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Abstract

We show that a hybrid atom-optomechanical quantum many-body system with two internal atom
states undergoes both first- and second-order nonequilibrium quantum phase transitions (NQPTs).
A nanomembrane is placed in a pumped optical cavity, whose outcoupled light forms a lattice for an
ultracold Bose gas. By changing the pump strength, the effective membrane-atom coupling can be
tuned. Above a critical intensity, a symmetry-broken phase emerges which is characterized by a
sizeable occupation of the high-energy internal states and a displaced membrane. The order of this
NQPT can be changed by tuning the transition frequency. For a symmetric coupling, the transition is
continuous below a certain transition frequency and discontinuous above. For an asymmetric
coupling, a first-order phase transition occurs.

1. Introduction

Using the concept of phase transitions, a great variety of different physical systems can be classified in terms of
their emergent collective behavior [1-3]. While phase transitions of both classical and quantum systems in
equilibrium are by now quite well understood, the extension to nonequilibrium is a relatively new field. In
particular, it is of interest to understand which equilibrium properties survive at nonequilibrium, involving both
external driving and dissipation. On the other hand, novel properties may emerge in driven dissipative systems,
where energy is not conserved, and the detailed balance condition and the fluctuation—dissipation theorem are
no longer valid. Yet, from an experimental point of view, it is not easy to realize and control systems with a
nonequilibrium phase transition, in particular when quantum fluctuations dominate over thermal effects from
the environment. Currently discussed systems, which show nonequilibrium quantum phase transitions
(NQPTs), are ultracold atoms in a lattice inside an optical cavity [4—8] and microcavity-polariton systems
[9-11]. Laser-driving offers the unique possibility to address and switch between different phases of quantum
many-body systems by tuning the pump strength.

Recently, also for hybrid atom-optomechanical quantum systems [12—16],a NQPT of second-order has
been predicted [17] and a rich phase diagram has been obtained [18]. Such hybrids combine optomechanics
with atom optics, as theoretically proposed [12] and later experimentally realized [13—16]. The vibrational
motion of a nanomembrane in an optical cavity is coupled to the spatial motion of a distant cloud of cold *’Rb
atoms that reside in the optical lattice of the outcoupled light field. By combining different cooling mechanisms
such as optical feedback cooling [15] and sympathetic cooling by utilizing the atom gas as a coolant [12—15], the
nanooscillator can be cooled close to its quantum mechanical ground state. Quantum many-body effects lead to
collective atomic motion with an instability [16] and a second-order NQPT [17, 18] to a state with a spatially
shifted optical lattice. Besides, indirect quantum measurement, atom-membrane entanglement and coherent
state transfer are in the focus of interest [19-23].

A significant drawback in the motional coupling scheme [12] is the strong frequency mismatch between the
nanooscillator and the atomic motion in the optical trap which hinders resonant coupling. A decisive advance is

©2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/ab51fa
mailto:niklas.mann@physik.uni-hamburg.de
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab51fa&domain=pdf&date_stamp=2019-11-18
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab51fa&domain=pdf&date_stamp=2019-11-18
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 21(2019) 113037 N Mann et al

PBS WL, 0—

Figure 1. A nanomechanical membrane in an optical cavity is coupled to the internal states of a distant atomic ensemble that is trapped
in an optical lattice. The internal states of the atoms are arranged in a A-type scheme according to the inset.

the use of internal atomic states instead of their spatial degree of freedom, such that this internal state coupling
scheme [24] enables resonant coupling. Here, the motion of the mechanical membrane is indirectly coupled to
transitions between internal states of the atoms via translating the phase shift of the light, caused by the
membrane displacement, into a polarization rotation using a polarizing beam splitter (PBS). By this scheme,
membrane cooling [24, 25], or a displacement-squeezed membrane [26] can be realized. The atoms can
implement an effective harmonic oscillator with negative mass [27], that, in turn, can be utilized for quantum
back-action evading measurements [28], enabling a high displacement sensitivity. Moreover, the collective
nature of the hybrid system mediates long-range interactions in the atom gas, similar to those in a spinor dipolar
Bose—Einstein condensate [29, 30].

In this work, we show that the internal state coupling scheme also allows for a NQPT, whose order can be
readily tuned by changing the atomic transition frequency. Thus, both a first- and a second-order NQPT can be
realized in the same physical set-up by only changing a directly accessible control parameter. We show this for
the ‘membrane-in-the-middle-setup’ [24], where the adiabatic elimination of the light field yields an effective
coupling between the membrane and the transition between two states in the atom gas, see figure 1. In a mean-
field description, the atomic part is reduced to a single-site problem with a Gaussian ansatz for the condensate
profile. Tuning the atom-membrane coupling by changing the laser intensity, the system undergoes a NQPT.
We provide simple analytical expressions for the resulting critical point. Moreover, by tuning the atomic
transition frequency, even the order of the phase transition can be changed from second- to first-order and
vice versa. In case of a discontinuous phase transition, the system exhibits a characteristic hysteresis which can be
detected by measuring the occupation of the internal states of the atom gas. Throughout this work, we assume
natural units and consequently set i = ¢ = 1.

2.Model and adiabatic elimination of the light field

We consider an ensemble of N ultracold *”Rb atoms placed in an external optical lattice. The atoms exhibit three
relevant internal states 7 € {+, —, e} thatare arranged in a A-type level scheme. The two low-energy states are
energetically separated by the atomic transition frequency 2,, which can be tuned by an external magnetic field.
The transition between the states |+) and |e) is driven by an applied o _ circularly polarized laser with frequency
wr.. The passing beam is directed to a PBS, which divides the circularly polarized light into linearly polarized =,
and , light beams on two perpendicular arms, which are of equal length measured for an undisplaced
membrane, see figure 1. The vertical path involves a fixed mirror which reflects light with conserved polarization
T, In the horizontal path, a nanomembrane with resonance frequency 2y, is placed inside a low-finesse cavity,
which reflects m, — m, light when undisplaced. The light of both arms is directed back onto the atoms mediating
the effective atom-membrane coupling.

In a quasi-static picture, a finite displacement of the membrane induces a finite phase shift on the
propagating horizontal 7, beam leading to a rotated polarization after the light has passed the PBS backwards.
The emergent o, photon now impinges on an atom and may induce a two-photon transition between the states
|=) < |4), when the resonance condition Q,, ~ €, is met. The back-action of the atoms on the membrane is
induced by a transition of the atoms between the states |— ) and |+). The emitted o photons pass the PBS with
50% probability horizontally and hit the membrane. This changes the radiation pressure on the membrane.
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The prototypical system Hamiltonian can be written as a sum of five consecutive terms
Hiot = Hy + Hw + Hi + Hao1 + Hioe (1)

Each of the first three terms describes one of the three compounds: the atomic condensate, the nanomembrane,
and the light field, respectively. The atom-light field interactions and the optomechanical coupling are included
in H,_jand H,, i, respectively. We consider one well separated vibrational mode of the membrane which is
modeled as a single harmonic oscillator

H, = Qna'a, )
with the mechanical frequency €2, and bosonic annihilation (creation) operator 4 (4") which follow the usual
bosonic commutation relation [d, a'] = 1. The atomic gas is modeled by the standard many-body Hamiltonian

27’i

A, = fdz 3! (2) [V (z) — Z gTT,\If (2)¥ /(z)]\I/ (2), 3)
where the potential V,(z) includes the energy of the corresponding internal state as well as an optical potential,
and m is the mass of an atom. Moreover, we assume a contact interaction with the one-dimensional interaction
strength g, which, in general, can be different depending on the internal states in which the atoms reside. We
assume a large detuning A between the frequency of the pump laser and the addressed transition, such that we
can eliminate the excited state |e). Hence, we only consider the two internal states | —) and |+) in our description.
The llght modes have two possible optical polarizations o_, o, which are represented by the bosonic operators

by by, respectively, and are included over a bandwidth 26 around the laser frequency wy . They are
described by

R wr+0 AF A At A
f = f ) dww(b, bu + by b, (4)
wL—

2.1.Linearized coupling of the membrane and the light field
The external pumping laser has a o polarization, such that the coherent drive is included by the linear
replacement at the laser frequency wy,

l;w_ — l;w_ + §(w — wy)e Wity (5)

In the following, we assume |« | >> 1such that the interaction between the light field and the membrane
(atoms) can be linearized in the operators b,,_ and b,,.. In a reference frame that rotates with the laser frequency
wr, the linearized membrane-light field interaction takes the form [24]

Ay = (@ + ) [ bt bi_ + b 50 ©)

with the coupling strength \,. In the ‘membrane-in-the-middle’ setup, the membrane-light field coupling
Am = 200 |fmlwr 6 F/73/? scales with the cavity finesse F and the light field amplitude o . Moreover, |1,,] is the
membrane reflectivity and £, = (M€2,,,)~'/? denotes the amplitude of the zero-point motion of the membrane,
where M stands for the mass of the membrane [12]. Here, we have neglected the quadratic term in vy, which
leads to a constant linear force on the membrane and, thus, only alters its equilibrium position. This can be
accounted for by a simple redefinition of the zero-point position.

The dipolar interaction of the atoms with the light field induces an AC-Stark shift of the electronic levels of
the atoms. After the elimination of the auxiliary excited state |e) and the linearization in the light field operators,
the atom-light field coupling is given by

f (b _+ b )fdz\I! (z)sm(sz)sm(wz)\L(Z)
A % [dz sin(sz)sin(wz)[bw+\1/'+(z)\1/_(z) + h.el, (7)

which includes two essentially different processes. On the one hand, the first line couples atoms in the internal
state |+ ) to the photon field quadrature in a fashion similar to the motional coupling scheme [12]. This
interaction emerges due to the driving of the atomic transition [+) « |e) and scales according to

X = 2maLwy, ui Eur / A, where 1, is the transition dipole element of the corresponding transition and

&, = JwL/mA isanormalization constant of the light mode operators with .4 being the beam cross-sectional
area. On the other hand, the second line of equation (7) includes transitions between the atomic internal states
under the creation (or annihilation) ofa o, polarized photon. Similarly, this interaction constant is given by

Ar = 2T arwy [TNTR N / A, where p1_ is now the atomic transition dipole moment between the two

states|—) < |e).
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In order to simplify the linearized atom-light field coupling, the external potential V_(z) can be chosen such
that the atoms are positioned around the lattice sites z;, defined by the relation sin(2wy zj) = 1. Anadditional
potential for the atoms in the state |+ ) has to be provided in order to cancel the lattice potential generated by the
coherent drive. This leads to a constant term that redefines the atomic transition frequency. Overall, we choose
the potential according to V,(z) = 7Q,/2 + V cos?wyz,where V characterizes the lattice depth.

2.2. Adiabatic elimination of the light field and effective equations of motion
In the following, we consider an optical cavity in the bad cavity regime in order to adiabatically eliminate the light
field modes. We assume that the cavity linewidth is large compared to both the atomic and the membrane
frequency such that both sideband photons are well accommodated in the response profile of the cavity. To do so,
we start with the linearized Hamiltonian of equation (1) in the interaction picture with respect to the light field
Hamiltonian H,. Hence, the light mode operators transform via I;W (= Z;W,,, exp[—i(w — wr)t], where the
index I labels the interaction picture.

The formal solution of the Schrodinger equation for any arbitrary state [¢)) in the interaction picture reads

() = Texp {—i S as Ao, } (), ®)

with the time-ordering operator 7 and H' = H, — H,. Next, we expand the equation on the right-hand side
for small time steps 6t. Up to second order, the relevant terms read

5t . ot t A ~
|w<6t>l>~{1—i fo dt A'(t); — fo dt fo dsH’(t)IH’(s)1}|¢(0)>- ©)

Moreover, we assume that the initial state is a product state [¢/(0)) = [¢)),ym ® |vac), where |[vac) denotes the
vacuum state of the light field and |)),  , stands for an arbitrary state in the atom-membrane subspace. Under
these assumptions, the photon mode operators fulfill |1 (0)) = 0 and we may define the noise-increment
operators

R t+ 6t N N

b= [ as [ %[bw(sn + b o), (10)
~ t+ 0t dw . . ~
0C,. (1, 2) :ft ds fmsm(sz)sm(wz)bw(s)I. (11

In addition, we make the assumptions that, first, the coupling between a single field mode and the membrane
or a single atom is usually very small and, second, the time scale on which the dynamics occurs for the
compound of atoms and membrane is very long compared to that of the photons. In combination with a strong
photon loss in the cavity, the light field rapidly approaches its steady state and a Markov approximation is
justified. Hence, we take the limit ¢ — 0 and exploit that the noise-increment operators after a time step 6t do
not depend on their form at an earlier time. With this, we can derive a quantum stochastic Schrédinger equation
(QSSE) in the Ito form [24, 31] with d|«(¢)) = [ (t + df)) — [¢(¢¥)). The differential noise operators, e.g.
limg;_o6B(t) = dB(t), follow the Ito rules

dB(t)dB (1) = 2dt, (12)
dB(1)dC, (1, 2) = dC, (1, 2)dB' (1) = sin*(wi2)dr, (13)
déu (t, z)dé;r (t, z') = sin*(wyz)sin*(wy.z")dt. (14)

Under the consideration of these relations, we can derive the quantum Langevin equation from the QSSE (9)
which describes the dynamics of the membrane mode operator 4 and the atomic field operators W... The hybrid
atom-membrane system is then effectively described by the equations of motion

10,8 = — iT)d — Ay f dz cos2) ¥’ (2, (2)
. % f dz cos2) [ ()0 (2) + ¥ @) F, 20 + &, (15)

0,0 (2) = [—% — wr0? — %cos(Zz) + Z gT\i’i(z)‘i'T(z)]\i/(z)

T=%

— %(a + a") cos(22) ¥, (2), (16)
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i@t\iq(z) = [% — wRaﬁ — %cos(Zz) + Z gT+\i/:(z)\i'T(z)]\f/+(z)

T=%

- %(a + ah) cos(22)W_(2) — Ax(a + a") cos(22) U, (2), (17)

where we have scaled and shifted the atom position variable w; z — z 4+ 7/2, such that the lattice minima for
V > 0 arelocated at the position z; = jmwith j € Z. Here, we have defined the atom-membrane coupling
constant A\ = A, A\1/2, which corresponds to the process that induces transitions between the internal states
under the creation (annihilation) of a phonon, and wy = wf /2m is the atomic recoil frequency. Moreover, the
coupling of the membrane to the number of atoms in the internal state |+) is givenby A = A, A, /2. The
latter, in fact, is not independent of the internal state coupling constant Aas A'/\ = x = p, /1, such that we
can choose the parametrization \’ = A\y.Inaddition, we have neglected terms introduced by the light field that
lead to long-range interactions in the atom gas. This assumption is justified if the laser frequency wy is far
detuned from the transition frequency between the states |+) and |e). Finally, fluctuations introduced by the
light field have been neglected. A phenomenological damping of the membrane mode has been introduced with
rate [}, together with the corresponding bosonic noise operator ém that is characterized by the autocorrelation
functions

(E 8 0) = DN + DE() and (& (£)8,,(0)) = 20N 8 (0). (18)

Here, N, is the environment occupation number which determines the steady-state occupation of the phonon
mode in the isolated limit A = 0.

2.3. Regime of realistic experimental parameters

The currently realized motional coupling schemes utilize membranes in the kHz-regime [ 14, 15], resulting in
realistic experimental parameters €, = 70wg, £2, = 20 wg, x =~ 1 with acritical coupling rate of

VN A = 29 wy (see below), that can be reached by increasing the cavity finesse or the laser power of current
experiments by a factor of 10. In addition, the mechanical damping of the vibrational mode is typically of the
order I}, =~ 1077 Q,, [15]. Within this consideration, the internal states correspond to the 87Rb hyperfine states
|=) = 1581/, F = 2, my = 2),|4+) = |5°S1/2, F = 2, my = 0) and the excited state

le) = |5%P, j» F=2,mp= 1) [32]. Besides, mechanical oscillators in the GHz-regime [33] are also applicable,
which roughly corresponds to vibrational frequencies in the region €2, ~ 1000 wg.

3. Tuning the order of the quantum phase transition

Assuming that the atoms are prepared at low temperature in combination with a weak atom-membrane
coupling such that a large fraction of atoms occupies the ground state and a condensate is formed, the combined
system dynamics is subject to the set of coupled mean-field equations of motion

0,0 = (O — iTwa — VN [dz cos@) s + Re(wiv )], (19)
10 = [% — Qiwr — %cos(Zz) + N> gT|1/JT|2:|1/)_ — VN ARe(a)cos(22) 1, (20)
T==%

10, = [% — aﬁwR - %cos(Zz) + Nz gT+|1/;T|2]¢+ — VN ARe(a)cos(22)y — 2N Ay Re(a)cos(22)1,.
T=%

(2]

Here, the first equation describes the motion of the membrane, and the second and third equation describe the
dynamics of the atomic condensate in the internal state |— ) and |+ ), respectively. The complex amplitude

o = (&) /+/N is the scaled mean value of the ladder operator @ and ¢ = (¥..) /N is the condensate wave
function of the corresponding internal atom state, where N denotes the total number of atoms. Throughout this
work, we refer to the case with y = 0as the symmetric coupling, because the equations of motion are symmetric
under the exchange 2, — —,and ¢» < 1. Consequently, x = 0 defines the case of asymmetric coupling,
when this symmetry no longer holds.

3.1. Single mode approximation and cumulant expansion

For a sufficiently deep lattice V >> wg, the condensate profile is well described by a sum of Gaussians residing in
the individual lattice wells. When the wave function overlap between neighboring sites is small, the problem
reduces to an effective single-site problem. It is then reasonable to make the ansatz

5
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Figure 2. The steady-state condensate profile for the internal state |—) in (a), (c) and |+) in (b), (d) is shown for different values of the
atom-membrane coupling, as indicated in panel (b), (d). A symmetric coupling with x = 01is considered in (a) and (b), while the
asymmetric case for x = 1is shown in panels (c) and (d). The inset shows the condensate profile width of the corresponding internal
state obtained via a Gaussian fit to the condensate profile. Other parameters used are V = 100 wg, Ng = wg, 2y = 50 wg,
Q= 100 wg,and I}, = 10 wg.

1 1/4 z2 o,
Yoty z) = %(t)(i) ‘?XP(—T(Q2 +1m,z )’ (22)

oy (t)?

with a constant number of atoms, i.e. the occupation amplitudes ~,(¢) fulfill the condition
v P + [, (®) [> = 1, theindividual condensate widths o, (¢) and the corresponding phases 7,(£) which are
used to induce the dynamics for o, (). In order to reduce the number of parameters, we restrict ourselves to the
special case g_, = g.Moreover, we note that the atoms will always be symmetrically distributed around each
lattice site which is determined by the form of the lattice and the atom-membrane coupling potential. This is in
contrast to the motional coupling scheme [17, 34], where the membrane displacement is linearly coupled to the
center-of-mass displacement of the atomic condensate. Finally, a mixing of the condensate profiles for different
internal states is the energetically preferred state. Already from equation (19) it can be concluded that a
maximally mixed condensate maximizes the effective coupling between the atoms and the membrane. This will
eventually lead to a minimization of an effective nonequilibrium potential, which we will derive in the following.

In order to justify the ansatz, we numerically determine the steady state of the extended Gross—Pitaevskii
equation (GPE) (19)—(21) by using an imaginary time evolution with the Crank—Nicolson scheme. Due to the
periodicity of the potential, we use periodic boundary conditions and evaluate the steady state within the interval
from —m/2 to /2. The condensate profile around a single potential well is shown for the symmetric coupling
case Y = 0in figures 2(a) and (b) and the asymmetric case y = 1in figures 2(c) and (d). Here, different coupling
constants A have been chosen according to the color coding in figure 2(b). The panels (a), (c) and (b), (d) show
the condensate profile of the atoms in the internal states | — ) and |+ ), respectively, as a function of the position
coordinate z. The well minimum is located at z = 0. Moreover, the insets compare the individual widths o_and
o, obtained from a Gaussian fit to the condensate profile according to equation (22). The deviations between the
individual widths are negligible in most cases and slightly increase only in the vicinity of a certain critical point.
Consequently, we can approximate the condensate profiles by a unified condensate width o = o = ¢, and an
equalphasen = n_ = 17,.

Next, we perform a cumulant expansion [17, 35] of the equations of motion in order to determine the
dynamics of the respective variational parameters. Thus, we calculate the (i) zeroth and (ii) second cumulants by

6
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multiplying equations (20) and (21) (i) with ¢(z) = exp(—z%/20% — inz?) /(mo?)"/* as well as (ii) with
(2% — 02/2)1)¢(z) and integrate then over z. This leads to five independent equations of motion of which one is
givenby & = 4wpg no. By defining the effective potential

El0, 1 90, 71 = Qplaf + Sl = ) + 52 = Ze
— N + )il + Re[¥ir-De (23)
the remaining equations of motion are given in a compact form as
& = —i0E — Tha, (24)
i = —i0 ¢E, (25)
(4wr)"'6 = —0,E. (26)

We note that the last term in equation (23) reflects the argument that a maximally mixed atomic condensate
minimizes the effective potential energy.

3.2. Nonequilibrium potential and steady-state configuration
In the presence of damping, the system will eventually relax to a steady nonthermal state. Thus, each of the
parameters can be split into its steady-state value and deviations from the steady state. In this section, we are
mainly interested in the steady-state properties of the combined hybrid system. That is, we make the ansatz
at) = ag 1 () =1 — 'yé, Y(t) = yyand o (t) = oy with areal-valued polarization ~,. By inserting this
ansatz in equations (24)—(26), the relation for the membrane amplitude

ap(y, 0) = L).\(XVZ + 1 = De” (27)

Qn — i,

is found. With this, the effective potential of equation (23) can be expressed in terms of the condensate
variational parameters as

Q NN WR % Ng
Ely, 0l = =@y =D - 21—+ = - — + , 28
gl z(v ) Q(ne%z(m gl ) P B g (28)

which includes the nonequilibrium condition in the form of the primed mechanical frequency 2, = Q, + I'2, /Q..

For a qualitative understanding of the role of both the atom-membrane coupling A and the asymmetry x, we
study the potential surface of equation (28). Now, any local minimum of the effective nonequilibrium potential
E[~, 0ol defines a possible steady-state configuration -, 0 and accordingly via equation (27) also cvy. The
defining equations for the steady-state values of the condensate variational parameters are given by

4N/\2 2 WR Ng
Ve i + (V6 + Y041 — 7920 = = + ——, (29)
Qin XYo Yo Yo Ué mo_g

2
70[(><% + 3L =) x vy — 75 + 1 — 299 — (%e"z) ] =0, (30)

where we have introduced the coupling rate VN g = /€2, . While equation (29) has only one possible
solution o, for a given occupation amplitude ~,, equation (30) allows, in general, multiple steady-state
configurations v, that minimize the effective potential (28). In addition, this feature is also present in the
respective effective potential. Thus, we note that the effective potential E(c) = E[y,(c), o]always exhibitsa
single stable steady-state configuration . On the other hand, the effective potential E (y) exhibits either a
single, two or three local minima in the relevant parameter regime |y| < 1. Rather than minimizing the potential
with respect to all three parameters, we minimize it with respect to oy, o for a given occupation amplitude v,
which is taken as an order parameter, and study the resulting potential energy surface E(y) = E[7, 0p(7y)]. The
global symmetry properties of the hybrid system are then determined by -y via the influence of the occupations
of the condensate species.

In figure 3, we show the steady-state occupation amplitude -y, (dashed curves) as a function of the atom-
membrane coupling strength A, which is determined by the equations (24)—(26) in the steady-state limit. In addition,
the background illustrates the resulting normalized energy surface £(y) = [E(y) — Eol/max;5<1[E(¥) — Eol,
with the global minimum E, of E(). Below a certain coupling value A < A, all atoms occupy the state | — ) and the
potential exhibits a single minimum at , = 0.

At A = )\, the system undergoes a NQPT that is characterized by a nonvanishing occupation amplitude
7 = 0 with different characteristics. The case of symmetric coupling x = 0is shown in figures 3(a) and (b) for
the transition frequency 2, = 50 wg and €2, = 5000 wg, respectively. In figure 3(a), the NQPT is of second
order with a critical behavior 7, ~ (A — A.)!/2. Interestingly, by tuning the atomic transition frequency €, the
NQPT becomes a symmetric first-order phase transition where the order parameter shows a jump at the critical
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Figure 3. The normalized potential surface £(7) is shown as a function of the atomic occupation parameter y and the atom-
membrane coupling strength . The dashed white curves show the steady-state configuration . In panels (a) and (b), a symmetric
coupling (x = 0)is considered with 2, = 50 wg and §2, = 5000 wg, respectively. In (a), the system exhibits a second-order phase
transition, whereas the system undergoes a first-order phase transition in (b). In panel (c), the asymmetric coupling regime is
considered with x = 0.25and §2, = 50 wg. Here, the system always exhibits an asymmetric first-order phase transition, characterized
by a single favored atomic polarization. The other parameters throughout all panelsare V = 100 wg , Ng = wg, Qm = 2 Q, and

T = 0.1 Q.

point, see figure 3(b). Here, the bistable phase corresponds to the two states (|—) & |+))/+/2.Fora
nonvanishing asymmetry x > 0, even an asymmetric first-order phase transition occurs at a critical coupling,
where the left branch (|—) — |+))/+/2 is energetically raised, such that the right branch (| ) + |+)) /~/2
represents the minimum, see figure 3(c).

In the case of a second-order NQPT, we label the critical coupling by A,. An implicit definition of A, is
found by inserting the steady-state solution of the condensate width o3 = log(\, / \o) of equation (30) for
7, = 0in the equation (29). Hence, we find the implicit equation for the critical coupling rate

Ng A2 Ao A Y
— |lo =V]|—|llog—=]| . 31
V8 g)\Q ()‘52)( g)‘ﬂ) ( )

Yet, in the event of a first-order NQPT, such an implicit definition of the corresponding critical coupling rate can
not be found on the basis of a set of steady-state equations. However, a procedure to find the critical points can
be defined by performing a Landau expansion of the effective nonequilibrium potential E (). Moreover,
Landau theory allows us to classify the order of the phase transition by evaluating the expansion coefficients.

wR—|—

3.3. Landau expansion of the nonequilibrium potential

In order to verify whether figure 3(b) indeed shows a first-order phase transition, we expand the nonequilibrium
potential E(7) in the order parameter around 7, = 0. Due to the asymmetry in the coupling, the Taylor
expansion takes in general the form E(y) = ao + 3, -,a,7", allowing also odd orders in 7. In order to fix the
condensate width to its value oy (7), we define the auxiliary function

4NN N,
Flo,7] = Ve "o + LR L B e = . (32)
n o o

which fixes the width by the condition F [0y (7y), ] = 0. In the following, we omit the «y-dependence of oy and,
since the Landau expansion is performed around v = 0, the equilibrium value is understood as
0o = 0p(y = 0). The zeroth- and second-order expansion coefficients are determined straightforwardly to

, (33)
2 208 2 8oy

2
a = Qall — (%) ] (34)
s2

To evaluate the higher-order Landau coefficients, we first perform the derivatives of the steady-state width o
with respect to the order parameter +. By means of the theorem of implicit functions, for which we use the
auxiliary function F[o, 7], we find the implicit derivatives

oy =0, (35)

4 AY
ol = —SQ(%J()\—Z) Oor (36)
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Figure 4. The phase diagram of the NQPT is shown as a function of the atomic transition frequency €2, and (a) the lattice depth Vor
(b) the interaction strength Ng. While the phase transition is continuous in the blue regions, it is discontinuous in the orange regions.
The dashed curves show the critical transition frequency 2, = €. according to equation (44). The fixed parameter in (a) is the
interaction strength Ng = wyg and in (b) the potential depth V = 100 wg.

oy = 6xoy, (37)
3 — 1203
o) = (—U 0)(06’)2 - (12 - 6x)0p, (38)
0

where we have defined the frequency of the atomic breathing mode

3w N
wk= 4wR[—4R + =2

0o 2o}

+va - 20’%)6_”(2’]. (39)

With these relations, the Landau coefficients a,, = (97 E /n!),—o up to sixth order are given in the compact form

/\ 2
as = —ZQa(—) X> (40)
)\52
)\ 2
as = Qa(_) (1 + g0y — x5, (41)
)\52
/\ 2
as = Qa(_) (1 + 40003)X: (42)
>\52
Q(2Y
ag = —(A—) [A — 40d)(oh)? — 1200(1 — 3xD) ). (43)
s2

As the second derivative of the width o] is always smaller than zero, the sixth-order expansion coefficient
consequently fulfills as > 0 for the set of parameters considered in the following other than A\ = 0.

In order to describe a first-order NQPT in the symmetric coupling regime (y = 0), itis sufficient to consider
the Landau coefficients up to sixth order. In this regime, the odd Landau coefficients vanish, since a,,,; ~ X for
all n € N.Inorder to quantify the order of the phase transition, we have to look at the sign of the expansion
coefficient a,. To be more specific, the phase transition is continuous when a, > 0 and discontinuous fora, < 0
at the critical point. In fact, the fourth-order coefficient exhibits a point at which its sign changes. From
equation (41), it follows that this point is given by the relation 1 + gyofy = 0.Inaddition, whena, = 0, the
phase transition occurs at the critical point A = \g,. Hence, we can insert this expression for the atom-
membrane coupling rate to find the relation

w2
Q. = 2 , (44)
320z log(Ae2/A)

which defines a critical value for the atomic transition frequency. Below €2, < €, the phase transition is
continuous (second-order) and becomes discontinuous (first-order) for transition frequencies satisfying
Q. > Q.. This behavior is depicted in the two panels of figure 4.

In figure 4(a) is shown that by tuning either the potential depth V or the atomic transition frequency §2,, the
order of the phase transition can be changed from second- (blue region below dashed curve) to first-order
(orange region). Alternatively, by changing the atomic interaction strength Ng, the order may also be tuned,
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which is shown in figure 4(b). In that sense, one might also consider to define a critical optical lattice depth V or
critical interaction strength g_(or atom number N) rather than a critical atomic transition frequency.

The critical coupling rate A, in the second-order regime has been derived by simple arguments on the basis
of the steady-state equations, which is equivalent to evaluating the lowest-order Landau coefficient a,. On the
other hand, in order to determine the critical coupling rate A, in the symmetric first-order regime, one has to
know at least the expansion coefficients up to sixth order. For a, < 0, the effective nonequilibrium potential
E(7) exhibits three minima on the real axis, which are located at

2
Qg ay [£5]

=0, = —— ol - (45)
n 72)3 3a6 (3(16 ) 3(16

ifa, > 0, orequivalently A < Ay,. Thelocal minimum at , = 0 has a value of E(0) = a, and the critical
coupling rate ), is fixed by the condition E (7, ;) = ao. After some tedious but straightforward algebra, this

leads to the expression 13a,as = 4a; from which we can derive the critical coupling rate in the first-order regime

according to
2
13[1 — ( At ﬂ[(log1 Ao 4)( Ast )2 + 12&] = 24[& — ( Ast ﬂ . (46)
A s2 )\Q )\52 Qa Qa )\52
Werecover the result A;; = A, in thelimit 2, = ) and find that the first-order phase transition occurs in
general at smaller coupling rates than the second-order NQPT, i.e. Ay; < A, for £2, > 2.

For asymmetric coupling (x = 0), also odd orders in the Landau expansion take a finite value. This breaks
the symmetry in the nonequilibrium potential E () with respect to v = 0. In order to estimate the critical
coupling rate A, in the first-order regime, we consider atomic transition frequencies that satisfy
Q. < (1 — x*»)Q,suchthata, > 0isalways satisfied. In this case, it is sufficient to take the Landau expansion
up to fourth order. With the same arguments as in the symmetric first-order regime, we derive an expression for

the critical coupling rate from the condition E(7,) = ao, where 7, = 0is one of the two points that minimize
the effective potential, whereas the other point is the trivial one at 7, = 0. Hence, we find the relation

4a,a, — ai = 0, which translates to

2 2 2
1_()\a1) I_XZ_&(/\M) :()\al)xz, (47)
/\52 Qa )\52 )‘52
which is independent of the sign of x. It is straightforward to show that also \,; < Agpand A, = Ay isrecovered
in the limit y = 0.

3.4. Hysteresis in the first-order regime

A characteristic feature of a first-order phase transition is the occurrence of a hysteresis when the atom-
membrane coupling A is adiabatically tuned. In terms of the nonequilibrium potential, this is included by the
existence of two or more local minima. At a certain coupling rate, these local minima become dynamically
ustable and eventually turn into a maximum. At this point, the system jumps to the neighboring local minimum
and remains there until this minimum becomes unstable. In the following, we consider the two generic cases of a
symmetric and an asymmetric coupling to discuss this effect.

In order to describe the hysteretic behavior, we take the equations of motion (24)—(26) with v (t) = ~,(t)
and adiabatically alter the atom-membrane coupling strength. Thus, we obtain for each value of A along-time
solution v, = lim,_, v (t) which becomes time independent. In figures 5(a) and (c), we show the hysteresis for
the symmetric (y = 0) and asymmetric (y = 0.25) first-order phase transition, respectively. On the forward
path, the coupling strength A is adiabatically increased and the system is initially prepared in the minimum with
the occupation amplitude v = 0.

The system stays there until it becomes unstable at A\ = A and jumps to the adjacent minimum at y = 0.
This point coincides with the critical coupling rate Ay, in both of the two cases, the symmetric and asymmetric
first-order transition. Afterwards, the steady-state solution -y, = 0is followed as X increases.

On the backward path, the system follows the solution with +, = 0 until it becomes dynamically unstable at
Ag and jumps to the solution at oy, = 0. For the case of symmetric coupling (x = 0) shown in figure 5(a), this
jumping point occurs when 4a,as = a;. On the other hand, the jumping point in the regime of asymmetric
coupling of figure 5(c) is defined via the relation 32a,a, = 9a3.

In the picture of potential energy surfaces, the reason for the hysteretic behavior is the existence of multiple
stablelocal minimaat v = 0 and v = 0 in the coexistence region A\ < A < g asindicated in figure 5(b). Here,
the forward and backward minima are indicated by the circled capital letters F and B, respectively. The same
argumentation applies to the asymmetric first-order phase transition. The structure of the effective potential
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Figure 5. Hysteresis curve (7, , solid) shown as a function of the coupling parameter A for (a) the symmetric first-order phase
transition and (c) the asymmetric first-order phase transition. The dashed curve shows the globally minimized path ;. (b), (d) Curves
of the effective nonequilibrium potential AE(y) = E(y) — E(,) are shown for a coupling strength below and above the turning
points, A < Agand A > Ap, andin the coexistencearea Ay < A < Ag. The colors of the potential curves in (b), (d) mark the
associated configurations pointed to by the colored arrows in (a), (c). The circled letters indicate the minimum of the forward (F) and
backward (B) path. The parameters were chosen as in figures 3(b) and (c) for the symmetric and asymmetric coupling case,
respectively.

surface is shown in figure 5(d) for three different values of the atom-membrane coupling A. The colors of the
potential curves in (b) mark the associated configurations pointed to by the colored arrows in (a).

3.5. Advantages over motional coupling and tuning of the asymmetry parameter

Current experimental set-ups use the motional coupling scheme [12, 13]. In order to understand whether a first-
order phase transition is possible in this set-up or not, one has to compare two different energy scales, one which
corresponds to the breathing mode frequency of the condensate (here w,) and the other which is of the order of
the energy difference between the normal and the symmetry-broken phase (here AE ~ €2,). In the motional
coupling scheme, the symmetry-broken phase is a configuration where the atomic center-of-mass position is
displaced with respect to the minima of the uncoupled lattice defined by the optical potential with depth V.
Hence, the relevant energy difference scales with the frequency of the displacement mode that is given by

We = J4wr Ve~ [17]. Accordingly, both w, and w; do not scale independently and a first-order phase
transition cannot be observed.

The internal state coupling scheme overcomes this limitation. The direct observation is possible by either
measuring the membrane eigenfrequency or the condensate width o [17]. In the case of a first-order NQPT,
these quantities exhibit a jump at the critical coupling rate, rather than a continuous behavior as in the case of a
second-order NQPT, see section 4. Moreover, a direct measurement of the condensate occupation amplitude ~,
() can detect the NQPT in a straightforward way. Furthermore, from a quantum information perspective, the
internal state coupling scheme is superior to the motional coupling scheme, because the information can be
stored in discrete atomic states rather than continuous, motional states. The former are commonly less
susceptible to external fluctuations.

Though the asymmetry parameter Y is fixed by the ratio between the transition dipole elements 4, it can be
tuned effectively. This is achieved by applying an additional perpendicular laser field that drives the transition
between the states | —) and |+ ). This gives rise to a term § (*yjfy_ + ¥y ) in the auxiliary potential energy (23). In
turn, by tuning the parameter 6, it is possible to reach a point where the coupling between each atom species to
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the membrane appears symmetrically. More precisely, this is achieved by choosing ¢ such that

6 Qa‘i’\/Qi“i‘éz X

=. (48)

+ X =
N e (O R AL E

4. Spectrum of collective excitations and entanglement

In the preceding section, we have analyzed the equations of motion in the mean-field regime. We note that the
spectrum of collective excitations is included in the equations of motion (24)—(26) [17]. Yet, we present a
different approach that utilizes an adapted Bogoliubov ansatz. Hence, we start again from the effective equations
of motion (15)—(17).

For this purpose, it is convenient to introduce the new field operators

InG) = {1 = 78.(2) + 70 0.(2), (49)
B.(2) = —00(t, 2) + {1 — (), (50)

where the first field operator contains the mean-field steady state, and the latter describes excitations out of this
steady state via internal transitions. Let us note that in the steady state, which we are going to determine in the

following, the correlation function of the first field operator Un(2) fulfills f dz (@L(z)\ifN(z» = N + Nynimo
where Nyqm describes excitations out of the mean-field condensate. Hence, we chose the label N. For simplicity,
we focus here on the special case of symmetric coupling (y = 0) and noninteracting atoms with ¢ = 0. It follows
that the equations of motion for these new fields are given by
10,8 = (O — L) — % f dz cos22)[(1 — 272 (b, + ¥y
S St s -
+ 29041 — 7o (U — W U)] + i, (51)
10,0y = [—%(1 — 293 — wr0? — %cos(Zz) — Moyl —vi@ + ﬁ*)cos(Zz)]\ifN
A R R ~
- [Qa%\/l - — S - 1)@ + af>cos(2z)]%, (52)
iat‘ilv = [%(1 — 273) — wRaﬁ — %cos(Zz) + Moy 1 — 7% (a+ éT)cos(Zz)]\ilw,
+ [Qa’}/o 1 -7 — %(1 —2y)(@ + &T)cos(ZZ)]\i/N. (53)

Here, taking into account the noise operator Sm is essential, as correlations exponentially decay with a rate of the
order of O(I},), meaning that all correlation functions would otherwise vanish in the steady-state regime. The

mean-field steady state b~ Ja - vé)N Yo, Uy =~ VN VYo is completely included in the field operator P
Hence, we can make the ansatz

In(t, 2) = [VNPo(2) + do(t)12(2)]e 1, (54)
U (t, 2) = d. (1) (2)em, (55)

where 1,,(z) are the quasi-eigenstates

1/4
1 1 z?
Yul(z) = (?‘(2)) WHn(Z /UO)eXP(_?‘%]a (56)

with the nth Hermite polynomial H,,(x). In addition, we assume for the membrane ladder operator a similar
superposition of mean-field steady state and quantum fluctuations according to a(t) = /N a, + d, (t). Here,
the operators d.(t)with x € {a, v, o} follow the usual bosonic algebra, i.e. [dy, (2; ] = by

In order to evaluate the spectrum of collective excitations, we determine the equations of motion for the ladder
operators d, and linearize with respect to the quantum fluctuations by taking into account only the leading order
terms in the atom number N. Hence, we assume that the effective coupling A between the membrane and a single
atom is small, yet the collective coupling v/N A can still be large. From the set of equations (51)~(53), we find the
equation of motion for the vector of the collective modes d = (d,,, ﬁw,, dy ﬁ; , ﬁj ) ﬁj )" according to the
Bogoliubov—de Gennes equation
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Figure 6. (a) The three collective excitation frequencies w; = Re(v;) are shown as a function of the atom-membrane coupling rate

A/ A¢ in the weak damping limit. The different colors correspond to different eigenmodes. (b) In addition, the decay rates of the
collective modes ~; = —Im(1;) are shown. We note that due to the weak membrane damping, avoided energy crossings appear, which
is also reflected in the rich structure of the collective decay rates. (c) The logarithmic negativity E\r is shown as a function of the atom-
membrane coupling for different bath occupation numbers N,,. Each curve characterizes the entanglement between the vibrational
mode of the membrane and the atomic transition mode which is maximized at the critical point A = A.. The logarithmic negativity is
strongly reduced as the temperature of the environment is raised. The parameters used are V = 100 wg, 2, = 100 wg, I}y = wg,

Q, = 50 wg,andg = 0, y = 0.

10,d(t) = M(cvg, Yo, 00)d(t) + i&(D), (57)

. . A ~ At . . . . .
with the noise vector § = (&, 0, 0, —¢ , 0, 0).Thelinear stability matrix M (v, ¥y 0p)isa6 x 6linear
operator whose eigenvalues v; include the frequencies and the decay rates of the collective excitations. The
matrix contains the full information of the steady-state solution (g, 7y, 0p) and can be written as

M (o, 7o, 1) — ( H (a0, 70, 00) G(*Olm Y0> 00) ) (58)
—G (o, Y0, 00) —H™(co, 70, 00)
by definingthe 3 x 3-matrices H and G. Here, the matrix H has the diagonal entries
Hy = Qn — i, (59)
Hy = Qu(1 = 279) + 2VN o1 = 75 (a0 + ap)e ™, (60)
Hys = 2% 4 Vg @ — od)ode ™, 61)

o
with the effective lattice depth Vog = V + 4Q,(\/ )\Q)zfyé(l - 'y(z)) exp(—o?), whereas all diagonal entries of G

are zero. The off-diagonal elements of the two matrices couple the individual bare modes with each other and
take the values

VN

Hi = —~—=(1 = 23D, (62)
H13 =/ ZN)\’Y()ﬂl — 'yéaée_ag, (63)
Hy; = V2N (1 — 27§)Re(ao)a%e’”5, (64)

with Gy ; = Hy ;fori = l,and H' = H, G' = G. All other entries vanish.

4.1. Collective excitations and atom-membrane entanglement

In figure 6, we show the spectrum of the collective excitations in the regime of the continuous phase transition
for a weakly damped membrane I}, = 0.01 €2,,. The excitation frequencies of the collective modes w; = Re(v;)
are shown in panel (a). Below the critical coupling rate A < A, the breathing mode wj; (green) is constant, while
the low energy excitation frequency (red) exhibits a mode softening and monotonically decreases to zero
accordingto wy =~ Q,4/1 — (A/\.)?. Simultaneously, the high-energy frequency w; (blue) monotonically
increases. Above the threshold A > A, thelow-energy mode frequency increases again. This mode eventually
saturates to §2,,, which means that the membrane mode decouples from the atomic modes. The high-energy
frequency w; decreases in a short interval after the critical point. At the end of this interval, an avoided energy
crossing between wj and wj occurs and, afterwards, the two mode frequencies follow a monotonic increase. The
presence of the avoided crossing is a direct consequence of the comparably weak membrane damping rate

In = 0.01 €2y,,. For the sake of completeness, we show the decay rates 7, = —Im(y;) in figure 6(b). In the vicinity
of the avoided crossings in (a), the initially small decay rates are significantly increased, which indicates a strong
mixing of the membrane mode and the atomic modes. Moreover, the decay rate~y, exhibits a bifurcation, which
appears as a vertical line at the critical coupling rate, where the corresponding excitation frequency w, vanishes.
In fact, a zoom shows that the decay rate bifurcates in a finite interval around the critical point, e.g. see [36].
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Figure 7. (a) The high-energy excitation frequency w; = Re(v;) and the mode softening-type excitation frequency w, = Re(v,) are
shown along the hysteresis in the regime of a symmetric first-order phase transition, i.e. x = 0. Slight deviations between the globally
minimized solution and the forward /backward propagation are found only in the vicinity of the critical point A = A  and the
coupling strength A = Ag. Azoom of (b) w; and (¢) w, around \ visualizes these deviations. Curves with different colors correspond
to different solutions indicated in (c), where F (B) corresponds to the forward (backward) solution of the hysteresis with values

(o> Vs o) and min. is the globally minimized solution with values (cv, ¥, o). (d) The corresponding decay rates +; and -, of the
collective eigenmodes are shown along the hysteresis. The other parameters chosenare V = 100 wg, Q4 = 10° wg, I}, = 0.01 Qy,,
Q, = 0.5Q,andg = 0.

In order to determine the atom-membrane entanglement in the steady-state regime, we solve the
Bogoliubov—de Gennes equation (57) in the long-time limit t+ — co. A possible measure to quantify the
quantum entanglement between two different bare modes is the logarithmic negativity Ey [36—39], which is
evaluated from the reduced covariance matrix Cyy = (%% + £%;) /2. Here, we adopted the shorthand
notation £ = (4,,, 4,» 4, b.» 137 , b, with the quadratures q,= (CZ,, + (%:)/\/5, ﬁ# = (ﬁﬂ — ai:)/ﬁz The
columns and rows of the irrelevant modes are neglected. The mean value has to be taken for the long-time
solution such that <&l;> = lim,_, o {a(¥) b ()). In general, the covariance matrix C takes the form

(U vV
C—(vrnJ' (65)

The logarithmic negativity is then related to the smallest symplectic eigenvalue & of C and is expressed as
Ey = max {0, —log(27)} with

. =271/2/3(C) — JE(0) — 4detC, (66)

and X(C) = det U + det W — 2 det V. We note that the symplectic eigenvalues of the matrix C corresponds to
the eigenvalues of the matrix A = iJC, where J is the skew-symmetric matrix

0 1
1= 5) (©7)
and listhe2 x 2 identity matrix.

The resulting entanglement between the membrane mode d., and the atomic transition mode ﬁﬁ,, is shown in
figure 6(c), where we have neglected the columns and rows of the covariance matrix that either contain 4_or p.
The logarithmic negativity Ejr exhibits a nondifferentiable, global maximum at the critical coupling rate
A = A.. Above the critical point, the entanglement is progressively reduced as the atom-membrane coupling
increases. This behavior intermediately flattens out in the region of the avoided crossings, which are indicated in
figure 6(a) around A ~ 1.5 A.. The differently colored curves correspond to cases with different environmental
occupation numbers Ny, which enter in the autocorrelation function of the noise in equation (18).

4.2. Excitation spectrum along the hysteresis

In the regime of a first-order phase transition €2, > ), the experimentally observed spectrum of excitations
does, in general, not coincide with the predicted excitation spectrum of equation (58). This is because the
globally minimized solution (v, 7y, 0p) differs from the long-time solution (v, > 0no) in the vicinity of the
critical point A, due to the presence of a hysteresis. In the following, we, therefore, distinguish between the
minimal spectrum, which is evaluated with the globally minimized state (cv, 7,, 0p),and the forward (backward)
spectrum, which is determined with the long-time solution (., 7., 0x) of the equations of motion (24)—(26)
for a coupling strength A that is adiabatically raised (reduced). In order to determine the spectrum of collective
excitations along the hysteresis of a symmetric first-order phase transition, we evaluate the linear stability
matrix M (Cioos Yor Ono)-
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The high-energy excitation frequency w; and the mode softening-type excitation frequency w, are shown in
figure 7(a) as a function of the atom-membrane coupling strength A. Here, the solid (blue) curve illustrates the
forward solution, the dotted (red) curve the backward solution and the dashed (black) curve shows the excitation
frequency in the minimal state. Deviations between the curves are only present when the steady-state solution
(v, Yy 09) and the long-time solution (v, Y,.» 0no) differ from each other. For a better visualization, we show
azoom around the critical point A = A  in figures 7(b) and (c). Following the forward path of the softening
mode frequency w; in (c), it coincides with the dashed, minimal solution evaluated up to the critical coupling A,
then further decreases until it reaches a minimal value at A = Ay, and jumps back to the minimal solution. A
similar behavior is found for the backward solution in the opposite direction and the high-energy excitation
frequency w; in (b). For completeness, we show the corresponding decay rates of the collective excitation modes
7 and 7, in figure 7(d). In contrast to the second-order phase transition, no bifurcation of the decay rate of the
low-energy excitation mode -, is observed. We note that due to the large frequency mismatch between the
breathing mode and the remaining modes, the breathing mode decouples and is very well approximated by

V3 ™ wy; = 4\/ wr Vege (1 — 20%) ¢~ and therefore omitted from the figure.

5. Conclusion

We have shown that the hybrid atom-optomechanical system not only undergoes a NQPT between phases of
different collective behavior, but also that the order of the phase transition can be tuned in a straightforward
manner. The steady state of an atomic condensate in an optical lattice, whose internal states are coupled to a
single mechanical vibrational mode of a distant membrane, has been analyzed, based on a Gross—Pitaevskii-like
mean-field approach with a time-dependent Gaussian variational ansatz. Mediated by the light field of a
common laser, the atom-membrane coupling is tuned by changing the laser intensity. Below a critical coupling
Ao all the atoms occupy the energetically lower state | — ) and at the critical point a NQPT occurs. This phase is
characterized by a sizeable steady-state occupation of the energetically higher state |4) and a constantly
displaced membrane. The order of this NQPT is determined by the state-dependent atom-membrane coupling
and the transition frequency §2,. For an asymmetric coupling, x = 0, an asymmetric first-order phase
transition occurs with a preferred occupation amplitude of the internal states. Instead, for a symmetric coupling,
X = 0, the phase transition is discontinuous for transition frequencies above a critical value €).. Moreover, the
first-order phase transition is accompanied by hysteresis. On the other hand, when the transition frequency €2,
is smaller than the critical value, the U(1)-symmetry of the internal states is spontaneously broken and a second-
order phase transition occurs. This phase transition is characterized by an enhanced atom-membrane
entanglement, a mode softening of the frequency and a bifurcation of the decay of the low-energy excitation
mode. The transition between a first- and second-order is observable by tuning readily accessible parameters in
the internal state coupling scheme.

Finally, we note the difference of the NQPT described here to the dynamical instability of a Bose—FEinstein
condensate in a lattice [40] which occurs when the atom—atom interaction strength exceeds the lattice depth.
The cause for the dynamical instability in a BEC in a lattice is that the GPE has an exact solution which lies at the
boundary of the first Brillouin zone. Thus, the instability can only occur in the interacting case and is absent in
the single-particle case. Then, the resulting particle density, and therefore also the mean-field solution (due to
interparticle interactions), has a component varying with the same spatial periodicity as the lattice and thus can
cancel the lattice potential and generate a dynamic instability.

In the present case, the lattice potential of one BEC species and the coupling to the membrane and to the
other BEC species both have the same periodicity as well and also can have different signs. Depending on the
dynamical backaction of the membrane and of the other BEC species, the one BEC species sees a different
‘global’ energetic minimum and is thus driven into a different phase. Yet, it always remains in the BEC state and
the lattice potential during the entire consideration is never canceled, otherwise the Gaussian ansatz would not
be justified. The phase transition studied here refers instead to the depletion of the condensate in one of the two
species. Importantly, this holds in absence of the atom—atom interactions within the BEC (i.e. the single particle
level of the atoms) as well (for g, = 0). The corresponding question for the hybrid system has been addressed in
[34] where the coupling of the motional degrees of freedom of the atoms is coupled to a mechanical oscillator.
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