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Abstract
In order to study transport in complex environments, it is extremely important to determine the
physicalmechanismunderlying diffusion and precisely characterize its nature and parameters. Often,
this task is strongly impacted by data consisting of trajectories with short length (either due to brief
recordings or previous trajectory segmentation) and limited localization precision. In this paper, we
propose amachine learningmethod based on a random forest architecture, which is able to associate
single trajectories to the underlying diffusionmechanismwith high accuracy. In addition, the
algorithm is able to determine the anomalous exponent with a small error, thus inherently providing a
classification of themotion as normal or anomalous (sub- or super-diffusion). Themethod provides
highly accurate outputs evenwhenworkingwith very short trajectories and in the presence of
experimental noise.We further demonstrate the application of transfer learning to experimental and
simulated data not included in the training/test dataset. This allows for a full, high-accuracy
characterization of experimental trajectories without the need of any prior information.

In the last decades, the research in biophysics has conveyed large efforts toward the development of experimental
techniques allowing the visualization of biological processes onemolecule at a time [1–4]. These efforts have
beenmainly driven by the concept that ensemble-averaging hides important features that are relevant for
cellular function. Somehow expectedly, experiments performed bymeans of these techniques have shown a
large heterogeneity in the behavior of biologicalmolecules, thus fully justifying the use of these raffinate tools.
Besides, experiments performed using single particle tracking [3] have revealed that even chemically-identical
molecules in biologicalmedia can display very different behaviors, as a consequence of the complex
environment where diffusion takes place. Byway of example, this heterogeneity is reflected in the broad
distribution of dynamic parameters of distinct individual trajectories corresponding to the samemolecular
species, such as the diffusion coefficient, well above stochastic indetermination. Typically, the trajectories are
analyzed by quantifying the (time-averaged)mean square displacement (tMSD) as a function of the time lag τ
[5]:
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The calculation of this quantity—expected to scale linearly for a Brownianwalker in a homogeneous
environment—has provided a ubiquitous evidence of anomalous behaviors in biological systems, characterized
by an asymptotic nonlinear scaling of the tMSD curve d t~ a2 .More experiments have shown that the
anomalous exponent can vary fromparticle to particle (figure 1(a)) as a consequence ofmolecular interactions
and that these changes can be experienced by the same particle in space/time [6]. Severalmethods have been
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proposed to accurately estimate this exponent for single trajectories [7, 8] in the presence of experimental
limitations, such as optical diffraction and the finite length of the trajectory.

In some cases, this heterogeneity leads to exotic effects, such as the breaking of ergodicity observed in several
cellular systems [9–12]. Nonergodicity implies the nonequivalence of time and ensemble averages of themean
squared displacement (MSD). In the nonergodic case, d t2( ) remains random even in the longmeasurement
times, i.e. the diffusion coefficients are irreproducible but the distribution of the tMSD is universal [13]. For
nonergodicmodels, the determination of the anomalous exponent at the single trajectory level does not fully
characterize themodel, since the tMSD can have different scalingwhen averagedwith respect to the time or to
the ensemble (figure 1(b)). Therefore, it requires the calculation of the ensemble-averagedMSD (eMSD) over a
rather large number of trajectories [5].

The emergence of anomalous behavior has also beenwidely studied from the theoretical point of view and
conceptually-differentmodels have been proposed [5]. However, the fact thatmodels with different physical
properties can produce the same tMSD exponent, strongly limits the unambiguous determination of the
underlying dynamics, based only on the evaluation of the tMSD (figure 1(a)). In order to solve this ambiguity, a
large effort has beenmade to classify experimental data showing anomalous transport. As an example, the use of
alternative estimators [14, 15] has been proposed to determinewhether the pioneering results of Golding and
Cox [16]were arising from a continuous-time randomwalk (CTRW) [17] or fractional Brownianmotion (FBM)
[18]. This search for a better classification betweenCTRWand FBMoften relied in the determination of the
(non)ergodicity of the data [15, 19–21], since CTRW is consistent withweak ergodicity breaking [22]. The
experimental evidence of nonergodic behavior has boosted the proposal of new theoretical frameworks
consistent with these features [23, 24].

In this scenario, determining whether a single-molecule trajectory (or a short segment of it) displays normal
or anomalous behavior by its tMSD scaling exponent and associating themotion to a specific physicalmodel are
elements of paramount importance to gain insight about the biophysicalmechanismunderlying anomalous
diffusion, thus providing a detailed picture of a variety of phenomena. Recent works in this direction have
focused on classification schemes based on optimization procedures [8], power spectral density [25], or Bayesian
approaches [26, 27].

Surprisingly, in spite of the fast rise ofmachine learningmethods, little efforts have beenmade to
characterize single trajectories. A few attempts in this sense have beenmainly directed to qualitatively

Figure 1.Examples of singlemolecule trajectory heterogeneity. (a)Time-averagedmean squared displacement (tMSD) calculated
from single trajectories. In the upper panel, we show the tMSDof two trajectories corresponding tomolecules that display different
anomalous exponentsα in spite of belonging to the same physical process. In the lower panel, we show the tMSDof two trajectories
generated fromdifferent diffusion processes but producing a similarα. In this case, the exponent determined from the tMSD cannot
be used to discriminate amongmodels. (b)The upper panels display representative trajectories generated fromFBM (left) andCTRW
(right)models. The two bottompanels show the corresponding tMSD curves (continuous lines) using the same color coding. Since
the subdiffusive FBM is ergodic, the tMSDof a single trajectory can be used to extract the anomalous exponent of themodel. However,
for nonergodic processes such as theCTRW, the tMSDof a single trajectory is a randomvariable and its anomalous exponent can be
different from the one associated to themodel, which calculation requires the use of ensemble averaging. In both cases, the RF
algorithm is able to determine the correct anomalous exponent associatedwith themodel, evenwhen it does not simply correspond to
the exponent of the single trajectory tMSD, as in the nonergodic case. The values of exponent provided by the RF algorithm are
schematically represented by the dashed lines, and are in good agreement with the ground truth values, which for theCTRWwere also
calculated by the eMSD (dotted lines).
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discriminate among confined, anomalous, normal or directedmotion [28, 29], without extracting quantitative
information of classifying with respect to the underlying physicalmodel.

This paper presents amachine learning algorithmbased on theRandom forest (RF) architecture that
efficiently and robustly characterizes single trajectories at different levels:first, obtaining the discrimination
among several diffusionmodels; then, providing the estimation of the exponent that characterizes the
anomalous diffusion, thus inherently classifying between normal and anomalous (sub- and super-) diffusion.
The algorithm allows to accurately tackle these challenging problems evenwhen dealingwith short and noisy
trajectories.

In comparison to previously reportedmethods, the algorithmwe present in this paper allows for the
characterization of a trajectory without prior knowledge about the process fromwhich the single trajectory has
been extracted.Most of theworks existent in the literature focus their studies on anomalous ergodic trajectories
(usually FBM related processes), whereas ourmethod is robust against the appearance of nonergodicity.While
showing similar accuracy as others on ergodic trajectories [8, 27], to the best of our knowledge, ourmethod
represents thefirst attempt to extract the anomalous exponent for nonergodic processes through single-
trajectory characterization.

1.Machine learningmethod

In this section, we outline themain parts of the trajectory characterization algorithm, consisting of: themachine
learning algorithm that takes the formof a RF architecture; the simulated dataset; and the preprocessing applied
to the dataset before being analyzed by the RF. Figure 2 shows a schematic representation of the pipeline.

1.1. Random forest
RF is an architecture based on decision trees. A decision tree is an efficient non-parametricmethodwidely used
for classification and regression problems [30]. The basic idea consists in producing recursive binary splits of the
input space, so that the samples with the same label are grouped together. The criterion to produce the splits is
based on a homogeneitymeasure (usually, the information entropy) of the target variable within each of the
obtained groups. In regression problems, a commonly used criterion is to select the split thatminimizes the
mean squared error; this recursive process continues until some stopping rule is satisfied, e.g. a common one is
to consider that a tree node can be split if it containsmore than a given number of samples; therefore, the
minimumnumber of samples required to split a tree node should be adjusted in order to control the size of the
tree, thus preventing overfitting. Once a decision tree is obtained, the output for unseen samples is computed
just passing them through the nodes of the tree, where a decision ismadewith respect towhich direction to take.
Finally, a terminal tree node is reached, where the output is obtained.

ARF is a tree-based ensemblemethod, which builds several decision treemodels independently and then
computes afinal prediction by combining the outputs of the different individual trees [31]. In particular, the

Figure 2. Schematic of themethod. An experimental trajectory isfirst transformed into a time series and preprocesses according to the
procedure described in section 1. The trajectory is fed to the algorithm for its characterization through a RF, previously trained on
simulated data.We showRF capability to extract two characteristics of the trajectory: (A) themost likely theoreticalmodel among the
ones contained in the training dataset and (B) the anomalous exponentα.
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ensemble is producedwith single trees built from samples drawn randomlywith replacement (bootstrap) from
the training set. An additional randomness is addedwhen splitting a tree node because the split is chosen among
a random subset of the input variables, selected in this case without replacement, instead of the greedy approach
of considering all the input variables. Due to this randomization, the bias of the ensemble is slightly higher than
that of a single tree, but the variance is decreased and themodel ismore robust to variations in the dataset.

RF is a very powerful, state-of-the-art technique for both regression and classification problems, usually
outperforming not only single decision trees but also sophisticatedmodels, as shown in a thorough comparison
study [32].

1.2. Training and test datasets
The training dataset is built out of numerical simulations of trajectories fromvarious kinds of theoretical
models. As a natural choice, we included three of the best-known and usedmodels that can give rise to
anomalous diffusion: CTRW [17], FBM [18] and Lévywalks (LW) [33]. In addition, we included trajectories
from the annealed transient timemodel (ATTM) [23]. In the ATTM, a diffuser performs a randomwalk but
stochastically changes the diffusion coefficient at random times. Both the diffusion coefficient and the time at
which the diffusivity changes are drawn fromdistributions with a power law behavior [23]. Its time-averaged
MSD shows a linear scaling, but themodel has a regime inwhich it displays weak ergodicity breaking. The
ATTMhas been shown to reproduce the features observed for the diffusion of a cellmembrane receptor [12],
one of the experimental datasets analyzed.

1.3. Preprocessing
Our aim is to design amethod that can be used to accurately characterize heterogeneous trajectories without
having to calculate other parameters or using a priori knowledge. In order to be able to analyze data coming from
any possible spatiotemporal scale, we designed a preprocessing procedure that properly rescale the data.We
implemented the following procedure, chosen among other plausible normalization techniques as it gives rise to
the best results in terms of accuracy:

1.We use one of themodels above to simulate the trajectory of a particle during tmax time steps. The result is a
vector of positions, = ¼X x x x, , , t1 2 max

( ).

2. This vector is transformed into a vector of distances traveled in an interval of time Tlag, i.e.
= D D ¼ D -W x x x, , , J1 2 1( ),, where =J t Tmax lag.We defineDxi as

D = - +x x x . 2i iT i T1lag lag∣ ∣ ( )( )

3. To normalize the data, we divideW by its standard deviation to get a new vector Ŵ .

4. Then, we do a cumulative sumof Ŵ to construct a normalized trajectory X̂ .

Summarizing, the previous procedure generates a new trajectorywhich is constructed via the normalized
displacements of the original trajectory. Thismakes that themagnitudes of the resulting trajectories are
comparable, nomatter what were their original values.While the RF could be trained using Ŵ , our results show
that trainingwith X̂ gives indeedmuch better results. The same preprocessing is applied to both the simulated
and experimental trajectories used in sections 2 and 3.

2. Trajectory characterization as amachine learning problem

Wewill use ourmethod to characterize single trajectories according to two different schemes: (A) discrimination
among diffusionmodels; (B) prediction of the anomalous exponentα, that inherently implies classification as
normal or anomalous diffusion. For each of these problems, we created a dataset of 1, 2·105 trajectories with

=t 10max
3, divided into a training and test set with ratio 0.8/0.2, respectively. The results presented in all the

figures and the values of the accuracy discussed in the text correspond to the onesmeasured in the test set,
ensuring that the RF does not present overfitting in any of the problems considered. The different classes
considered in each problemhave an equal number of trajectories, hence allowing us to use the accuracy as a
measure of the goodness of the RF. For technical details and an practical example of the implementation, we
refer the reader to the appendix and to the code repository [34].
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2.1.Discrimination among diffusionmodels
In order to predict the diffusionmodel underlying a certain trajectory, we construct a RFwhose input is the
normalized trajectory X̂ , and the output is a number between 0 andN−1 corresponding to the different
models, withN the total number ofmodels used in the training. Figure 3(a) shows the accuracy of the RF. Each
line corresponds to a training datasetmade up of differentmodels. In the absence of data preprocessing (point
marked as ‘Raw’ in the x-axis), the RF shows large accuracy. The accuracy drops significantly asTlag increases,
likely as a consequence of the removal ofmicroscopical properties of themodel, such as short-time correlations,
hence preventing the RF from learning important features of them. Thismight lead to the conclusion that the
filtering introduced by the preprocessing steps only limits the time resolution. This is obviously true for
simulated data, obtained at the same scale, for which preprocessing is unnecessary. However, when dealingwith
experimental data of unknown spatiotemporal scale, such a preprocessing is of fundamental importance to be
able to apply the same architecture and training dataset, in spite of the little loss of performance.

In addition, the accuracy heavily depends on similarities among themodels to be discriminated. For
example, the accuracy obtainedwith a RF trained onlywith trajectories reproducing conceptually different
models such as FBMandCTRW (triangularmarkers in figure 3(a)) is higher than the one obtainedwhen
including in the trainingmodels with similar characteristics, such asCTRWandATTM, independently ofTlag
(red circles and yellow squares infigure 3(a)).

2.2. Anomalous exponent estimation
Afirst approximation toward the characterization of the anomalous exponent can be based on a regression
problem, inwhich the output of the RF is the value of the anomalous exponentα. The nature of the regression
algorithmmakes that the output of the RF is the continuous valuewhich better satisfies the constraints learn
during training.

To characterize the performance of themethod, we calculate the prediction error ε of a trajectory as the
absolute distance between the predicted exponent and the ground truth value. The percentage of trajectories

eN̄ ( )with a given error ε is represented in the bar plots offigure 3(c) for three different cases and a subdiffusive
dataset including trajectories obtained fromFBM,CTRWandATTM.The case (i) considers trajectories with

=t 10max
3 without noise, while the cases (ii) and (iii) show results for shorter and noisy trajectories (see

discussion below). For case (i) the calculatedmean absolute error (MAE) of the prediction of the anomalous
exponent gives a value of 0.11.Moreover, the histogram showed infigure 3(c)(i) shows that for∼80%of the
trajectories, the output exponent lies within 0.1 from the true value.

2.3. Experimental scenario: short andnoisy trajectories
A remarkable feature of themethod is the possibility to correctly characterize very short trajectories. In
figures 3(b) and (d), we show the ability of the RF to characterize short trajectories. Infigure 3(b), we plot the
accuracy inmodel discrimination as a function of the length of the trajectories, tmax. Infigure 3(d), a similar
study is done, now tracking theMAEof the RF trained to predictα. Althoughwe observe an expected decrease of

Figure 3.Benchmarking the RF algorithm: (a) accuracy of the RFwhen discriminating amongmodels as a function of the
preprocessing parameter Tlag. Blue triangles=CTRWversus FBM,Red circles=CTRW, LW, FBM,ATTM, andYellow
squares=CTRWversus ATTM. (b)Accuracy of themodel discrimination as a function of the length of the trajectories tmax. (c)
Histograms of the error in the prediction of the anomalous exponent for different values of the length trajectory tmax andnoise
varianceσn.Y-axis is percentage of trajectories N̄ with given error εwhen predicting the value ofα. Each histogram corresponds to
the highlighted points in (d) and (e). (d)MAEof the anomalous exponent prediction as a function of the length of the trajectories tmax.
(e)MAE in anomalous exponent prediction as a function of the variance of the normal noise variance. The RFwas trainedwith a
dataset without noise and then asked to classify trajectory of suchmodels with normal noise given by(3).Tlag=0, i.e. raw trajectories,
were used for (b)–(e).
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performance for short trajectories, both plots show that the RF is able to characterize trajectories as short as only
10 points. Quantitatively, when comparing trajectories of 10 points with larger ones, of 1000 points, themodel
discrimination accuracy only decreases by a factor of 8.2%,while theMAEdecreases by a factor of 18%. Panel
(ii) infigure 3(e) shows the error distributionwhen predictingα for =t 100max .

Importantly, one has also to take into account that the experimental trajectories have a limited localization
precision, that results intoGaussian noise. Therefore, it is necessary to test the robustness to noise of the RF. To
this end, we trained the RFwith trajectories simulated as described before and thenwe try to predict the
anomalous exponent of trajectories belonging to the same dataset, but whose positions X were perturbedwith
noise to obtain the dataset X n( )

m m s= +x x , , 3i
n

i i n( ) ( )( )

whereμi(μ,σn) is a randomnumber retrieved from aNormal distributionwithmeanμ=0 and varianceσn.
The results obtained for trainingwith FBM,CTRWandATTMs are presented infigure 3(d). TheRF shows a
great robustness against noise. Forσn<1, theMAE appears almost unaffected.When increasingσn, we see that
theMAE increases, as expected, but even for largeσn theMAE is still reasonable.

3. Transfer learning in simulated and experimental data

To further show the advantages of ourmachine learning algorithm, we applied it to three sets of trajectories
different from those included in the training/test dataset. This is often referred as transfer learning, as certain
architecture is trained in one setting and then applied to a different one. For this, wewill consider three datasets:

(i) Simulated data coming from a recently presented model [35], describing the movement of a diffuser in a
network of compartments of random size and randompermeability, both drawn fromuniversal
distributions. Thismodel shares the same subordination as the quenched trapmodel, i.e. a CTRWwith
power-law distributed trapping times and recapitulates the complexity and heterogeneity found in some
biological environments. This choice allows to test the algorithmover a conceptually differentmodel with
respect to the training dataset, while having the advantage of tuning the value of anomalous exponents.

(ii) Experiment 1, reporting the motion of individual mRNA molecules inside live bacterial cells [16]. The
tMSD shows anomalous diffusionwithα∼0.7; this behavior has been associated to FBM [14, 36].

(iii) Experiment 2, corresponding to a set of trajectories obtained for the diffusion of a membrane receptor in
living cells [12]. Although the time-averagedMSD shows a nearly linear behavior, the data present features
of ergodicity breaking due to changes of diffusivity [37] and have been associated to the ATTMmodel.

Following the scheme presented infigure 2,first we train theRFwith simulated trajectories obtainedwith
different theoretical frameworks. It should be noted that for this section, sincewe deal with trajectories that do
not show superdiffusive behavior, we do not include the Lévywalks process in the training dataset.

3.1. Results
Following the same structure of the previous section, we start by discriminating the diffusionmodel that can be
associated to datasets (i)–(iii). The results are reported in table 1, showing a high rate of correct classification for
the dataset (i). For the experimental data in datasets (ii) and (iii), we do not dispose of ground truth values, thus
we compare our results with those of previous analysis, performedwith alternativemethods. For the trajectories
of Experiment 1, we found that the algorithm largely assign them to the FBM, in strong agreement with
previously reported results based on the concept of variation [14]. The data of Experiment 2aremainly assigned
to theATTMmodel. Thismodel was shown to reproduce features observed in these data, such as subdiffusion

Table 1.Process discrimination for the datasets considered in
section 3. Shown is the percentage of trajectories classified as
associated to eachmodel. The results for (i)were donewith
Tlag=0 and for datasets (ii) and (iii)withTlag=1.

Dataset
Predictedmodel

CTRW FBM ATTM

(i)Compartmentsmodel 89.2% 0 10.7%

(ii)Experiment 1 4.5% 86.6% 8.9%

(iii)Experiment 2 16.4% 33.2% 50.4%
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andweak ergodicity breaking [12].Moreover, a little fraction of trajectories are classified asCTRW.As
previouslymentioned, CTRWandATTMshare similar features (such as time subordination), increasing the
difficulty in discriminating between them. This appears to be themain source of error in the results.

To obtain further insights on the study of the diffusion, we used theRF to extract the anomalous exponents.
For thefirst dataset (i), based on simulations, we generated trajectories having a broad range of subdiffusive
trajectories, namelyαä[0.2, 1]. Then, we used the trained RF to predict the value of the anomalous exponent
and evaluated the error as the absolute value of the difference between the actual and predictedα. The results are
reported in the histogramoffigure 4(i) and display a distribution similar to the one obtained for the training/
testing data. Thus, we run the same procedure on the experimental data. For the two datasets, in figures 4(ii)–(iii)
we report the values obtained for the anomalous exponentα. The histogramof theα obtained for the
trajectories of Experiment 1 (dark blue) showsmainly subdiffusive values, peaked in the range 0.6–0.8. This is in
good agreement with the original paper [16], whereαwas estimated bymeans of two different approaches as 0.7
and 0.77.However, themethod also classifies a percentage of the trajectories as havingα=1. Importantly, the
performance of themethod can be further improved by taking advantage of the results of themodel
discrimination discussed above and shown in table 1. In fact, when the latter classification indicates thatmost of
the trajectories follow a specific diffusivemodel, one can train the algorithmwith a dataset composed only of
trajectories simulatedwith thatmodel. This kind of training produces exponent values in the same range, but
largely reduce the fraction of those associated toα=1, as shown in figure 4(ii) (light blue).

Last, in figure 4(iii)weplot the distribution of exponents obtained for the Experiment 2. The subdiffusive
values show a large number of occurrences in the 0.8–0.9 range, compatible with the exponent 0.84 calculated in
previous studies [12]. Noteworthy, due to the nonergodic nature of the data, in the original paperα could only
be calculated from the ensemble-averagedMSD,whereas the RF is able to determine this exponent from single
trajectories.

4. Conclusions

Wehave presented amachine learningmethod, based on aRF architecture, which is capable to analyze a single
trajectory and to determine the theoreticalmodel that describes it at best.Moreover the samemethod is used for
predicting its anomalous exponent with high accuracy, and thus classify themotion as normal or anomalous.
Themethod does not need any prior information over the nature of the system fromwhich the trajectory is
obtained. It acts as a blackbox, whichwe trainwith a dataset of simulated trajectories, and then it is used to
characterize the trajectory of interest. In particular, its spatial scale is not of any relevance, as we devised a
preprocessing strategywhich rescales trajectories to obtain comparable estimators fromvery different systems.
Themethod requires aminimal amount of information. First, because it performs extremely well evenwith
surprisingly short trajectories. Second, because it is robust with respect to the presence of a large amount of
thermal noise, and can thus be applied evenwith low localization precision.We showcase the suitability of our
method by applying it to two experimental datasets bymeans of transfer learning. Overall, thismethod can be of
large application to characterize experiments from several research areas. In contrast to othermethods, it can
determine the type of diffusion and the anomalous exponent also for nonergodicmodels, without the need of
performing ensemble averages.We note that recent works showhowothermachine learning architectures, such
as convolutional neural networks and long-short termmemory neural networks, are also capable of doing single

Figure 4.Transfer learning: predicting the anomalous exponent for experimental trajectories. Labels (i), (ii) and (iii) refer to the
datasets discussed in section 3. For dataset (i), we plot the percentage of trajectories N̄ where the predicted value ofα has an absolute
error ε. As it is a simulated dataset, exponents from0.2 to 1 are considered. The input to the RFwere the raw trajectories, with no
preprocessing. For datasets (ii) and (iii), we present the percentage of trajectories predicted to have an anomalous exponentα. The
trajectories were preprocessedwithTlag=1. For dataset (ii), we present results two training datasets: dark blue for amixed dataset
and light blue for a FBMdataset.
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trajectory characterization [29, 38]. The development of thesemethods and of other deep learning architectures
may help to avoid the preprocessing procedure and could lead to increase the accuracy on the problems
described in this work.
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Appendix

A.1.Hyperparameters
We summarize here the different parameters used to train theRFmodels whose results are presented in this
work. Common to all are the number of ensembled trees (100), the train/test dataset ratio (0.8/0.2) and the size
of training set (1, 2·105 trajectories). For the details of eachfigure, see table A1.
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