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Abstract
Wediscuss how the internal structure of ultracoldmolecules, trapped in themotional ground
state of optical tweezers, can be used to implement qudits.We explore the rotational, fine and
hyperfine structure of 40Ca19F and 87Rb133Cs, which are examples of molecules with 2Σ and 1Σ

electronic ground states, respectively. In each case we identify a subset of levels within a single
rotationalmanifold suitable to implement a four-level qudit. Quantum gates can be implemented
using two-photonmicrowave transitions via levels in a neighboring rotational manifold.We
discuss limitations to the usefulness of molecular qudits, arising from off-resonant excitation and
decoherence. As an example, we present a protocol for using amolecular qudit of dimension
d=4 to perform the Deutsch algorithm.

Quantum computation has the potential to outperform conventional computation for certain challenging
problems [1]. Many groups are developing the building blocks of a quantum computer, exploring several
different physical systems in the search for the best architecture [2–14]. One of the challenges is the problem
of scalability [15]: it is difficult to engineer a quantum systemwith a large number of individually
controllable qubits that together form a largeHilbert space and are free from external perturbations
and loss.

The problem of scalability can be reduced by using higher-dimensional quantum systems (qudits)
instead of two-level qubits. For the same size of Hilbert space, the number of d-level qudits required is
smaller than the number of qubits by the factor dlog2 [16, 17], as shown in figure 1. For example, to perform
a computation that is beyond the capabilities of any current classical computer (termed quantum supremacy
[18]) requires about 50 qubits [19] but only 15 ten-level qudits. Additionally, the time required to carry out
gate operations can be reduced by a factor of ( )dlog2

2 [16, 20] if arbitrary transformations can be achieved in
the d-dimensional space. Other advantages of using qudits for quantum computation are increased
robustness [21–23] and improvements for quantum error-correcting codes [24–30].

There aremany quantum-computational algorithms that can work with even a unary (single) qudit.
An important example is Grover’s search algorithm [31, 32]. Versions of this have been implemented using
an optical field as a qudit with d=4 [33], atoms with d=8 [34] and a single nuclear spin with d=4 [35].
Other algorithms that can be performed with qudits include quantum phase estimation and quantum
counting [36], the Deutsch algorithm [37], and finding the parity of permutation; the last has been
experimentally demonstrated by Gedik et al [38]with a single qudit, using nuclearmagnetic resonance.

Ultracoldmolecules provide very attractive systems for quantum computation. The rotational and
spin degrees of freedommake it possible to encode quantum information in ways not possible on other
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platforms. Experiments with ultracoldmolecules have progressed rapidly over the last decade [39–53],
and the rotational, fine and hyperfine structure has been studied in detail [54–61]. Heteronuclearmolecules
can have electric dipolemoments fixed in themolecular frame, allowingmanipulation of the quantum
states withmicrowave fields [57–59, 62]. A quantum computer formed from ultracold polarmolecules can
be increased in scale by linking neighboringmolecules via the long-range dipole–dipole interaction
[63–69].

In this article, we investigate the rich internal structure of diatomicmolecules with the aim of using
them as qudits.We consider ultracoldmolecules trapped in themotional ground states of optical tweezers.
Tweezers are an established tool for atoms [70–75], and have recently been extended to ultracoldmolecules,
both by loading laser-cooledmolecules directly into tweezers [76] and by associating atoms in a tweezer to
formmolecules [48, 49]. Tweezers offer single-particle addressability and detection, combined with easy
scaling up to arrays of∼100 traps [73–75], making them an ideal platform for quantum computation with
ultracoldmolecules.

In the following sections, we examine the rotational and hyperfine structure of ultracoldmolecules in
electronic states of 2Σ and 1Σ symmetry, with a focus on 40Ca19F [51] and 87Rb133Cs [43]. In each case we
identify a set of levels that can form a qudit, with transitions between themwell isolated fromothers thatmight
cause loss. In section 2, we discuss the sources of decoherence of these qudits and the limitations thesemay
present in future experiments.We focus on twomain sources of decoherence: differential ac-Stark shifts and
magnetic field noise. In section 3, we discuss basic gate operations for the qudits, implementable using
microwaves. Finally, in section 4, we describe how theDeutsch algorithm [77] can be implemented using a single
qudit formed from a single diatomicmolecule.

1. Internal structure of ultracoldmolecules relevant for qudits

The internal structure ofmolecules is very rich, even in the electronic and vibrational ground state, because of
the presence ofmolecular rotation, electron spin and nuclear spins. In this section, we briefly discuss the
advantages and challenges this presents for the realization of qudits.We describe the internal structure of
diatomicmolecules in 2Σ and 1Σ electronic states.Molecules in 2Σ states possess an unpaired electron, whereas
those in 1Σ states do not. 1Σ is the electronic ground state ofmolecules formed by associating two alkali atoms
[39–49]. S2 is the electronic ground state ofmolecules such as SrF [50], CaF [51, 52], YbF [78] andYO [53],
which have been recently laser cooled.Molecules formed by associating an alkali atom and a closed-shell atom
[79–81]will also have 2Σ ground states. To illustrate our discussion, we consider the specific cases of 40Ca19F and
87Rb133Csmolecules.

1.1. General considerations
Wepropose to use the rotational and hyperfine levels ofmolecules to form a qudit. A qudit of dimension d is
formed from d primary levels in a single rotationalmanifold and can bemanipulated using two-photon

Figure 1.Combining qubits and qudits formed in optical tweezer arrays. p qubits form aHilbert spacewith dimension 2p, while q
qudits form a space of dimension d q. To achieve the sameHilbert-space dimension in each case, =q p dlog2 . This shows the
advantage of using qudits for quantum computation.
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microwave transitions via auxiliary levels in a neighboring rotationalmanifold. The transitionsmust be
sufficiently separated in frequency to avoid off-resonant excitation to other levels (bothwithin the qudit and,
more broadly, within themolecule). Any such excitationwill reduce the statefidelity. The upper bound for the
probability of an off-resonant excitation is [82, 83],

( )
( )

( )=
W

W + D
p

r

r
, 1loss

tdm
2

tdm
2 2

whereΩ is the Rabi frequency for the target transition,Δ is the frequency detuning of themicrowave field from
the off-resonant transition, and rtdm is the ratio of the transition dipolemoments of the off-resonant and target
transitions.Ω is related to the duration tπ/2 of aπ/2 pulse by ( )pW = pt2 2 .

We considermolecules trapped in optical tweezers withwavelengthλ=1064 nmandwaist 1 μm.The
tweezers are assumed to have radial and axial trapping frequenciesωr∼10 kHz andωz∼2 kHz, respectively.
This is achievedwith a peak laser intensity of I0∼20 kW cm−2 for 40Ca19F and I0∼5 kW cm−2 for 87Rb133Cs8.
Our choice of I0 is a compromise between two considerations. First, as explained in section 2, the noise in the
intensity of tweezers leads to decoherence, which is in generalmore severe at high intensities. However, lowering
the intensity increases thewidth of the external wavefunction of themolecule trapped in the tweezer [68]. This
limits the proximity achievable beforemolecules can tunnel between tweezers and thus reduces the achievable
dipole–dipole interactions.

1.2. 2Σdiatomicmolecules
We start by discussing the case of a 2Σmolecule. TheHamiltonian of such amolecule in the electronic and
vibrational ground state has been described in [61, 86]. The number of hyperfine levels in rotationalmanifoldN
is ( )( )( )( )+ + + +N S I I2 1 2 1 2 1 2 11 2 , where S and Ii are the total electron spin and the spins of the two nuclei,
respectively.N, S and Ii couple to form a resultant F, with projectionmF on themagnetic field axis. F is a good
quantumnumber at zerofield, but not atfinitefield.With S=1/2, I1=0 and =I 1 2,2

40 Ca19F has 4
hyperfine levels inN=0 and 12 inN=1, as shown infigure 2. Each level is identified by ( )/N F m, , Fl u , where
the subscripts l and u specify the lower and upper levels with F=1.

The difference between the hyperfine splittings of theN andN±1 rotationalmanifolds depends largely on
two terms: (i) the interaction between the electron spin and the nuclear rotation and (ii) the dipolar interaction
between the electron and nuclear spins [87]. For 40Ca19F, the contributions of these two terms to the splitting are
∼60MHz and∼20MHz respectively [61]. In contrast, the ac-Stark effect shifts the energy levels by less than
50kHz relative to each other andmay be neglected.

The four hyperfine levels e shown in table 1 can be used to define a four-level qudit spacewithN=1. The
level gwith (N, F,mF)=(0,0,0) has transitions to each of the selectedN=1 levels in amagnetic field and
functions as the auxiliary level. At amagnetic field of 100G, the transitions are sufficiently isolated and have
transition dipolemomentsμeg greater than 0.05D. For a reasonably fastmicrowave pulse, tπ/2=5 μs, a
frequency detuning greater than 10MHz results inminimal loss, ploss<10−5 (using equation (1)), wherewe
assume =r 1tdm .

If qudits of higher dimension are required, hyperfine levels of rotationalmanifolds withN>1 can be used.
2Σmolecules with higher nuclear spins, such as 87Rb87Sr and 133Cs173Yb, will also allow the formation of higher-
dimensional qudits, even in theirN=0 rotationalmanifolds. There are 80 and 48 hyperfine levels in theN=0
manifolds for 87Rb87Sr [61] and 133Cs173Yb [81], respectively. This illustrates a significant advantage of ultracold
molecules over atoms: simple diatomicmolecules have substantiallymore levels in their electronic ground states
than atoms [88–91].

1.3. 1Σdiatomicmolecules
TheHamiltonian of a 1Σ diatomicmolecule in its electronic and vibrational ground state is discussed in [54, 60].
The difference between the hyperfine splittings of theN andN±1 rotationalmanifolds depends on the
interaction of the nuclear spins andmolecular rotation, principally through nuclear electric quadrupole terms.
For 87Rb133Csmolecules the quadrupole terms contribute around 0.5 MHz forN=1, although there are other
alkali dimers such as 6Li85Rb for which the contributions are an order ofmagnitude larger [60]. The splittings are
two orders ofmagnitude smaller for 87Rb133Cs than for 40Ca19F.

The eigenstatesmay be expanded in an uncoupled basis set ∣ ñN m m m, , ,N I I
Rb Cs whereN is the rotational

quantumnumber and m m,N I
Rb and mI

Cs are projections ofN and the nuclear spins along themagnetic field. The

8
In calculating the intensity, we use values of the polarizability at 1064nm for 87Rb133Cs from experiment [84] and for 40Ca19F from

theory [85].
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projection quantumnumbers are conserved at sufficiently highmagnetic fields, but the hyperfine part of the
Hamiltonian is off-diagonal and introducesmixings. Transitions betweenmany hyperfine levels are allowed
[55, 56].We calculate transition dipolemoments between pairs of eigenstates as described in [55, 56] and define
the transition strength as the square of the transition dipolemoment.

The number of hyperfine levels in rotationalmanifoldN is ( )( )( )+ + +N I I2 1 2 1 2 11 2 . For 87Rb133Cs, with
I1=3/2 and I2=7/2, this gives 32 levels forN=0 and 96 levels forN=1; these have complicated hyperfine
andZeeman splittings, as shown infigures 3(a) and 4(a). They are further split and shifted by ac-Stark effects that
are comparable to the hyperfine splittings, as shown infigures 3(b) and 4(b) for laser polarization parallel to the
magnetic field. In this proposal, themagnetic field is held at 181.5G, which is where themolecules are created in
current experiments [42, 43]. Despite the close level spacing at this field, we can stillfind transitions that are
sufficiently isolated from each other. The spacing between the hyperfine levels can be increased by increasing the
magnetic field, but this decreases themixing of the uncoupled spin states, leading to reduced transition strengths
to some states. The highermicrowave power required then increases the probability of unwanted transitions.

To identify levels that can form a qudit, we consider the eigenstates of theHamiltonian of [92], which
includes rotational, hyperfine, Zeeman, and ac-Stark effects. All the spectroscopic constants for this
Hamiltonian have been determined bymicrowave spectroscopy [59, 92].We use a laser intensity of 5 kW cm−2

and polarization parallel to themagnetic field. The following procedure is used tofind asmany connected levels
as possible with transitions that are isolated for chosen values of tπ/2 and ploss

max.

(i) Start with the lowest level in theN=0 (orN= 1) rotationalmanifold.

(ii) Select an additional primary level with the sameN (initially the next one in energy) for consideration to add
to the qudit.

N = 0

N = 1

Figure 2.Zeeman splitting of hyperfine levels of 40Ca19F. The colors blue, red, and green indicate F=0, 1 and 2 respectively. The thick
lines represent the levels selected as described in section 1.2. The vertical dotted line shows themagnetic fieldB=100Gwherewe
propose to use themolecule as a qudit.

Table 1. Levels ( )/=e N F m, , Fl u that form a four-
level qudit for 40Ca19FwithN=1, together with the
isolated transitions to the level g=(0, 0, 0) that can
be used tomanipulate them at amagnetic field of
100Gand tweezer intensity of 20 kW cm−2.

e g f/MHz μeg/D

(1,1l,1) (0,0,0) 20 515.969 1.76

(1,1l,0) (0,0,0) 20 530.739 1.76

(1,0,0) (0,0,0) 20 584.305 0.07

(1,1u,−1) (0,0,0) 20 610.756 0.27

4
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(iii) Consider each combination of a level already in the qudit and a level in the auxiliary manifold for a two-
photon transition to the newprimary level. Reject the combination if either of the transition strengths ∣ ∣meg

2

is less than d0.01 30
2 , where d0 is the permanent electric dipolemoment of themolecule.

(iv) At each frequency required for the augmented set of transitions, calculate the off-resonant excitation
probability, ploss, from each level in the qudit to every unwanted level in the auxiliarymanifold. If

>p ploss loss
max, reject this combination.

(v) If >p ploss loss
max for all possible combinations, reject the candidate primary level. Return to (ii) to consider a

new candidate.

(vi) If <p ploss loss
max for one or more combinations, add the new primary level to the qudit, with the

corresponding auxiliary level and transitions. If possible choose an auxiliary level that is already in the set; to
distinguish between candidates, choose the onewith the highest product of transition strengths. Return to
(ii) to consider adding an additional primary level.

In calculating ploss, we assume that the polarization of themicrowave has 95%purity. For example, if wewant to
drive aσ+ transition at frequency f andRabi frequencyΩ, theσ−andπ transitionswill be driven by frequency f
andRabi frequency Wr0.05 tdm . The calculations assume square pulses for population transfers; shaped pulses
can in principle reduce leakage by one further order ofmagnitude [93], but we have not investigated this in
detail.

The results of such searches forN=0 andN=1 rotationalmanifolds of 87Rb133Cs are discussed below.

1.3.1. Qudit withN=0 levels
The levels of theN=0manifold have equal ac-Stark shifts [92], so are highly attractive as potential qudits. The
transfer between theN=0 levels can be achieved via auxiliary levels withN=1.We use the algorithm

Figure 3. (a)Zeeman splitting of hyperfine levels of 87Rb133Cs. The vertical dashed line indicates amagnetic fieldB=181.5G. Levels
that form a four-level qudit withN=0 are highlighted in blue. Levels inN=1 that can be used tomanipulate themare highlighted
in red, with the transitions shown by the green arrows (separated inmagnetic field for clarity). (b) Frequencies of transitions from level
(0, 5)0, including the ac-Stark shift. Intensities are shown by shading. The dot-dashed line indicates an intensity I0=5 kW cm2. The
ac-Stark shift is the same for all levels withN=0.

Table 2. Levels g=(N,mF)i that form a four-level
qudit for 87Rb133CswithN=0, together with the
isolated transitions to levels withN=1 that can be
used tomanipulate them at amagneticfield of
181.5Gand tweezer intensity of 5 kW cm−2.

g e f/kHz ∣ ∣m d3 eg
2

0
2

(0, 4)1 (1, 5)2 980 426.03 0.93

(0, 4)0 (1, 5)2 980 569.25 0.04

(0, 3)0 (1, 4)4 980 593.00 0.03

(0, 5)0 (1, 5)2 980 627.29 0.04

(0, 5)0 (1, 4)4 980 716.34 0.03
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described above to search for hyperfine levels with isolated transitions. For tπ/2=1ms and = ´ -p 3 10loss
max 3

wefind 8 hyperfine levels in theN=0manifold that are connectedwith one another via at least one common
N=1 level. For a shorter pulse duration of tπ/2=0.3 ms, wefind 4 such levels. These are listed in table 2,
togetherwith the isolated transitions that can be used tomanipulate them. The levels are highlighted infigure 3.
The states are labeled (N,mF)i, where the subscript i distinguishes between levels that have the same values ofN
andmF but differ in energy; the lowest level for each (N,mF) is labeled i=0.

1.3.2. Qudit withN=1 levels
The number of hyperfine levels in theN=1manifold is three times larger than forN=0. This has two
advantages: (i) higher-dimensional qudits can be formed; (ii) the ratio of the number of levels to the number of
transitions is higher,making itmore likely that there are isolated transitions. Using the search algorithmwe find
21 hyperfine levels with < -p 10loss

max 3 for tπ/2=1 ms and 11 for tπ/2=0.3 ms.However, a disadvantage of using
levels withN=1 is that they suffer decoherence due to differential ac-Stark shifts in the field of the trapping
laser [92]; this is discussed further in section 2.We select four levels from the set for tπ/2=0.3 ms that have a
commonN=0 level andminimal differential ac-Stark shifts (∼1 kHz kW−1 cm2). These are listed in table 3 and
highlighted infigure 4, togetherwith the transitions that can be used tomanipulate them.

2. Sources of decoherence and gate errors

In this section, we discuss themain decoherencemechanisms for a qudit formed froma single ultracold
molecule. For the states of 87Rb133Cs considered here, the decoherence rate due to spontaneous emission and
room-temperature blackbody radiationwill be less than 10−5Hz [94] and can be ignored. For 40Ca19F the
excitation from room temperature blackbody radiation results in a decoherence rate of∼0.2Hz,which can be
reduced to∼10−5Hz at a temperature of 77 K [94].

The non-deterministic variations in the energy differences between the levels that form the qudit will also
cause decoherence. For isolatedmolecules, this non-deterministic variation can arise due to noise in electric,

Figure 4. (a)Zeeman splitting of hyperfine levels of 87Rb133Cs. The vertical dashed line indicates amagnetic fieldB=181.5G. Levels
that form a four-level qudit withN=1 are highlighted in red. The level inN=0 that can be used tomanipulate them is highlighted
in blue, with the transitions shown by the green arrows (separated inmagnetic field for clarity). (b) Frequencies of transitions from
level (0, 5)0, including the ac-Stark shift. Intensities are shown by shading. The dot-dashed line indicates an intensity I0=5 kW cm−2.

Table 3. Levels e=(N,mF)i that form a four-level
qudit for 87Rb133CswithN=1, together with the
isolated transitions to levels withN=0 that can be
used tomanipulate them at amagneticfield of
181.5Gand tweezer intensity of 5 kW cm−2.

e g f/kHz ∣ ∣m d3 eg
2

0
2

(1, 6)0 (0, 5)0 980 478.82 1

(1, 5)2 (0, 5)0 980 627.29 0.02

(1, 4)4 (0, 5)0 980 716.34 0.03

(1, 4)5 (0, 5)0 980 845.61 0.13
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magnetic and electromagnetic fields. For uncorrelatedwhite noise, the decay in coherence is exponential [95]. If
the standard deviation of the energy difference between a pair of states is hΔδ, the coherence time
is ( )t d~ D1d .

Ultracoldmolecules in optical lattices and tweezers are subject to ac-Stark effects. These aremore
complicated than for atoms because themolecular polarizability is anisotropic. For levels in theN=0manifold,
there is no differential shift infirst order, but there are small second-order shifts∼1 Hz [62] that can lead to
decoherence. A superposition of twoN=0 levels in 23Na40Khas been observed to retain its coherence for a time
of around 1 s [62] in an optical trap. For levels withN�1, by contrast, there arefirst-order differential ac-Stark
shifts due to the anisotropic part of themolecular dynamic polarizability, ( )( )

a a a= - ^
2 2

3
[92, 96], whereαP

andα⊥ are the frequency-dependent polarizabilities parallel and perpendicular to the internuclear axis.
In a thermal sample, variations in the laser intensity across the sample can lead to decoherence. For

molecules in themotional ground state, however, only noise in the intensity can result in decoherence. In the
worst case the coherence timewill be roughly ( )( )a Dh I2 , whereΔI is the noise in the intensity. For both
40Ca19F and 87Rb133Cs in = D » ´ -N I I1, 1 10 3

0 gives a coherence time of at least 10 ms. In practice, longer
coherence times are possible because there are pairs of levels whose differential polarizability ismuch smaller
thanα(2) [87]. For the fourN=1 levels of 40Ca19F and 87Rb133Csmolecules selected in sections 1.2 and 1.3, we
calculate coherence times of roughly 25 ms and 200 ms respectively.

Thefluctuation in transition frequencyΔf due to intensity noise will also result in an error for themicrowave
gates described in section 3 for bothN=0 andN=1 levels. The upper bound for this error can be estimated as

( ) ( )( ) ( )a a pD W = D W = Dp f I t I22 2 2 2
2

2 2. This gives an error of 10−4 for 40Ca19Fwith tπ/2=5 μs and
10−3 for 87Rb133Cswith tπ/2=0.3 ms.

The ac-Stark effectwill also introducedifferences in the trappingpotentials formoleculeswithN�1.Thiswill
lead todifferences in the resonant frequencies formolecules indifferentmotional states.However, recent
experiments [49, 97, 98]have succeeded in cooling atoms to theirmotional ground-statewith aprobability of greater
than0.990.Webelieve that such techniques canbe extended tomolecules andwill reduce gate errors to below1%.

Another contribution to decoherencewill be fromnoise in themagnetic field. The coherence time is
( )t m~ D Dh Bd , whereΔB is the standard deviation in themagnetic field andΔμ is the difference in the

magneticmoments of the levels that form the qudit. It is relatively straightforward to achieve noise below 50mG
atfields of order 100G [80]. For rotational and hyperfine levels of 87Rb133Cs, m mD ~ gn N, where gn is the
nuclear g-factor and mN is the nuclearmagneton. This gives a coherence time t ~ 4 sd . ForN=0 levels of 2Σ
diatomicmolecules, the coherence time can be estimated as ( )t m~ Dh g Bed B , where ge is the electron g-factor
and mB is the Bohrmagneton. For amagnetic field noise of 50mG, t m~ 10 sd . However, with greater effort it is
possible to reduce noise to below 50 μG [99, 100], resulting in a coherence time t ~ 10 msd . For the four levels
of 40Ca19F selected in section 1.2, m mD ~ - g10 e

2
B, giving a coherence time t ~ 400 msd under these

conditions. Itmay be possible to increase the coherence time further by using levels with nearly equalmagnetic
moments [101].

Our proposal does not involve a static electricfield. Linearmolecules inΣ states have quadratic dc-Stark
effects, so decoherence due to electric field noise will be insignificant.

The analysis above shows that, under appropriate experimental conditions, the qudits formed from
ultracoldmolecules can have long coherence times compared to the gate duration.

3.Microwave gates formolecular qudits

TheHamiltonian for the interaction between themolecule and amicrowave field is

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

∣ ∣ ∣ ∣ ∣ ∣ ( )( ) ( )å åw

= +

= ñá +
W

ñá +
W

ñáw f w f

= ¹

- + - 

H t H V t

i i i j j i
2

e
2

e , 2
i

n

i
i j

ij t ij t

0

1

i i i iij ij ij ij

where ÿωi is the energy of level i,ωij is the frequency of amicrowave field resonant with the transition «i j and
Ωij is the Rabi frequency.fij denotes the phase of themicrowaves. Using the unitary transformation

( ) ∣ ∣= å ñáw
=

-U t i iei
n t

1
i i , theHamiltonian in the generalized rotating frame [102] becomes

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( ) ∣ ∣ ∣ ∣ ( )†

†
å= +

¶
¶

=
W

ñá +
W

ñáf f

¹

- H U t H t U t U t
U t

t
i j j ii

2
e

2
e . 3

i j

ij ij
r

i iij ij

In an experiment we canmeasure only probabilities. The operator for such ameasurement is ∣ ∣= ñáM i i . In the
rotating frame, ( ) ( )† =U t MU t M .

Consider the case where themicrowaves address two hyperfine levels k and lwith the sameN via a common
level cwithN−1. The Rabi frequencies for the transitions «k c and «l c areΩkc andΩlc respectively. The
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unitary evolution operator after time [ ]- t H t, exp i r , in this three-level subspace (with basis ∣ ∣ ∣ñ ñ ñc k l, , ) is

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦
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tcos 2

,

, 4

t t

t t t

t t t

i e sin 2 i e sin 2

i e sin 2 cos 2 e cos 2 1

i e sin 2 e cos 2 1 cos 2

kc kc lc lc

kc kc lc kc kc lc kc lc

lc lc kc lc kc lc kc lc

i i

i 2 2

2

i

2

i i

2

2 2

2

where ˜W + W = Wkc lc
2 2 .We choose square pulses for the twomicrowave fields with pulse duration ˜p W2 , such

that there is no population transfer to the common level ∣ ñc . For z = W Wlc kc and f f f= -kc lc , the operator
(4) becomes

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( ) ( )z f =
- -

- -

z
z
z

z
z z

+ +

+ +

f

f

-

 ,
1

1
, 5k l,

2

1

2 e

1

2 e

1

2

1

2

i

2

i

2 2

in the subspace {∣ ∣ }ñ ñk l, . Using the ratio ζ and phasef, we can engineer gates between the hyperfine levels of the
Nmanifold.

Similarly, we can create a phase gate for each of the levels in theNmanifold. ForΩlc=0 and t=π/Ωkc

equation (4) becomes

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥( ) ( )f =

-
-

f

f-Q
0 ie 0

ie 0 0
0 0 1

. 6k kc

i

i

kc

kc

Aphase gateRk(f) can be created for state k from two such operations

( ) ( ) ( ) ( )f p f= -R Q Q 0 . 7k k k

One of the advantages of usingmicrowaves is that the phasef can be controlled precisely.
If the common state is a level of theN+1 rotationalmanifold instead ofN−1 as above, analogous gates

can be obtained by substituting ( )z p f- , 2k l, for ( )z f ,k l, in the above equations.

4.Quantumalgorithmusing a qudit

As a practical application of ultracoldmolecules as qudits, we propose an implementation of theDeutsch
algorithm [77]. Consider the four possible one-bit Boolean functions

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )

= =
= =
= =
= =

f f

f f

f f

f f

0 0, 1 0,

0 1, 1 1,

0 1, 1 0,

0 0, 1 1. 8

1 1

2 2

3 3

4 4

TheDeutsch algorithmdetermines whether a one-bit Boolean function f is balanced (i.e. gives 1 for one input
and 0 for the other) or constant (gives 0 for both inputs or 1 for both inputs). Classical algorithms require at least
two calls to the function f to answer this question.Deutsch [77] showed that an implementationwith two qubits
can answer the questionwith a single call to f.

Deutsch’s implementation starts by initializing the two qubits in state ∣ ∣ñ Ä ñ0 1A B, and subjects them to a
series of gates, represented as a quantum circuit in figure 5(a). The operator ( )Fi

2 infigure 5(a) is a quantum
implementation of the function fi thatmaps the two-qubit state ∣ ∣ñ ñx y to ∣ ∣ ( )ñ Å ñx f x yi , with⊕ the sum
modulo 2 [37, 77], andH is theHadamard operator. At the end of the circuit, the state of thefirst qubit is ∣ ñ1 A if fi
is balanced and ∣ ñ0 A if it is constant [77].

Recently, Kiktenko et al [37] proposed an alternative implementation using a qudit with four primary levels.
As afirst step, theymap the two-qubit basis states onto a four-level qudit basis, {∣ }ñ = ¼j j, 1, 4 , according to

∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ∣ ∣ ( )
ñ Ä ñ  ñ ñ Ä ñ  ñ
ñ Ä ñ  ñ ñ Ä ñ  ñ

0 0 1 , 0 1 2 ,

1 0 3 , 1 1 4 . 9
A B A B

A B A B

The function of interest, fi, ismapped onto a unitary operator ( )Fi
4 that acts on the qudit space as described by

equation (10) below. To determine the character of fi, the qudit is initialized in state ∣ ñ2 and subjected to the
circuit infigure 5(b)using the unitary operator ( )Fi

4 associatedwith fi. Tofind outwhether the function is
constant or balanced, it suffices to determinewhether themolecule at the end of the evolution is in state ∣ ñ2 or
not: if themolecule is in state ∣ ñ2 , the function is constant; otherwise, it is balanced [37]. Thus, after theMW
pulses implementing the circuit, themolecule is subject to a projectivemeasurement on state ∣ ñ2 . For 40Ca19F,
this state can be detected by laser-induced fluorescence (LIF) [103]. For 87Rb133Cs, hyperfine-resolved STIRAP
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can be used to transfer themolecule to a Feshbach state that is then dissociated into constituent atoms [92]. The
atoms are then detected by LIF.

The circuit infigure 5(b) involves the set of gates {  H H G G, , ,A B B A
CNOT

A B
CNOT, }( ) ( ) ( ) ( )F F F F G, , , ,1

4
2

4
3

4
4

4
M in the

d=4 qudit space. These are defined using the single-qubit gates from section 3 as

( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( )

( )

( )

( )

( )

( )

( )

p p

p p p

p

p p

p

= - - =

= - - =

= =

= =

= -



 



 

  



 



H F I

H F G

G F G

G F

G

2 1, 2 1, , 4 ,

2 1, 2 1, , 1, ,

1, , ,

1, , 1, ,

2 1, .

10

A 1,3 2,4 1
4

B 1,2 3,4 2
4

1,2 A B
CNOT

A B
CNOT

3,4 3
4

A B
CNOT

B A
CNOT

2,4 4
4

1,2

M 1,2

Here I(4) is the identity operator of dimension 4 and { }A, B identify the qubit spaces. The operators ( )Fi
4 acting

on the qudit states ∣ ∣ñ ¼ ñ1 , , 4 result in the same states in the qudit space as the two-qubit operators ( )Fi
2 acting on

the states ∣ ∣ñ ñ0 0A B, ∣ ∣ñ ñ0 1A B, ∣ ∣ñ ñ1 0A B, and ∣ ∣ñ ñ1 1 ;A B see [37] for details.
This algorithm can be implemented using the four levels of the 40Ca19Fmolecule identified in section 1.2,

with themapping ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣- ñ  ñ ñ  ñ ñ  ñ ñ  ñ1, 1 , 1 1 , 1, 0, 0 2 , 1, 1 , 1 3 , 1, 1 , 0 4u l l . The total time
required to apply all the gates will be m»t 140 stot , assuming that themaximumRabi frequency is ( )p pt2 2 ,
with m=pt 5 s2 . The error due to decoherencewill then be t ~ -t 10tot d

2. The total error due to off-resonant
excitation from all gates, calculated using equation (1), will be∼10−5. The total gate error due to the uncertainty
in the frequency of the transitionwill be 10−3. This will result in a total error of only∼10−2 in the computed
output, without any error correction.

TheN=0 hyperfine levels of ultracold 87Rb133Csmolecules shown in table 2 can also be used to define a
d=4 qudit space, with themapping ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ñ  ñ ñ  ñ ñ  ñ ñ  ñ0, 3 1 , 0, 5 2 , 0, 4 3 , 0, 4 40 0 0 1 . As there is no
direct two-photon transition between levels 1 and 3,HA needs a longer sequence of gates,

( ) ( ) ( ) ( )p= - -   H 1, 0 2 1, 0 1, 0 2 1,A 1,2 2,3 1,2 2,4 . For tπ/2=0.3 ms, the total time required to
apply all the gates will be ttot≈10 ms. The error due to decoherence, off-resonant excitation, and frequency
uncertainty will be∼10−2, 10−2 and 10−2 respectively, giving a total error of only∼10−2 in the computed output.
For a qudit formed fromN=1 levels of 87Rb133Cs, the total error is around 5×10−2, because of the additional
decoherence from the ac-Stark effect.

5. Conclusion

Wehave examined the rich internal structure of 2Σ and 1Σmolecules, with a view to using the internal levels as
qudits for quantum information processing usingmicrowave pulses.We have analyzed twomolecules of current
experimental interest, 40Ca19F and 87Rb133Cs, confined in themotional ground states of optical tweezers. The
large splitting between the hyperfine levels of 2Σmolecules compared to 1Σmolecules is advantageous in
reducing off-resonant excitation of neighboring levels. Nevertheless, we have identified possible
implementations of four-level qudits in both 40Ca19F and 87Rb133Cs, using amagnetic field to engineer suitable
level spacings, transition strengths andfield sensitivities.We have discussed two primary sources of decoherence
for qudits formed from these levels: (i) differential ac-Stark shifts due to intensity noise in the trapping laser; (ii)
magnetic field noise. Amajor advantage of 1Σmolecules is the very slow decoherence induced bymagnetic field
noise, which arises because theirmagnetic sensitivity is typically three orders ofmagnitude smaller than for 2Σ
molecules. Hyperfine levels withN=0 have equal ac-Stark shifts for bothmolecules and are therefore very
stable against decoherence associatedwith laser intensity noise.

We have derived a set of gates, based onmicrowave transitions, for a qudit formed froma single ultracold
molecule.We have shownhow a sequence ofmicrowave pulses applied to a polarmolecule can be used to

Figure 5.Quantum gates for implementing theDeutsch algorithmusing (a) two qubits and (b) a single four-level qudit. The gate
operators for the qudit are given in equation (9).
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implement theDeutsch algorithm.Our calculations indicate that the algorithm can be executed in 0.14 ms using
40Ca19F and 10 ms using 87Rb133Cs, with an error∼10−2 in each case. TheDeutsch algorithmprovides a proof-
of-principle experiment to demonstrate the use of ultracoldmolecules to performquantum computation.
Scalabilitymay be achieved in the future by implementing gates involvingmultiplemolecules, confined in an
array of tweezers and linked by the dipole–dipole interaction [63–69].
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