunnel between tweezers and thus reduces the achievable
dipole—dipole interactions.

1.2.*Y diatomic molecules

We start by discussing the case of a Y molecule. The Hamiltonian of such a molecule in the electronic and
vibrational ground state has been described in [61, 86]. The number of hyperfine levels in rotational manifold N
is 2N + 1)(2S + 1)L + 1)(2L + 1), where Sand I; are the total electron spin and the spins of the two nuclei,
respectively. N, S and I; couple to form a resultant F, with projection g on the magnetic field axis. Fis a good
quantum number at zero field, but not at finite field. With S = 1/2,I; = 0Oand , = 1/2,0 Ca'’Fhas 4
hyperfinelevelsin N = 0and 12in N = 1, as shown in figure 2. Each level is identified by (N, F/,, mp), where
the subscripts1and u specify the lower and upper levels with F = 1.

The difference between the hyperfine splittings of the Nand N £ 1 rotational manifolds depends largely on
two terms: (i) the interaction between the electron spin and the nuclear rotation and (ii) the dipolar interaction
between the electron and nuclear spins [87]. For *°Ca'’F, the contributions of these two terms to the splitting are
~60 MHz and ~20 MHz respectively [61]. In contrast, the ac-Stark effect shifts the energy levels by less than
50 kHz relative to each other and may be neglected.

The four hyperfine levels e shown in table 1 can be used to define a four-level qudit space with N = 1. The
level gwith (N, F, mg) = (0,0,0) has transitions to each of the selected N = 1 levels in a magnetic field and
functions as the auxiliary level. At a magnetic field of 100 G, the transitions are sufficiently isolated and have
transition dipole moments 1., greater than 0.05 D. For a reasonably fast microwave pulse, t,/, = 5 s, a
frequency detuning greater than 10 MHz results in minimal loss, pjoss < 107> (using equation (1)), where we
assume figy, = 1.

If qudits of higher dimension are required, hyperfine levels of rotational manifolds with N > 1 can be used.
*Y> molecules with higher nuclear spins, such as *’Rb%Sr and '**Cs'”>Yb, will also allow the formation of higher-
dimensional qudits, even in their N = 0 rotational manifolds. There are 80 and 48 hyperfinelevelsinthe N = 0
manifolds for ¥ Rb¥’Sr[61] and '>*Cs'”?Yb [81], respectively. This illustrates a significant advantage of ultracold
molecules over atoms: simple diatomic molecules have substantially more levels in their electronic ground states
than atoms [88-91].

1.3.' diatomic molecules
The Hamiltonian of a 'Y diatomic molecule in its electronic and vibrational ground state is discussed in [54, 60].
The difference between the hyperfine splittings of the Nand N £ 1 rotational manifolds depends on the
interaction of the nuclear spins and molecular rotation, principally through nuclear electric quadrupole terms.
For ¥Rb'*’Cs molecules the quadrupole terms contribute around 0.5 MHz for N = 1, although there are other
alkali dimers such as °Li*’Rb for which the contributions are an order of magnitude larger [60]. The splittings are
two orders of magnitude smaller for *Rb'**Cs than for *°Ca'°F.

The eigenstates may be expanded in an uncoupled basis set | N, 1y, 1>, m"*) where N is the rotational
quantum number and my, mR° and m are projections of N and the nuclear spins along the magnetic field. The

¥ In calculating the intensity, we use values of the polarizability at 1064 nm for *’Rb'**Cs from experiment [84] and for *°Ca'’F from
theory[85].
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Figure 2. Zeeman splitting of hyperfine levels of **Ca'°F. The colors blue, red, and green indicate F = 0, 1and 2 respectively. The thick
lines represent the levels selected as described in section 1.2. The vertical dotted line shows the magnetic field B = 100 G where we

Table 1. Levels e = (N, Fy/,, mp) that form a four-
level qudit for OCaFwithN = 1, together with the
isolated transitions to the level g = (0, 0, 0) that can
be used to manipulate them at a magnetic field of

100 G and tweezer intensity of 20 kW cm 2.

e g f/MHz Heg/D
(L,1,1) (0,0,0) 20 515.969 1.76
(1,1,,0) (0,0,0) 20 530.739 1.76
(1,0,0) (0,0,0) 20 584.305 0.07
(L1, —1) (0,0,0) 20 610.756 0.27

projection quantum numbers are conserved at sufficiently high magnetic fields, but the hyperfine part of the
Hamiltonian is off-diagonal and introduces mixings. Transitions between many hyperfine levels are allowed
[55, 56]. We calculate transition dipole moments between pairs of eigenstates as described in [55, 56] and define

the transition strength as the square of the transition dipole moment.

The number of hyperfine levels in rotational manifold Nis 2N + 1)(2, + 1)(2L, + 1). For *’ Rb'**Cs, with
I, = 3/2and I, = 7/2, this gives 32 levels for N = 0 and 96 levels for N = 1; these have complicated hyperfine
and Zeeman splittings, as shown in figures 3(a) and 4(a). They are further split and shifted by ac-Stark effects that
are comparable to the hyperfine splittings, as shown in figures 3(b) and 4(b) for laser polarization parallel to the
magnetic field. In this proposal, the magnetic field is held at 181.5 G, which is where the molecules are created in
current experiments [42, 43]. Despite the close level spacing at this field, we can still find transitions that are
sufficiently isolated from each other. The spacing between the hyperfine levels can be increased by increasing the
magnetic field, but this decreases the mixing of the uncoupled spin states, leading to reduced transition strengths
to some states. The higher microwave power required then increases the probability of unwanted transitions.

To identify levels that can form a qudit, we consider the eigenstates of the Hamiltonian of [92], which

includes rotational, hyperfine, Zeeman, and ac-Stark effects. All the spectroscopic constants for this
Hamiltonian have been determined by microwave spectroscopy [59, 92]. We use a laser intensity of 5 kW cm ™

2

and polarization parallel to the magnetic field. The following procedure is used to find as many connected levels

as possible with transitions that are isolated for chosen values of ../, and p,

(i) Startwith thelowestlevel inthe N = 0 (or N = 1) rotational manifold.

max
oss *

(ii) Select an additional primary level with the same N (initially the next one in energy) for consideration to add

to the qudit.
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Figure 3. (a) Zeeman splitting of hyperfine levels of ' Rb'*’Cs. The vertical dashed line indicates a magnetic field B = 181.5 G. Levels
that form a four-level qudit with N = 0 are highlighted in blue. Levels in N = 1 that can be used to manipulate them are highlighted
in red, with the transitions shown by the green arrows (separated in magnetic field for clarity). (b) Frequencies of transitions from level
(0, 5)0, including the ac-Stark shift. Intensities are shown by shading. The dot-dashed line indicates an intensity I = 5 kW cm?. The
ac-Stark shift is the same for all levels with N = 0.

Table 2. Levels § = (N, mp); that form a four-level
qudit for ’Rb'Cs with N = 0, together with the
isolated transitions to levels with N = 1 that can be
used to manipulate them at a magnetic field of
181.5 G and tweezer intensity of 5 kKW cm %

¢ e f/kHz 3pl* /g
(0,4), (1,5), 980 426.03 0.93
(0,4), (1,5), 980 569.25 0.04
(0,3) 1,4), 980 593.00 0.03
(0,5)o (1,5), 980 627.29 0.04
(0,5)0 (1,4), 980 716.34 0.03

(iii) Consider each combination of a level already in the qudit and a level in the auxiliary manifold for a two-

photon transition to the new primary level. Reject the combination if either of the transition strengths | ,uegl2

is less than 0.01dZ /3, where d,, is the permanent electric dipole moment of the molecule.

(iv) At each frequency required for the augmented set of transitions, calculate the off-resonant excitation
probability, poss from each level in the qudit to every unwanted level in the auxiliary manifold. If

Dloss > P> reject this combination.
a

(V) If progs > Prows. for all possible combinations, reject the candidate primary level. Return to (ii) to consider a
new candidate.

(Vi) If pios < P’ for one or more combinations, add the new primary level to the qudit, with the
corresponding auxiliary level and transitions. If possible choose an auxiliary level that is already in the set; to
distinguish between candidates, choose the one with the highest product of transition strengths. Return to
(ii) to consider adding an additional primary level.

In calculating pyss, we assume that the polarization of the microwave has 95% purity. For example, if we want to
drive a o, transition at frequency fand Rabi frequency €2, the ¢ _and  transitions will be driven by frequency f
and Rabi frequency v/0.05 gm 2. The calculations assume square pulses for population transfers; shaped pulses
can in principle reduce leakage by one further order of magnitude [93], but we have not investigated this in
detail.

The results of such searches for N = 0 and N = 1 rotational manifolds of *Rb'*’Cs are discussed below.

1.3.1. Quditwith N = 0 levels
Thelevels of the N = 0 manifold have equal ac-Stark shifts [92], so are highly attractive as potential qudits. The
transfer between the N = 0levels can be achieved via auxiliary levels with N = 1. We use the algorithm
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Figure 4. (a) Zeeman splitting of hyperfine levels of ' Rb'**Cs. The vertical dashed line indicates a magnetic field B = 181.5 G. Levels
that form a four-level qudit with N = 1 are highlighted in red. The level in N = 0 that can be used to manipulate them is highlighted
in blue, with the transitions shown by the green arrows (separated in magnetic field for clarity). (b) Frequencies of transitions from

level (0, 5)0, including the ac-Stark shift. Intensities are shown by shading. The dot-dashed line indicates an intensity I, = 5 kW cm >,

Table 3. Levels e = (N, mp); that form a four-level
qudit for “Rb'**Cs with N = 1, together with the
isolated transitions to levels with N = 0 that can be
used to manipulate them at a magnetic field of

181.5 G and tweezer intensity of 5 kKW cm 2.

e g f/kHz 3pgl /g
(1,6)0 0,5 980 478.82 1
1,5), 0,5) 980 627.29 0.02
(1,4), 0,5 980 716.34 0.03
(1,4)s 0,5 980 845.61 0.13

described above to search for hyperfine levels with isolated transitions. For ./, = Imsand pe* =3 x 1072
we find 8 hyperfine levels in the N = 0 manifold that are connected with one another via at least one common
N = 1level. For ashorter pulse duration of t,.,, = 0.3 ms, we find 4 such levels. These are listed in table 2,
together with the isolated transitions that can be used to manipulate them. The levels are highlighted in figure 3.
The states are labeled (N, mp);, where the subscript i distinguishes between levels that have the same values of N
and mpbut differ in energy; the lowest level for each (N, mp) is labeled i = 0.

1.3.2. Quditwith N = 1 levels

The number of hyperfine levels in the N = 1 manifold is three times larger than for N = 0. This has two
advantages: (i) higher-dimensional qudits can be formed; (ii) the ratio of the number of levels to the number of
transitions is higher, making it more likely that there are isolated transitions. Using the search algorithm we find
21 hyperfine levels with p,"*<10~*fort,/, = 1 msand 11 for ./, = 0.3 ms. However, a disadvantage of using
levels with N = 1 is that they suffer decoherence due to differential ac-Stark shifts in the field of the trapping
laser [92]; this is discussed further in section 2. We select four levels from the set for £, ,, = 0.3 msthathavea
common N = 0level and minimal differential ac-Stark shifts (~1 kHz kW ! cm?). These are listed in table 3 and
highlighted in figure 4, together with the transitions that can be used to manipulate them.

2. Sources of decoherence and gate errors

In this section, we discuss the main decoherence mechanisms for a qudit formed from a single ultracold
molecule. For the states of ’Rb'>>Cs considered here, the decoherence rate due to spontaneous emission and
room-temperature blackbody radiation will be less than 10> Hz [94] and can be ignored. For *°Ca'°F the
excitation from room temperature blackbody radiation results in a decoherence rate of ~0.2 Hz, which can be
reduced to ~10~° Hzat a temperature of 77 K [94].

The non-deterministic variations in the energy differences between the levels that form the qudit will also
cause decoherence. For isolated molecules, this non-deterministic variation can arise due to noise in electric,
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magnetic and electromagnetic fields. For uncorrelated white noise, the decay in coherence is exponential [95]. If
the standard deviation of the energy difference between a pair of states is hA9, the coherence time
isTqg ~ 1/(A0).

Ultracold molecules in optical lattices and tweezers are subject to ac-Stark effects. These are more
complicated than for atoms because the molecular polarizability is anisotropic. For levels in the N = 0 manifold,
there is no differential shift in first order, but there are small second-order shifts ~1 Hz [62] that can lead to
decoherence. A superposition of two N = 0levels in *?Na*’K has been observed to retain its coherence for a time
ofaround 15 [62] in an optical trap. For levels with N > 1, by contrast, there are first-order differential ac-Stark
shifts due to the anisotropic part of the molecular dynamic polarizability, o/? = %(O&H — 1) [92,96], where o
and o, are the frequency-dependent polarizabilities parallel and perpendicular to the internuclear axis.

In a thermal sample, variations in the laser intensity across the sample can lead to decoherence. For
molecules in the motional ground state, however, only noise in the intensity can result in decoherence. In the
worst case the coherence time will be roughly h/(a(® AT), where Al s the noise in the intensity. For both
10Ca®Fand¥Rb'PCsinN =1, AT~ 1 x 1073, gives a coherence time of atleast 10 ms. In practice, longer
coherence times are possible because there are pairs of levels whose differential polarizability is much smaller
than a® [87]. For the four N = 1 levels of “°Ca'’F and ®’Rb'**Cs molecules selected in sections 1.2 and 1.3, we
calculate coherence times of roughly 25 ms and 200 ms respectively.

The fluctuation in transition frequency Afdue to intensity noise will also result in an error for the microwave
gates described in section 3 forboth N = 0 and N = 1 levels. The upper bound for this error can be estimated as
Af? /Q2 (@@ AI/Q)? = (2t ,aP Al /7/i)?. This gives an error of 10~ * for **Ca'*Fwith t,,, = 5 usand
10> for 87Rb133Cs witht;,, = 0.3 ms.

The ac-Stark effect will also introduce differences in the trapping potentials for molecules with N' > 1. This will
lead to differences in the resonant frequencies for molecules in different motional states. However, recent
experiments [49, 97, 98] have succeeded in cooling atoms to their motional ground-state with a probability of greater
than 0.990. We believe that such techniques can be extended to molecules and will reduce gate errors to below 1%.

Another contribution to decoherence will be from noise in the magnetic field. The coherence time is
T4 ~ h/(ABA), where ABis the standard deviation in the magnetic field and A i is the difference in the
magnetic moments of the levels that form the qudit. It is relatively straightforward to achieve noise below 50 mG
atfields of order 100 G [80]. For rotational and hyperfine levels of 87Rb!*3Cs, A i~ g, N, Where g, is the
nuclear g-factor and /1, is the nuclear magneton. This gives a coherence time 7y ~ 4 s. For N = 0 levels of °Y
diatomic molecules, the coherence time can be estimated as 74 ~ h/(g, 115 AB), where g, is the electron g-factor
and pu5, is the Bohr magneton. For a magnetic field noise of 50 mG, 74 ~ 10 ps. However, with greater effort it is
possible to reduce noise to below 50 4G [99, 100], resulting in a coherence time 7y ~ 10 ms. For the four levels
of **Ca'’F selected in section 1.2, Ay ~ 107 , Lp> giving a coherence time 74 ~ 400 ms under these
conditions. It may be possible to increase the coherence time further by using levels with nearly equal magnetic
moments [101].

Our proposal does not involve a static electric field. Linear molecules in X states have quadratic dc-Stark
effects, so decoherence due to electric field noise will be insignificant.

The analysis above shows that, under appropriate experimental conditions, the qudits formed from
ultracold molecules can have long coherence times compared to the gate duration.

3. Microwave gates for molecular qudits

The Hamiltonian for the interaction between the molecule and a microwave field is
H(t)=Hy+ V(1)

" Qi
:Zmd 1| + Zﬁ( ij e— 1w,,t+1a,,)|l><]| + 211 e(lwxjtl@,‘j)lj><i|)’ 2)
i=1

i=j

where Aiw; is the energy of level i, wj; is the frequency of a microwave field resonant with the transition i «+- j and
(2;is the Rabi frequency. ¢;; denotes the phase of the microwaves. Using the unitary transformation
U(t) = 31 e i) (i], the Hamiltonian in the generalized rotating frame [ 102] becomes

Qi
8U (t) => fi( el%ili) (j| + —e ~i%4) §) <1|) 3)

li]

H =UM®OH®U(¢) + iU (t) ——=

In an experiment we can measure only probabilities. The operator for such a measurement is M = [i) (i|. In the
rotating frame, U (t) MU (t) = M

Consider the case where the microwaves address two hyperfine levels k and I with the same Nvia a common
level cwith N — 1. The Rabi frequencies for the transitions k <+ cand [ < ¢ are ;. and {2, respectively. The
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unitary evolution operator after time ¢, exp[—iH; ¢/ /], in this three-level subspace (with basis |c), |k), |I}) is

~ —iQ e ke sin[Q / 2] —iQce'lesin[Qt / 2]
cos[€2t/2] — s —
—iQ e e sin[Qr / 2] OF + Q2 cos[Q / 2] e @Phe= 010 O e (cos[Qt / 2] — 1)
Q % o7 > (4)
—iee @lesin[Q /2] eCke 10O Qe (cos[Qr / 2] — 1) 02 + Q% cos[Q / 2]

where Q% + Q. = . We choose square pulses for the two microwave fields with pulse duration 27 /€, such
that there is no population transfer to the common level |¢). For ¢ = Q. /. and ¢ = ¢, — @,., the operator
(4) becomes

2 _2¢e®
| ¢+t G+1
uk,l(C) ¢) - B 2¢eid 2 > )
¢+l G+1

in the subspace {|k), |I)}. Using the ratio  and phase ¢, we can engineer gates between the hyperfine levels of the
N manifold.

Similarly, we can create a phase gate for each of the levels in the N manifold. For ;. = Oand t = 7/{),
equation (4) becomes

0  —ie% 0
Qu(dp) = —je"i%e 0 0 (6)
0 0 1

A phase gate Ri(¢) can be created for state k from two such operations
Ri(¢) = Qu(m — ¢) Qx(0). (7)

One of the advantages of using microwaves is that the phase ¢ can be controlled precisely.
Ifthe common state is alevel of the N 4 1 rotational manifold instead of N — 1 as above, analogous gates
can be obtained by substituting U ;((, 2m — ¢) for Uy ;(¢, ¢) in the above equations.

4. Quantum algorithm using a qudit

As apractical application of ultracold molecules as qudits, we propose an implementation of the Deutsch
algorithm [77]. Consider the four possible one-bit Boolean functions

£0) =0, f,(1) =0,
LO) =1, LA =1,
£0) =1, £,(1) =0,
f4(0) =0, f4(1) =L €)

The Deutsch algorithm determines whether a one-bit Boolean function fis balanced (i.e. gives 1 for one input
and 0 for the other) or constant (gives 0 for both inputs or 1 for both inputs). Classical algorithms require at least
two calls to the function fto answer this question. Deutsch [77] showed that an implementation with two qubits
can answer the question with a single call to f.

Deutsch’s implementation starts by initializing the two qubits in state [0)4 ® |1)p, and subjects them toa
series of gates, represented as a quantum circuit in figure 5(a). The operator F(?) in figure 5(a) is a quantum
implementation of the function f; that maps the two-qubit state |x) |y) to |x) | f;(x) @ y), with @ the sum
modulo 2 [37, 77], and H is the Hadamard operator. At the end of the circuit, the state of the first qubit s |1), iff;
is balanced and |0), ifitis constant [77].

Recently, Kiktenko et al [37] proposed an alternative implementation using a qudit with four primary levels.
Asa first step, they map the two-qubit basis states onto a four-level qudit basis, {| j), j = 1,...4}, according to

004 ® [0)p — [1), [0)a @ [L)s — [2),
[Da ® [0)p — [3), [1)a @ [1) — [4). 9

The function of interest, f;, is mapped onto a unitary operator F{* that acts on the qudit space as described by
equation (10) below. To determine the character of f;, the qudit is initialized in state |2) and subjected to the
circuit in figure 5(b) using the unitary operator F*) associated with f.. To find out whether the function is
constant or balanced, it suffices to determine whether the molecule at the end of the evolution is in state |2) or
not: if the molecule is in state |2), the function is constant; otherwise, it is balanced [37]. Thus, after the MW
pulses implementing the circuit, the molecule is subject to a projective measurement on state |2). For *’Ca'’F,
this state can be detected by laser-induced fluorescence (LIF) [103]. For ¥Rb'**Cs, hyperfine-resolved STIRAP

8
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Figure 5. Quantum gates for implementing the Deutsch algorithm using (a) two qubits and (b) a single four-level qudit. The gate
operators for the qudit are given in equation (9).

can be used to transfer the molecule to a Feshbach state that is then dissociated into constituent atoms [92]. The
atoms are then detected by LIF.
The circuit in figure 5(b) involves the set of gates { Hy, Hg, G5~a', GSNoT, FY, BV, EY, FY, Gy} inthe
d = 4 qudit space. These are defined using the single-qubit gates from section 3 as
Hy=Us(N2 — 1, ) Upa(V2 — 1, m), F* =1(4),
Hy = U(V2 = 1, W) Usu(N2 = 1, m), FP = U1, m) G

G/gﬁ%T = Z/{3,4(1> 71-)) F3(4) - GEE%T) (10)
GsNST = U u(1, ), EY = U1, m),

Gum = Unp(V2 — 1, 7).

Here I(4) is the identity operator of dimension 4 and { A, B} identify the qubit spaces. The operators F*) acting
on the qudit states [1),...,|4) result in the same states in the qudit space as the two-qubit operators F(® acting on
the states [0)4 [0)p, [0)a|1)p, [1)a |0)p, and |1)4 |1)p; see [37] for details.

This algorithm can be implemented using the four levels of the *°Ca'F molecule identified in section 1.2,
with the mapping |1, 1,, —1) — [1), |1, 0, 0) — |2), |1, 1;, 1) — |3), |1, 1;, 0) — |4). The total time
required to apply all the gates will be ¢, &~ 140 s, assuming that the maximum Rabi frequencyis 7/(2¢, 2),
with ¢,/ = 5 ps. The error due to decoherence will then be t,o, /7q ~ 1072. The total error due to off-resonant
excitation from all gates, calculated using equation (1), will be ~10 . The total gate error due to the uncertainty
in the frequency of the transition will be 10 . This will result in a total error of only ~10~ % in the computed
output, without any error correction.

The N = 0 hyperfine levels of ultracold *’Rb'**Cs molecules shown in table 2 can also be used to define a
d = 4 qudit space, with the mapping |0, 3)y — |1}, |0, 5)0 — [2), |0, 4)g — |3), |0, 4); — |4). Asthereisno
direct two-photon transition between levels 1 and 3, H, needs alonger sequence of gates,

Hy = U(1, 0) uz,a(ﬁ — 1, 0) U (1, 0) U2,4(\/5 — 1, m).Fort,,, = 0.3 ms, the total time required to
apply all the gates will be f,; ~ 10 ms. The error due to decoherence, off-resonant excitation, and frequency
uncertainty will be ~10 2, 10> and 10~ respectively, giving a total error of only ~10™* in the computed output.
For a qudit formed from N = 1 levels of 87Rb'33Cs, the total error is around 5 x 10~ 2, because of the additional
decoherence from the ac-Stark effect.

5. Conclusion

We have examined the rich internal structure of > and '~ molecules, with a view to using the internal levels as
qudits for quantum information processing using microwave pulses. We have analyzed two molecules of current
experimental interest, 40Ca'F and 3Rb'*3Cs, confined in the motional ground states of optical tweezers. The
large splitting between the hyperfine levels of > molecules compared to ' molecules is advantageous in
reducing off-resonant excitation of neighboring levels. Nevertheless, we have identified possible
implementations of four-level qudits in both *°Ca'°F and ¥ Rb'*’Cs, using a magnetic field to engineer suitable
level spacings, transition strengths and field sensitivities. We have discussed two primary sources of decoherence
for qudits formed from these levels: (i) differential ac-Stark shifts due to intensity noise in the trapping laser; (ii)
magnetic field noise. A major advantage of '~ molecules is the very slow decoherence induced by magnetic field
noise, which arises because their magnetic sensitivity is typically three orders of magnitude smaller than for *%
molecules. Hyperfine levels with N = 0 have equal ac-Stark shifts for both molecules and are therefore very
stable against decoherence associated with laser intensity noise.

We have derived a set of gates, based on microwave transitions, for a qudit formed from a single ultracold
molecule. We have shown how a sequence of microwave pulses applied to a polar molecule can be used to
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implement the Deutsch algorithm. Our calculations indicate that the algorithm can be executed in 0.14 ms using
*0Ca'”Fand 10 ms using ®Rb'**Cs, with an error ~10~* in each case. The Deutsch algorithm provides a proof-
of-principle experiment to demonstrate the use of ultracold molecules to perform quantum computation.
Scalability may be achieved in the future by implementing gates involving multiple molecules, confined in an
array of tweezers and linked by the dipole—dipole interaction [63—69].
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